High dim. geometry, homework assignment no. 2

You are asked to solve at least 3 questions. Please submit your solution in pdf format by Wednesday, December 16 at 2PM at the link:
https://www.dropbox.com/request/eHYH6Z9eRw9Q8SfBtc53

1. (a) Let $(\Omega, \mathcal{G}, \mu)$ be a measure space with $\mu(\Omega)=1$, and let $f_{0}, f_{1}, \ldots, f_{n} \in L^{2}(\mu)$ be an orthonormal basis with $f_{0} \equiv 1$ and $\sum_{j=1}^{n} f_{j}^{2} \equiv n$. Prove that $\exists \mathcal{F} \subseteq S^{n-1}$ with $\sigma_{n-1}(\mathcal{F}) \geq 1-1 / n$ such that for all $\theta \in \mathcal{F}$ we have

$$
\left|\mu\left\{x \in \Omega ; \sum_{j=1}^{n} \theta_{j} f_{j} \leq t\right\}-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-s^{2} / 2} d s\right| \leq \frac{C}{n^{\alpha}}, \quad \forall t \in \mathbb{R}
$$

where $C, \alpha>0$ are universal constants.
(b) For any even n find trigonometric polynomials $f_{1}, \ldots, f_{n} \in L^{2}([0,1])$ satisfying the above requirements. Bonus: Can take any orthonormal basis in an irreducible representation of $S O(k)$ in $L^{2}\left(S^{k-1}\right)$, a.k.a spherical harmonics.
2. (a) Prove that for any positively 1-homogenous measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\int_{S^{n-1}} f d \sigma_{n-1}=\frac{1}{\mathbb{E}|Z|} \mathbb{E} f(Z)
$$

where Z is a standard Gaussian random vector in \mathbb{R}^{n}, and prove also that $c \sqrt{n} \leq$ $\mathbb{E}|Z| \leq C \sqrt{n}$ for universal constants $c, C>0$.
(b) Show that for $2 \leq k \leq n$,

$$
c \sqrt{\frac{\log k}{n}} \leq \int_{S^{n-1}} \max _{i=1, \ldots, k}\left|x_{i}\right| d \sigma_{n-1}(x) \leq C \sqrt{\frac{\log k}{n}}
$$

for universal constants $c, C>0$.
3. (a) Let $\theta \in S^{n-1}, 0<r<1$ and consider the cap

$$
C(\theta, r)=\left\{x \in S^{n-1} ;\langle x, \theta\rangle>r\right\}
$$

Prove that $\sigma_{n-1}(C(\theta, r)) \leq C e^{-c r^{2} n}$ for universal constants $c, C>0$.
(b) Suppose that $P \subseteq \mathbb{R}^{n}$ is a polytope with N facets such that

$$
\begin{equation*}
\frac{1}{d} B^{n} \subseteq P \subseteq B^{n} \tag{1}
\end{equation*}
$$

Show that there exists caps $C\left(\theta_{i}, r_{i}\right)$ for $i=1, \ldots, N$ with $r_{i} \geq 1 / d$ whose union covers the sphere.
(c) Prove that any polytope satisfying (1) has at least $\exp \left(c n / d^{2}\right)$ facets (and by duality, also at least that many vertices).
(d) Conclude that the Dvoretzky dimension of a polytope with N facets is at most $C \log N$ for a universal constant $C>0$.
4. For $K \subseteq \mathbb{R}^{n}$ convex and centrally-symmetric denote $\rho(K)=\operatorname{Vol}(K) \operatorname{Vol}\left(K^{\circ}\right)$.
(a) Let A be an invertible matrix. Show that $\rho(A K)=\rho(K)$.
(b) Let $u \in S^{n-1}$ and define $T=S_{u} K$, where S_{u} is the Steiner symmetrization with respect to u^{\perp}. For $A \subseteq \mathbb{R}^{n}$ and $y \in \mathbb{R}$ denote $A_{y}=\left\{x \in \mathbb{R}^{n-1} ;(x, y) \in\right.$ $A\}$. Assuming $u=e_{n}$, show that

$$
\frac{\left(K^{\circ}\right)_{y}+\left(K^{\circ}\right)_{-y}}{2} \subseteq\left(T^{\circ}\right)_{y}, \quad \forall y \in \mathbb{R}
$$

(c) Conclude from the Brunn-Minkowski inequality that $\operatorname{Vol}\left(K^{\circ}\right) \leq \operatorname{Vol}\left(T^{\circ}\right)$.
(d) Prove the Santaló inequality: For any centrally symmetric convex body $K \subseteq$ \mathbb{R}^{n},

$$
\rho(K) \leq \rho\left(B_{2}^{n}\right)
$$

5. Khintchine's inequality: Let $p \geq 1$ and let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be independent Bernoulli random variables with $\mathbb{P}\left(\varepsilon_{i}=1\right)=\mathbb{P}\left(\varepsilon_{i}=-1\right)=1 / 2$. Prove that

$$
\begin{equation*}
c\|x\|_{2} \leq\left(\mathbb{E}\left|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right|^{p}\right)^{1 / p} \leq C \sqrt{p}\|x\|_{2}, \quad \forall x \in \mathbb{R}^{n}, \tag{2}
\end{equation*}
$$

where $c, C>0$ are universal constants. Note that the case $p=2$ is an equality (for suitable constants). A possible proof: Fix $x \in S^{n-1}$.
(a) Show that $\cosh t \leq e^{t^{2} / 2}$ and hence for any $t>0$,

$$
\mathbb{E} \exp \left(t \sum_{i=1}^{n} \varepsilon_{i} x_{i}\right) \leq \exp \left(\frac{t^{2}}{2}\right) .
$$

(b) Show that $\mathbb{E} \exp \left(t\left|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right|\right) \leq 2 \exp \left(t^{2} / 2\right)$.
(c) Assume that $p \geq 2$ is an integer, and use the inequality $t^{p} / p!\leq e^{t}$ for appropriate $t>0$ to conclude that

$$
\mathbb{E}\left|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right|^{p} \leq(C \sqrt{p})^{p}
$$

for some universal constant $C>0$.
(d) Prove inequality (2) for all $p \geq 2$.
(e) Prove inequality (2) for $1 \leq p \leq 2$. (Hint: Hölder's inequality)

