
High dim. geometry, homework assignment no. 3

You are asked to solve at least 3 questions. Please submit your solution in pdf format
by Wednesday, January 6 at 2PM at the link:

https://www.dropbox.com/request/S9Io2HC7XisEN0LUeAJk

1. Decay of diameter under random projections. LetK ⊆ Rn be convex,K = −K. Let
1 ≤ ` ≤ n and E ∈ Gn,` a random subspace, distributed uniformly. Prove (maybe
using the 3 steps below) that with probability at least 1− Ce−c`,

Diam(ProjEK) ≤ Cmax

{
M∗(K),

√
`

n
·Diam(K)

}
(1)

where c, C > 0 are universal constants, where Diam is diameter and M∗ is the mean
width.

Step a) If ` ≤ d∗ = n(M∗/diam)2, then this follows from Dvoretzky’s theorem.

Step b) Assume ` ≥ d∗. Fix a subspace E0 ∈ Gn,` and a (1/2)-net F in E0 ∩ Sn−1.
Prove that for a random rotation U ∈ O(n), with probability at least 1−Ce−c`,

max
z∈U(F)

‖z‖∗K ≤
√
`

n
·Diam(K)

where ‖z‖∗K = hK(z) = supx∈K z · x is the dual norm (or supporting func-
tional).

Step c) Use successive approximation: Write any x ∈ Sn−1 ∩ U(E0) as x =
∑∞

i=0 δiyi
with |δi| ≤ 2−i and yi ∈ U(F), and conclude (1).

2. Computing the Dvoretzky dimension of `np . Recall that for a norm ‖·‖ on Rn we write
b = supx∈Sn−1 ‖x‖,M =

∫
Sn−1 ‖x‖dσn−1(x) and d = n(M/b)2 is the Dvoretzky

dimension.

(a) For 1 ≤ p ≤ 2, show that cn ≤ d(`np ) ≤ Cn for universal constants c, C > 0.

(b) For 2 < p < ∞, show that Bn
2 ⊆ Bn

p ⊆ n1/2−1/pBn
2 . Conclude that for `np we

have b = 1 and M ≥ n1/p−1/2 and hence

d(`np ) ≥ cn2/p.
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(c) Assuming the existence of k-dimensional subspace of `np that is 5-isomorphic
to Euclidean, there are vectors u1, . . . , uk ∈ Rn such that

‖a‖2 ≤

∥∥∥∥∥
k∑

i=1

aiui

∥∥∥∥∥
p

≤ 5 ‖a‖2 , ∀a ∈ Rk. (2)

Apply for a vector a of random signs, and use Khintchine’s inequality to obtain

kp/2 ≤ cpp

n∑
i=1

(
k∑

j=1

u2j,i

)p/2

,

where uj = (uj,1, . . . , uj,n) and cp ≤ C
√
p.

(d) Apply for a vector a = (uj,i)j=1,...,k and prove that for all i,√√√√ k∑
j=1

u2j,i ≤ 5.

Conclude the bound
d(`np ) ≤ cpn

2/p

for some constant cp depending solely on p.

3. Define a sub-exponential process, and formulate and prove an analog of Dudley’s
bound for sub-exponential processes.

4. Let ρ : Rn → [0,∞) be a log-concave probability density. Prove (in steps) that it
decays exponentially at infinity, i.e., there exist A,B > 0 with

ρ(x) ≤ Ae−B|x| for all x ∈ Rn. (3)

Step a) Find ε > 0 such that set K = {x ∈ Rn , ρ(x) > ε} is convex and bounded,
with non-empty interior.

Step b) Translating, we may assume that 0 is in the interior ofK. Prove that there exists
R > 0 such that

ρ(x) ≤ ρ(0) exp(−|x|/R) for all |x| ≥ R.

Step c) Prove that ρ is bounded in RBn, and conclude (3).

5. Convergence of Steiner Symmetrization. Let K ⊆ Rn be a compact set, set R(K) =
maxx∈K |x| and assume that R(K) > v.rad.(K).

(a) Prove that there exists a finite sequence of Steiner symmetrizations, with respect
to hyperplanes through the origin, that arrive at another compact set T ⊆ Rn

with R(T ) < R(K). [Hint: The set K ∩RSn−1 can only decrease, and we can
“empty” a cap after cap]

(b) Write F for the collection of all compacts obtained from K by applying a finite
sequence of Steiner symmetrizations. Argue that F contains elements that are
arbitrarily close to a Euclidean ball, in the Hausdorff metric.
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