High dim. geometry, homework assignment no. 1

You are asked to solve at least 3 questions. Please submit your solution in pdf format by Wednesday, November 18 at 2PM at the link:

```
https://www.dropbox.com/request/b77IfQLxLts6ffpeDrZu
```

1. Let X and Y be independent random vectors supported in the sphere S^{n-1}. Assume that Y is distributed uniformly in the sphere. Prove that

$$
\langle X, Y\rangle \quad \text { and } \quad Y_{1}
$$

have the same distribution.
2. Let $n \geq 100$. Let $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n}$ be a unit vector such that

$$
\forall i, \quad\left|\theta_{i}\right| \leq \frac{5}{\sqrt{n}}
$$

Let X be a random vector in \mathbb{R}^{n}, distributed uniformly in $[-\sqrt{3}, \sqrt{3}]^{n}$. Denote by $f_{\theta}(t)$ the continuous density of $\langle X, \theta\rangle$. Prove that for $t \in \mathbb{R}$,

$$
\begin{equation*}
\left|f_{\theta}(t)-\frac{\exp \left(-t^{2} / 2\right)}{\sqrt{2 \pi}}\right| \leq \frac{C}{n} \tag{1}
\end{equation*}
$$

for a universal constant $C>0$.
Bonus: Assume only that $\left|\theta_{i}\right| \leq 1 / 10$ for all i and set $\varepsilon=\sum_{i} \theta_{i}^{4}$. Prove that for any $|t| \leq 1 /\left(10 \varepsilon^{1 / 4}\right)$, the left-hand side of (1) is bounded by $C \varepsilon\left(1+t^{4}\right) e^{-t^{2} / 2}$.
3. Let (X, d) be a metric space and μ a Borel probability measure on X. For $t, \varepsilon \in(0,1)$ consider the isoperimetric profile

$$
I_{\varepsilon}(t)=\inf \left\{\mu\left(A_{\varepsilon}\right) ; A \subseteq X, \mu(A)=t\right\}
$$

where $A_{\varepsilon}=\left\{x \in X ; \inf _{y \in A} d(x, y)<\varepsilon\right\}$ is the ε-neighborhood.
Suppose that $\left(X, d_{X}, \mu_{X}\right)$ and $\left(Y, d_{Y}, \mu_{Y}\right)$ are two such metric probability spaces. Assume that there exists a measure preserving contraction $T: X \rightarrow Y$, that is, T pushes forward μ_{X} to μ_{Y} while $d_{Y}(T(p), T(q)) \leq d_{X}(p, q)$ for $p, q \in X$. Prove that

$$
I_{\varepsilon}^{(X)}(t) \leq I_{\varepsilon}^{(Y)}(t) \quad \text { for all } t, \varepsilon \in(0,1)
$$

4. Consider the metric probability space $X=\left(\mathbb{R}^{n}, d, \gamma_{n}\right)$ where $d(x, y)=|x-y|$ and where γ_{n} is the standard Gaussian measure on \mathbb{R}^{n}, whose density equals

$$
(2 \pi)^{-n / 2} e^{-|x|^{2} / 2} .
$$

Consider the metric probability space $Y=(Q, d, \lambda)$ where $Q=[0, \sqrt{2 \pi}]^{n} \subseteq \mathbb{R}^{n}$ is a cube, and where λ is the uniform probability measure (Lebesgue) on Q. Prove that the map

$$
T\left(x_{1}, \ldots, x_{n}\right)=\sqrt{2 \pi}\left(\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{n}\right)\right)
$$

is a measure preserving contraction from X to Y, where $\Phi(t)=(2 \pi)^{-1 / 2} \int_{-\infty}^{t} e^{-s^{2} / 2} d s$. [Hint: Compute the operator norm of T^{\prime}, and use a mean value theorem to show that T is a contraction, and the Jacobian $\operatorname{det} T^{\prime}$ to show measure preservation].
5. Let $p \geq 1$ be an integer, and consider the unit ball of ℓ_{p}^{n}, namely,

$$
B_{p}^{n}=\left\{x \in \mathbb{R}^{n} ;\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} \leq 1\right\}
$$

The cone measure μ on its boundary is defined, for a Borel set $A \subseteq \partial B_{p}^{n}$ via

$$
\mu(A)=\frac{\operatorname{Vol}_{n}(\{t x ; x \in A, 0 \leq t \leq 1\})}{V o l_{n}\left(B_{p}^{n}\right)} .
$$

(a) Let X_{1}, \ldots, X_{n} be i.i.d random variables, whose density is proportional to $\exp \left(-|t|^{p}\right)$. Prove that

$$
\left(X_{1}, \ldots, X_{n}\right) /\|X\|_{p}
$$

is distributed according to the cone measure on ∂B_{p}^{n}.
(b) Prove that $\left(X_{1}, \ldots, X_{n}\right) /\|X\|_{p}$ and $\|X\|_{p}$ are independent. What is the density of $\|X\|_{p}^{p}$?
(c) Prove that the density of $\sum_{i=1}^{p}\left|X_{i}\right|^{p}$ is an exponential random variable of parameter one (i.e., density e^{-t} on $[0, \infty)$).
(d) Let E be an exponential random variable of parameter one, independent of the X_{i} 's. Prove that $\|X\|_{p} /\left(\|X\|_{p}^{p}+E\right)^{1 / p}$ has density $n t^{n-1}$ in $[0,1]$.
(e) Prove that

$$
\left(X_{1}, \ldots, X_{n}\right) /\left(\|X\|_{p}^{p}+E\right)^{1 / p}
$$

is distributed uniformly in B_{p}^{n}.
(f) Conclude the generalized Archimedes principle: If $\left(X_{1}, \ldots, X_{n}\right)$ is distributed according to the cone measure on ∂B_{p}^{n}, then $\left(X_{1}, \ldots, X_{n-p}\right)$ is distributed uniformly in B_{p}^{n-p}.

