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Below is a list of exercises for the class.

1. Heuristic explanation of Neumann boundary conditions: Let K ⊂ Rn be a bounded,
open set with a smooth boundary. For i ≥ 0 set

λi = inf
0̸≡f⊥φ0,...,φi−1

∫
K
|∇f |2∫
K
f 2

, (1)

where the infimum runs over all functions f ∈ L2(K), and when i ≥ 1 we require that f
be orthogonal to φ0, . . . , φi−1 in L2(K).

You may assume that for any i the infimum in (1) is attained and that the minimizer φi may
be chosen to be a smooth function up to the boundary (this is actually true as you learn in
PDE class). Prove that for any i ≥ 0{

∆φi(x) = −λiφi(x) ∀x ∈ K
∇φi(x) ⊥ ν(x) ∀x ∈ ∂K

where ν(x) is the normal to ∂K at the point x. [Hint: Look at the Rayleigh quotient of
φi + εg as ε → 0, first for g compactly-supported and then without this assumption]

Poincaré constants

2. Show that the Poincaré constant of the uniform measure on the cube [0, 1]n is 1/π2,
the same value as the Poincaré constant of the interval [0, 1]. In general, suppose that
µ1, . . . , µk are Borel probability measures on Rn, and consider the product probability
measure µ1 ⊗ . . .⊗ µk on (Rn)k. Prove that

CP (µ1 ⊗ . . .⊗ µk) = max
i=1,...,k

CP (µi).

3. In this guided exercise we study the Poincaré constant of the standard Gaussian measure
γn in Rn, and we estimate it using “round needles”. [With luck we will compute it exactly
later using the Bochner formula or the heat kernel. The Poincaré constant actually equals
one. This exercise is a variant of a theorem by Maurey and Pisier]
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(a) Why is the Poincaré constant at least one?

(b) Let X, Y be two independent standard Gaussian random vectors in Rn. For θ ∈
[0, π/2] set

Xθ = (cos θ)X + (sin θ)Y.

Prove that the two random variables Xθ and ∂
∂θ
Xθ are independent, standard Gaussian

random vectors in Rn. [Hint: what is the joint distribution of (X, Y )?]

(c) Prove that for any smooth function f with E|∇f(X)|2 < ∞ and any θ ∈ [0, π/2],

E
∣∣∣∣ ∂∂θf(Xθ)

∣∣∣∣2 = E|∇f(X) · Y |2 = E|∇f(X)|2.

(d) Under the same assumptions on f , prove that

E|f(X)− f(Y )|2 = E

(∫ π/2

0

∂

∂θ
f(Xθ)dθ

)2

≤ π

2

∫ π/2

0

E
(

∂

∂θ
f(Xθ)

)2

dθ.

(e) Show that the Poincaré constant of the standard Gaussian is at most π2/8.

(f) Think how come this proof yields a constant which does not depend on the dimension,
while being similar in spirit to the original proof by Poincaré we studied in class.

4. Here we show that the Poincaré constant of the unit sphere Sn−1 is at most CP (X)/(n −
CP (X)), where X is a standard Gaussian random vector in Rn (it is actually an equality
and CP (X) = 1, by the way). Write Θ = X/|X|.

(a) Why is Θ distributed uniformly on Sn−1? Prove that |X| and Θ are independent.

(b) Let f : Sn−1 → R be a smooth function. Denote F (x) = |x|f(x/|x|) for any
0 ̸= x ∈ Rn. Prove that

E|f(Θ)|2 = 1

n
E|F (X)|2.

(c) Prove that for any 0 ̸= x ∈ Rn,

∇F (x) = ∇Sn−1f

(
x

|x|

)
+ f

(
x

|x|

)
x

|x|
.

(d) Show that
E|∇F (X)|2 = E|∇Sn−1f(Θ)|2 + E|f(Θ)|2.

(e) Prove the relation above about the Poincaré constant of the unit sphere and of the
standard Gaussian.
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Around Cheeger’s inequality

5. Let p ≥ 1 and let X be a random variable with E|X|p < ∞. Let m̃ ∈ R be a median of X
and write m = EX . Prove that

1

2
∥X −m∥p ≤ ∥X − m̃∥p ≤ 3∥X −m∥p.

6. Let (X, d, µ) be a measure-metric space, p ≥ 1, A > 0, and assume that for any f ∈ Lp(µ),
setting m =

∫
fdµ,

∥f −m∥Lp(µ) ≤ A

(∫
X

|∇f |pdµ
)1/p

.

Prove that for any q > p,

∥f −m∥Lq(µ) ≤ 10
q

p
A

(∫
X

|∇f |qdµ
)1/q

(hint: switch from mean to median, and use the argument for p = 1, q = 2 we saw in
class).

7. Let (X, d, µ) be a measure-metric space satisfying a Poincaré inequality with constant A,
i.e., for any f ∈ L2(µ),

V arµ(f) ≤ A2 ·
∫
Rn

|∇f |2dµ.

Prove that for any 1-Lipschitz function f : X → R, setting m =
∫
fdµ,

µ {x ∈ X ; |f(x)−m| ≥ t} ≤ Ce−ct/
√
A for all t ∈ R,

for some universal constants c, C > 0. This was proven by Gromov and Milman in the
1980s. [Hint: use the relation between exponential tail and linear growth of moments we
saw in class.]

Log-concavity
Here we prove the Prékopa-Leindler inequality in three steps:

8. Let 0 < λ < 1 and let f, g, h : R → (0,∞) be three integrable functions such that for all
x, y ∈ R,

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ. (2)

Assume that ∥f∥∞ = ∥g∥∞. Prove that∫
R
h ≥ (1− λ)

∫
R
f + λ

∫
R
g

[Hint: Use layer cake representation, show that {h ≥ t} ⊇ (1 − λ){f ≥ t} + λ{g ≥ t}
and use one-dimensional Brunn-Minkowski, for non-empty sets only!]
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9. Let 0 < λ < 1 and let f, g, h : R → (0,∞) be three integrable functions such that for all
x, y ∈ R, condition (2) hold true. Prove that∫

R
h ≥

(∫
R
f

)1−λ

·
(∫

R
g

)λ

. (3)

[Hint: approximate by bounded functions, normalize and use the previous exercise]

10. Let 0 < λ < 1 and let f, g, h : Rn → (0,∞) be three integrable functions such that for all
x, y ∈ R, condition (2) hold true. Prove (3) by induction on the dimension.

[Hint: Set F (y) =
∫
R f(t, y)dt for y ∈ Rn−1, and similarly for G and H , and prove that

H((1− λ)x+ λy) ≥ F (x)1−λG(y)λ].

11. Prove that log-concavity is preserved under convolutions, pointwise products, and that if
X is a log-concave random vector then so is T (X) for linear map T .

Isoperimetry in one dimension
The next four exercises are based on arguments of Bobkov.

12. Let ρ : R → (0,∞) be a smooth, positive, log-concave probability density. Fix p ∈ (0, 1)
and h > 0 and write Nδ(A) = {x ∈ R ; infy∈A |x− y| < δ} for the δ-neighborhood.

For a ∈ R with µ([a,∞)) > p write Ip(a) ⊆ R for the interval [a, b] ⊆ R with µ([a, b]) =
p. Prove that the function φ(a) = µ(Nh(Ip(a)) is unimodal: increasing till some point,
and decreasing afterwards.

[Hint: show that b′(a) = f(a)/f(b) and that φ′/f is increasing).

13. Write F for the collection of all subsets of R with finitely many connected components,
and write F0 for the collection of all half-lines (i.e., sets of the form [a,∞) or (−∞, a]).
Fix p ∈ (0, 1), h > 0 and use the previous exercise to show that

inf
A∈F

µ(A)=p

µ(Nh(A)) = inf
A∈F0
µ(A)=p

µ(Nh(A)).

[hint: induction on the number of intervals in the set, and move them around]

14. Consider the measure-metric space ([0,∞), | · |, µ) where µ is a log-concave probability
measure on R, with a smooth, positive density ρ : R → (0,∞). Use the previous exer-
cise and prove that it suffices to look at half-lines in order to determine the isoperimetric
(Cheeger) constant.

15. Let µ be a log-concave probability measure on R with a smooth, positive, density ρ. Set
Φ(x) = µ((−∞, x)) and prove that ρ ◦ Φ−1 : (0, 1) → R is concave. Conclude that the
Cheeger constant is attained for a set which is a half-line whose µ-measure is exactly 1/2.
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Recalling polar coordinates

16. Recall the Jacobian of polar coordinates in Rn, i.e., the function J(r) such that∫
Rn

φ =

∫
Sn−1

∫ ∞

0

φ(rθ)J(r)drdσn−1(θ)

for any integrable function φ. Here σn−1 is the uniform probability measure on the sphere
Sn−1. Is the function J(r) log-concave?

17. Polar coordinates on the sphere: find the function J(r) such that for any continuous φ :
Sn−1 → R, ∫

Sn−1

φdσn−1 =

∫
Sn−2

∫ π

0

φ(cos(r)e1 + sin(r)θ)J(r)drdσn−2(θ)

where Sn−2 = {x ∈ Sn−1 ; x1 = 0}, where e1 = (1, 0, . . . , 0) and Sn−1 = {x ∈
Rn ;

∑
i x

2
i = 1}. Is J log-concave?
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