High dim. geometry, homework assignment no. 3

You are asked to solve at least 3 questions. Please submit your solution in pdf format by Wednesday, January 6 at 2PM at the link:
https://www.dropbox.com/request/S9Io2HC7XisEN0LUeAJk

1. Decay of diameter under random projections. Let $K \subseteq \mathbb{R}^{n}$ be convex, $K=-K$. Let $1 \leq \ell \leq n$ and $E \in G_{n, \ell}$ a random subspace, distributed uniformly. Prove (maybe using the 3 steps below) that with probability at least $1-C e^{-c \ell}$,

$$
\begin{equation*}
\operatorname{Diam}\left(\operatorname{Proj}_{E} K\right) \leq C \max \left\{M^{*}(K), \sqrt{\frac{\ell}{n}} \cdot \operatorname{Diam}(K)\right\} \tag{1}
\end{equation*}
$$

where $c, C>0$ are universal constants, where Diam is diameter and M^{*} is the mean width.

Step a) If $\ell \leq d_{*}=n\left(M^{*} / \text { diam }\right)^{2}$, then this follows from Dvoretzky's theorem.
Step b) Assume $\ell \geq d_{*}$. Fix a subspace $E_{0} \in G_{n, \ell}$ and a (1/2)-net \mathcal{F} in $E_{0} \cap S^{n-1}$. Prove that for a random rotation $U \in O(n)$, with probability at least $1-C e^{-c l}$,

$$
\max _{z \in U(\mathcal{F})}\|z\|_{K}^{*} \leq \sqrt{\frac{\ell}{n}} \cdot \operatorname{Diam}(K)
$$

where $\|z\|_{K}^{*}=h_{K}(z)=\sup _{x \in K} z \cdot x$ is the dual norm (or supporting functional).
Step c) Use successive approximation: Write any $x \in S^{n-1} \cap U\left(E_{0}\right)$ as $x=\sum_{i=0}^{\infty} \delta_{i} y_{i}$ with $\left|\delta_{i}\right| \leq 2^{-i}$ and $y_{i} \in U(\mathcal{F})$, and conclude (1).
2. Computing the Dvoretzky dimension of ℓ_{p}^{n}. Recall that for a norm $\|\cdot\|$ on \mathbb{R}^{n} we write $b=\sup _{x \in S^{n-1}}\|x\|, M=\int_{S^{n-1}}\|x\| d \sigma_{n-1}(x)$ and $d=n(M / b)^{2}$ is the Dvoretzky dimension.
(a) For $1 \leq p \leq 2$, show that $c n \leq d\left(\ell_{p}^{n}\right) \leq C n$ for universal constants $c, C>0$.
(b) For $2<p<\infty$, show that $B_{2}^{n} \subseteq B_{p}^{n} \subseteq n^{1 / 2-1 / p} B_{2}^{n}$. Conclude that for ℓ_{p}^{n} we have $b=1$ and $M \geq n^{1 / p-1 / 2}$ and hence

$$
d\left(\ell_{p}^{n}\right) \geq c n^{2 / p} .
$$

(c) Assuming the existence of k-dimensional subspace of ℓ_{p}^{n} that is 5 -isomorphic to Euclidean, there are vectors $u_{1}, \ldots, u_{k} \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\|a\|_{2} \leq\left\|\sum_{i=1}^{k} a_{i} u_{i}\right\|_{p} \leq 5\|a\|_{2}, \quad \forall a \in \mathbb{R}^{k} . \tag{2}
\end{equation*}
$$

Apply for a vector a of random signs, and use Khintchine's inequality to obtain

$$
k^{p / 2} \leq c_{p}^{p} \sum_{i=1}^{n}\left(\sum_{j=1}^{k} u_{j, i}^{2}\right)^{p / 2},
$$

where $u_{j}=\left(u_{j, 1}, \ldots, u_{j, n}\right)$ and $c_{p} \leq C \sqrt{p}$.
(d) Apply for a vector $a=\left(u_{j, i}\right)_{j=1, \ldots, k}$ and prove that for all i,

$$
\sqrt{\sum_{j=1}^{k} u_{j, i}^{2}} \leq 5 .
$$

Conclude the bound

$$
d\left(\ell_{p}^{n}\right) \leq c_{p} n^{2 / p}
$$

for some constant c_{p} depending solely on p.
3. Define a sub-exponential process, and formulate and prove an analog of Dudley's bound for sub-exponential processes.
4. Let $\rho: \mathbb{R}^{n} \rightarrow[0, \infty)$ be a log-concave probability density. Prove (in steps) that it decays exponentially at infinity, i.e., there exist $A, B>0$ with

$$
\begin{equation*}
\rho(x) \leq A e^{-B|x|} \quad \text { for all } x \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

Step a) Find $\varepsilon>0$ such that set $K=\left\{x \in \mathbb{R}^{n}, \rho(x)>\varepsilon\right\}$ is convex and bounded, with non-empty interior.

Step b) Translating, we may assume that 0 is in the interior of K. Prove that there exists $R>0$ such that

$$
\rho(x) \leq \rho(0) \exp (-|x| / R) \quad \text { for all }|x| \geq R .
$$

Step c) Prove that ρ is bounded in $R B^{n}$, and conclude (3).
5. Convergence of Steiner Symmetrization. Let $K \subseteq \mathbb{R}^{n}$ be a compact set, set $R(K)=$ $\max _{x \in K}|x|$ and assume that $R(K)>v . r a d .(K)$.
(a) Prove that there exists a finite sequence of Steiner symmetrizations, with respect to hyperplanes through the origin, that arrive at another compact set $T \subseteq \mathbb{R}^{n}$ with $R(T)<R(K)$. [Hint: The set $K \cap R S^{n-1}$ can only decrease, and we can "empty" a cap after cap]
(b) Write \mathcal{F} for the collection of all compacts obtained from K by applying a finite sequence of Steiner symmetrizations. Argue that \mathcal{F} contains elements that are arbitrarily close to a Euclidean ball, in the Hausdorff metric.

