Several Complex Variables – Exercise 1

Due by November 4th, 2009. Please let me know immediately when you find a mistake or a misprint.

1. Differentiaion under the integral sign. Suppose $\Omega \subset \mathbb{R}^n$ is a bounded domain, μ is a finite measure on Ω , and let u(t, x) be a complex function defined in the domain $\tilde{\Omega} = (-\varepsilon, \varepsilon) \times \Omega$, such that $x \mapsto u(t, x)$ is μ integrable for $|t| < \varepsilon$. Define

$$f(t) = \int_{\Omega} u(t, x) d\mu(x) \qquad (-\varepsilon < t < \varepsilon)$$

Assume that the derivative $\partial u/\partial t$ exists and is uniformly continuous in $\tilde{\Omega}$. Prove that

$$f'(0) = \int_{\Omega} \frac{\partial u}{\partial t}(0, x) d\mu(x).$$

- 2. Generalize the previous question to line integrals over smooth curves, and explain why we can differentiate Cauchy integral formula under the integral sign any finite number of times.
- 3. Verify that $\partial \bar{f}/\partial z = \overline{\partial f/\partial \bar{z}}$ and $\partial \bar{f}/\partial \bar{z} = \overline{\partial f/\partial z}$, that $\partial^2 f/\partial z \partial \bar{z} = \frac{1}{4} \Delta f$, that the composition of two anti-holomorphic functions (i.e., function with $\partial f/\partial z = 0$) is actually holomorphic, and prove also the chain rule:

$$\frac{\partial (f \circ g)}{\partial z} = \frac{\partial f}{\partial z} \frac{\partial g}{\partial z} + \frac{\partial f}{\partial \bar{z}} \frac{\partial \bar{g}}{\partial z}, \qquad \frac{\partial (f \circ g)}{\partial \bar{z}} = \frac{\partial f}{\partial z} \frac{\partial g}{\partial \bar{z}} + \frac{\partial f}{\partial \bar{z}} \frac{\partial \bar{g}}{\partial \bar{z}}$$

4. Approximation by rational functions. Let $\Omega \subset \mathbb{C}$ be a bounded domain with a smooth boundary γ , and let $K \subset \subset \Omega$ (i.e., $\overline{K} \subset \Omega$). Suppose that f is a continuous function on γ . Prove that for any $\varepsilon > 0$, there exists a rational function R, all of its poles lie in γ , for which

$$\sup_{\xi \in K} \left| \int_{\gamma} \frac{f(z)}{z - \xi} dz - R(\xi) \right| < \varepsilon.$$

- 5. Suppose $U, V \subset \mathbb{C}$ are open sets, with $V \subset U$ and $\partial V \cap U = \emptyset$. Let H be a connected component of U with $H \cap V \neq \emptyset$. Prove that $H \subset V$.
- 6. Suppose $K \subset \mathbb{R}^n$ is a compact, convex set. Prove that for any $x \notin K$ there exists an affine functional φ on \mathbb{R}^n with

$$|\varphi(x)| > \sup_{y \in K} |\varphi(y)|.$$