
Convex Localization and Optimal Transport

Bo’az Klartag

Please solve at least 10 of the exercises below (weighted count) according to your choice.
Submit your solution by August 15 at the link:

https://www.dropbox.com/request/u8D9KVLDY1ddaGjW1W7P

To be more precise, most of the exercises below are worth 1 point, but few towards the end
are marked as being worth 2, 3 or 5 points. You are requested to accumulate 10 points.

If you find a mistake or an inaccuracy in any of the questions, please send me an e-mail as
soon as you find them. You can also suggest additional exercises that are related to the course
material.

1. Heuristic explanation of Neumann boundary conditions: Let K ⊂ Rn be a bounded,
open set with a smooth boundary. For i ≥ 0 set

λi = inf
0̸≡f⊥φ0,...,φi−1

∫
K
|∇f |2∫
K
f 2

, (1)

where the infimum runs over all functions f ∈ L2(K), and when i ≥ 1 we require that f
be orthogonal to φ0, . . . , φi−1 in L2(K).

You may assume that for any i the infimum in (1) is attained and that the minimizer φi may
be chosen to be a smooth function up to the boundary (this is actually true as you learn in
PDE class). Prove that for any i ≥ 0{

∆φi(x) = −λiφi(x) ∀x ∈ K
∇φi(x) ⊥ ν(x) ∀x ∈ ∂K

where ν(x) is the normal to ∂K at the point x. [Hint: look at the Rayleigh quotient of
φi + εg as ε→ 0, first for g compactly-supported and then without this assumption]

Poincaré constants

2. Show that the Poincaré constant of the uniform measure on the cube [0, 1]n is 1/π2,
the same value as the Poincaré constant of the interval [0, 1]. In general, suppose that
µ1, . . . , µk are Borel probability measures on Rn, and consider the product probability
measure µ1 ⊗ . . .⊗ µk on (Rn)k. Prove that

CP (µ1 ⊗ . . .⊗ µk) = max
i=1,...,k

CP (µi).
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3. In this guided exercise we study the Poincaré constant of the standard Gaussian measure
γn in Rn, and we estimate it using “round needles”. [The Poincaré constant actually equals
one. This exercise is a variant of a theorem by Maurey and Pisier]

(a) Why is the Poincaré constant at least one?

(b) Let X, Y be two independent standard Gaussian random vectors in Rn. For θ ∈
[0, π/2] set

Xθ = (cos θ)X + (sin θ)Y.

Prove that the two random variablesXθ and ∂
∂θ
Xθ are independent, standard Gaussian

random vectors in Rn. [Hint: what is the joint distribution of (X, Y )?]

(c) Prove that for any smooth function f with E|∇f(X)|2 <∞ and any θ ∈ [0, π/2],

E
∣∣∣∣ ∂∂θf(Xθ)

∣∣∣∣2 = E|∇f(X) · Y |2 = E|∇f(X)|2.

(d) Under the same assumptions on f , prove that

E|f(X)− f(Y )|2 = E

(∫ π/2

0

∂

∂θ
f(Xθ)dθ

)2

≤ π

2

∫ π/2

0

E
(
∂

∂θ
f(Xθ)

)2

dθ.

(e) Show that the Poincaré constant of the standard Gaussian is at most π2/8.

(f) Think how come this proof yields a constant which does not depend on the dimension,
while being similar in spirit to the original proof by Poincaré we studied in class.

4. Here we show that the Poincaré constant of the unit sphere Sn−1 is at most CP (X)/(n −
CP (X)), where X is a standard Gaussian random vector in Rn (it is actually an equality
and CP (X) = 1, by the way). Write Θ = X/|X|.

(a) Why is Θ distributed uniformly on Sn−1? Prove that |X| and Θ are independent.

(b) Let f : Sn−1 → R be a smooth function. Denote F (x) = |x|f(x/|x|) for any
0 ̸= x ∈ Rn. Prove that

E|f(Θ)|2 = 1

n
E|F (X)|2.

(c) Prove that for any 0 ̸= x ∈ Rn,

∇F (x) = ∇Sn−1f

(
x

|x|

)
+ f

(
x

|x|

)
x

|x|
.

(d) Show that
E|∇F (X)|2 = E|∇Sn−1f(Θ)|2 + E|f(Θ)|2.

(e) Prove the relation above about the Poincaré constant of the unit sphere and of the
standard Gaussian.
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Around Cheeger’s inequality

5. Let p ≥ 1 and let X be a random variable with E|X|p <∞. Let m̃ ∈ R be a median of X
and write m = EX . Prove that

1

2
∥X −m∥p ≤ ∥X − m̃∥p ≤ 3∥X −m∥p.

6. Let (X, d, µ) be a measure-metric space, p ≥ 1, A > 0, and assume that for any f ∈ Lp(µ),
setting m =

∫
fdµ,

∥f −m∥Lp(µ) ≤ A

(∫
X

|∇f |pdµ
)1/p

.

Prove that for any q > p,

∥f −m∥Lq(µ) ≤ 10
q

p
A

(∫
X

|∇f |qdµ
)1/q

[hint: switch from mean to median, and use the argument for p = 1, q = 2 we saw in
class].

7. Let (X, d, µ) be a measure-metric space satisfying a Poincaré inequality with constant A,
i.e., for any f ∈ L2(µ),

V arµ(f) ≤ A ·
∫
Rn

|∇f |2dµ.

Prove that for any 1-Lipschitz function f : X → R, setting m =
∫
fdµ,

µ {x ∈ X ; |f(x)−m| ≥ t} ≤ Ce−ct/
√
A for all t ∈ R,

for some universal constants c, C > 0. This was proven by Gromov and Milman in the
1980s. [hint: use the relation between exponential tail and linear growth of moments we
saw in class.]

Log-concavity
Here we prove the Prékopa-Leindler inequality in three steps:

8. Let 0 < λ < 1 and let f, g, h : R → (0,∞) be three integrable functions such that for all
x, y ∈ R,

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ. (2)

Assume that ∥f∥∞ = ∥g∥∞. Prove that∫
R
h ≥ (1− λ)

∫
R
f + λ

∫
R
g

[hint: use layer cake representation, show that {h ≥ t} ⊇ (1− λ){f ≥ t}+ λ{g ≥ t} and
use one-dimensional Brunn-Minkowski, for non-empty sets only!]
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9. Let 0 < λ < 1 and let f, g, h : R → (0,∞) be three integrable functions such that for all
x, y ∈ R, condition (2) hold true. Prove that∫

R
h ≥

(∫
R
f

)1−λ

·
(∫

R
g

)λ

. (3)

[hint: approximate by bounded functions, normalize and use the previous exercise]

10. Let 0 < λ < 1 and let f, g, h : Rn → (0,∞) be three integrable functions such that for all
x, y ∈ Rn, condition (2) hold true. Prove (3) by induction on the dimension.

[hint: set F (y) =
∫
R f(t, y)dt for y ∈ Rn−1, and similarly for G and H , and prove that

H((1− λ)x+ λy) ≥ F (x)1−λG(y)λ].

11. Prove that log-concavity is preserved under convolutions, pointwise products, and that if
X is a log-concave random vector then so is T (X) for linear map T .

Isoperimetry in one dimension
The next four exercises are based on arguments of Bobkov.

12. Let ρ : R → (0,∞) be a smooth, positive, log-concave probability density. Fix p ∈ (0, 1)
and h > 0 and write Nδ(A) = {x ∈ R ; infy∈A |x− y| < δ} for the δ-neighborhood.

For a ∈ R with µ([a,∞)) > p write Ip(a) ⊆ R for the interval [a, b] ⊆ R with µ([a, b]) =
p. Prove that the function φ(a) = µ(Nh(Ip(a)) is unimodal: increasing till some point,
and decreasing afterwards.

[hint: show that b′(a) = ρ(a)/ρ(b) and that φ′/ρ is decreasing).

13. Write F for the collection of all subsets of R with finitely many connected components,
and write F0 for the collection of all half-lines (i.e., sets of the form [a,∞) or (−∞, a]).
Fix p ∈ (0, 1), h > 0 and use the previous exercise to show that

inf
A∈F

µ(A)=p

µ(Nh(A)) = inf
A∈F0
µ(A)=p

µ(Nh(A)).

[hint: induction on the number of intervals in the set, and move them around]

14. Consider the measure-metric space (R, |·|, µ) where µ is a log-concave probability measure
on R, with a smooth, positive density ρ : R → (0,∞). Use the previous exercise and
prove that it suffices to look at half-lines in order to determine the isoperimetric (Cheeger)
constant.

15. Let µ be a log-concave probability measure on R with a smooth, positive, density ρ. Set
Φ(x) = µ((−∞, x)) and prove that ρ ◦ Φ−1 : (0, 1) → R is concave. Conclude that the
Cheeger constant is attained for a set which is a half-line whose µ-measure is exactly 1/2.
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Recalling polar coordinates

16. (a) Recall the Jacobian of polar coordinates in Rn, i.e., the function J(r) such that∫
Rn

φ =

∫
Sn−1

∫ ∞

0

φ(rθ)J(r)drdσn−1(θ)

for any integrable function φ. Here σn−1 is the uniform probability measure on the
sphere Sn−1. Is the function J(r) log-concave?

(b) Polar coordinates on the sphere: find the function J(r) such that for any continuous
φ : Sn−1 → R,∫

Sn−1

φdσn−1 =

∫
Sn−2

∫ π

0

φ(cos(r)e1 + sin(r)θ)J(r)drdσn−2(θ)

where Sn−2 = {x ∈ Sn−1 ; x1 = 0}, where e1 = (1, 0, . . . , 0) and Sn−1 = {x ∈
Rn ;

∑
i x

2
i = 1}. Is J log-concave?

Tails and moments

17. Let X be a random variable and let α > 0. Prove that the following are equivalent:

(a) There exists A > 0 such that P(|X| ≥ t) ≤ 2e−tα/A for any t > 0.

(b) There exists A > 0 such that ∥X∥p ≤ Ap1/α for all p ≥ 1, where ∥X∥p =
(E|X|p)1/p.

(Such random variables are called a ψα-random variables)

18. Complete the proof of the Proposition we discussed in class: Let X be a real-valued, log-
concave random variable. Then for any p > 0,

∥X∥p ≤ C(p+ 1)∥X∥0

whereC > 0 is a universal constant. (in class we proved it under the additional assumption
EX = 0).

19. Let K ⊆ Rn be a convex body and let X be a random vector distributed uniformly in K.
Assume that EXi = 0 and EXiXj = δij for i, j = 1, . . . , n. Prove that for any θ ∈ Sn−1,
the random vector

⟨X, θ⟩

is a log-concave random variable of mean zero and variance one, whose support contains
an interval of the form [−c, c] where c > 0 is a universal constant.

20. Under the assumptions of the previous exercise, prove that cBn ⊆ K where c > 0 is a
universal constant and Bn = {x ∈ Rn ; |x| ≤ 1}.
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21. Under the assumptions of the previous exercise, prove that K ⊆ cnBn. [This exercise is
worth 2 points, not just 1 like the others]

Grünbaum’s theorem

22. Let f : R → R be a smooth, log-concave probability density. Assume that
∫∞
−∞ xf(x)dx =

0 and that f is supported in some interval [−R,R]. Denote F (t) =
∫ t

−R
f(x)dx.

(a) Prove that there exists α > 0 such that F (t) ≤ F (0)eαt for all t ∈ R.

(b) Prove that F (0) ≥ 1/e by verifying that

R =

∫ R

−R

F (t)dt ≤
∫ 1/α

−R

F (0)eαtdt+ (R− 1/α) ≤ R + (eF (0)− 1)/α.

23. Let K ⊆ Rn be a convex body whose barycenter lies at the origin. Let H ⊆ Rn be
half-space with the origin in its boundary. Prove that

V oln(K ∩H) ≥ 1

e
· V oln(K).

Rockafellar’s theorem

24. Prove the following variant of Rockafellar’s theorem: A subset A ⊆ Rn × Rn is d-
cyclically-monotone if for any N ≥ 1 and (x1, y1), . . . , (xN , yN) ∈ A,

N∑
i=1

d(xi, yi) ≤
N∑
i=1

d(xi, yi+1)

with yN+1 = y1. Prove that A is d-cyclically-monotone if and only if there exists a 1-
Lipschitz function u : Rn → R such that for all (x, y) ∈ A,

u(x)− u(y) = d(x, y).

Is the analogous statement true in any metric space?

Applications of convex localization

25. Use convex localization and prove the Gaussian isoperimetric inequality: Let A ⊆ Rn be
a measurable set and let H ⊆ Rn be a half-space with γn(A) = γn(H), where γn is the
standard Gaussian measure in Rn. Prove that for any r > 0,

γn(A+ rBn) ≥ γn(H + rBn).

[This question is worth 3 points]

Alexandrov’s second-differentiability theorem
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26. Let f : Rn → R be a convex function and denote g(x) = f(x) + |x|2/2. Show that the set
{(y, x) ; x ∈ Rn, y ∈ ∂g(x)} is the graph of a surjective 1-Lipschitz function on Rn.

Then use Rademacher’s theorem on the differentiability of Lipschitz functions and appro-
priate versions of the inverse function theorem to conclude Alexandrov’s theorem: For
almost any x0 ∈ Rn, there exists a polynomial of second degree Px0 such that

|f(x)− Px0(x)| = o(|x− x0|2)

as x→ x0.

[This question is worth 5 points]

Gaussian waist inequality

27. Prove the version of Borsuk-Ulam’s theorem that was needed in the proof.

[This question is worth 5 points]
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