

High dim. geometry, homework assignment no. 4

You are asked to solve at least 4 questions. Please submit your solution in pdf format by Wednesday, February 10 at the link:

<https://www.dropbox.com/request/n9P7IhbaVpSscPbaKzRC>

1. Let X be a random vector in \mathbb{R}^n with log-concave density f . Prove that

$$\left(\int_{\mathbb{R}^n} f^2 \right)^{1/n} \sim \int_{\mathbb{R}^n} f^{1+1/n} \sim e^{-\text{Ent}(X)/n}$$

where $A \sim B$ means that $cA \leq B \leq CA$ for universal constants $c, C > 0$. [Hint: Recall the body $K(f)$ defined in class]

2. Let $K \subseteq \mathbb{R}^n$ be a centrally-symmetric convex body, n even. Let $E \in G_{n,n/2}$ be a random $n/2$ -dimensional subspace.

- (a) Prove that

$$\mathbb{E}v.\text{rad.}(K \cap E) \lesssim v.\text{rad.}(K),$$

where $v.\text{rad.}(K)$ is the radius of the Euclidean ball (of the same dimension) whose volume equals that of K , and $A \lesssim B$ means that $A \leq CB$ for a universal constant $C > 0$. [Actually, there is a direct proof without the volume-diameter balance theorem showing that $\mathbb{E}v.\text{rad.}(K \cap E) \leq v.\text{rad.}(K)$]

- (b) Recall that $M(K) = \int_{S^{n-1}} \|x\|_K d\sigma_{n-1}(x)$. Assume that $v.\text{rad.}(K) = 1$. Prove that $M(K) \geq 1$ and that

$$\mathbb{E}\text{Diam}(K \cap E) \lesssim M(K).$$

3. (i) Let $f : \mathbb{R} \rightarrow [0, \infty)$ be a log-concave probability density with $\int_{-\infty}^{\infty} t f(t) dt = 0$. Prove that

$$\int_0^{\infty} f(t) dt \geq c$$

for a universal constant $c > 0$. [Bonus: prove with $c = 1/e$, the optimal constant].

- (ii) Grünbaum inequality: Let $K \subseteq \mathbb{R}^n$ be a convex body of volume one. Prove that any hyperplane H through its barycenter splits K into two convex parts, each of volume at least c .

4. Let $K \subseteq \mathbb{R}^n$ be a centrally-symmetric convex body of volume one.

- Prove that there exists a hyperplane $H \subseteq \mathbb{R}^n$ with $\text{Vol}_{n-1}(K \cap H) \gtrsim 1/\sqrt{n}$.
 [Hint: Find a direction in which the width is at most $C\sqrt{n}$].
- Conclude that $L_K \lesssim \sqrt{n}$.

5. Let $\psi : \mathbb{R}^n \rightarrow \mathbb{R}$ be convex, set $f = e^{-\psi}$ and assume that f is integrable.

- Prove that $\varphi(x, t) = t\psi(x/t)$ is a convex function on $\mathbb{R}^n \times (0, \infty)$.
- Assume that $e^{-\psi}$ is integrable. Deduce from Prekopa-Leindler that

$$t \mapsto \int_{\mathbb{R}^n} e^{-t\psi(x/t)} dx$$

is log-concave.

- Conclude that the function

$$G(p) = p^n \int_{\mathbb{R}^n} f(x)^p dx \quad (1)$$

is log-concave in $(0, \infty)$.

- Let X be a random vector in \mathbb{R}^n with log-concave density $f = e^{-\psi}$. Prove that $\text{Var}(\psi(X)) - n = (\log G)''(1)$ where G is given in (1).
- Recall that $\mathbb{E}\psi(X) = \text{Ent}(X)$ and conclude Nguyen's varentropy bound

$$\text{Var}(\psi(X)) \leq n.$$

6. (a) Improve the bound obtained in class, and establish the Rogers-Shepherd inequality: For any centrally-symmetric, convex body $K \subseteq \mathbb{R}^n$ and an ℓ -dimensional subspace $E \subseteq \mathbb{R}^n$,

$$\text{Vol}_\ell(K \cap E) \cdot \text{Vol}_{n-\ell}(\text{Proj}_E^\perp K) \leq \binom{n}{\ell} \text{Vol}_n(K).$$

(b) Prove the Spingarn inequality: If the barycenter of K lies at the origin, then,

$$\text{Vol}_\ell(K \cap E) \cdot \text{Vol}_{n-\ell}(\text{Proj}_E^\perp K) \geq \text{Vol}_n(K)$$

[Hint: $f(x) = \text{Vol}_n(K \cap (E + x))$ is log-concave + Jensen].

7. Some time ago we proved in class that for a 1-Lipschitz function $f : S^{n-1} \rightarrow \mathbb{R}$, and a random k -dimensional subspace $E \subseteq \mathbb{R}^n$,

$$\mathbb{E} \sup_{x \in E} |f(x) - m| \leq C \sqrt{\frac{k}{n}},$$

where $m = \int f d\sigma_{n-1}$. Prove that

$$\mathbb{P} \left(\sup_{x \in E} |f(x) - m| \leq C \sqrt{\frac{k}{n}} \right) \geq 1 - Ce^{-ck},$$

where $c, C > 0$ are universal constants.

8. A probability density f in \mathbb{R}^n is *more peaked* than a probability density g in \mathbb{R}^n if for any centrally-symmetric convex set $K \subseteq \mathbb{R}^n$,

$$\int_K f \geq \int_K g.$$

(a) Prove that if f is more peaked than g , then for any even, log-concave function $\rho : \mathbb{R}^n \rightarrow [0, \infty)$,

$$\int_{\mathbb{R}^n} \rho f \geq \int_{\mathbb{R}^n} \rho g.$$

(b) In one dimension, show that $1_{[-1/2, 1/2]}(t)$ is more peaked than $\exp(-\pi t^2)$.
(c) Prove that if a log-concave $f_i(t)$ is more peaked than a log-concave $g_i(t)$ for $i = 1, \dots, n$, for $t \in \mathbb{R}$, then $\prod_{i=1}^n f_i(x_i)$ is more peaked than $\prod_{i=1}^n g_i(x_i)$ for $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

[Hint: Enough to prove for $n = 2$, and use Prékopa-Leindler]

(d) Conclude that uniform probability density on $Q = [-1/2, 1/2]^n$ is more peaked than the Gaussian density $\exp(-\pi|x|^2)$ in \mathbb{R}^n .
(e) Use the comparison with the Gaussian to prove Vaaler's theorem: For any subspace $E \subseteq \mathbb{R}^n$,

$$Vol_n(Q \cap E) \geq 1.$$