High dim. geometry, homework assignment no. 4

You are asked to solve at least 4 questions. Please submit your solution in pdf format
by Wednesday, February 10 at the link:

https://www.dropbox.com/request/n9P7IhbaVpSscPbaKzRC

1. Let X be a random vector in R™ with log-concave density f. Prove that

1/n
(/ f2) N/ fl—l—l/n ~ e—Ent(X)/n

where A ~ B means that cA < B < CA for universal constants ¢, C' > 0. [Hint:
Recall the body K'(f) defined in class]

2. Let K C R" be a centrally-symmetric convex body, n even. Let E € G, /2 be a
random n/2-dimensional subspace.

(a)

(b)

(ii)

Prove that
Ev.rad. (K NE) Svrad.(K),

where v.rad.(K) is the radius of the Euclidean ball (of the same dimension)
whose volume equals that of K, and A < B means that A < C'B for a universal
constant C' > 0. [Actually, there is a direct proof without the volume-diameter
balance theorem showing that Ev.rad.(K N E) < v.rad.(K)]

Recall that M (K) = [g, ||z]|xdon—1(z). Assume that v.rad.(K) = 1. Prove
that M (K) > 1 and that

EDiam(K N E) < M(K).

Let f : R — [0, 00) be a log-concave probability density with [*_¢f(t)dt = 0.
Prove that

/Ooof(t)dt >c

for a universal constant ¢ > 0. [Bonus: prove with ¢ = 1/e, the optimal
constant].

Griinbaum inequality: Let X' C R" be a convex body of volume one. Prove that
any hyperplane H through its barycenter splits K into two convex parts, each
of volume at least c.



4. Let K C R" be a centrally-symmetric convex body of volume one.

(a) Prove that there exists a hyperplane H C R" with Vol,, (K N H) 2 1/y/n.
[Hint: Find a direction in which the width is at most C'y/n].

(b) Conclude that Ly < /n.
5. Let ) : R" — R be convex, set f = e~¥ and assume that f is integrable.
(a) Prove that (x,t) = ty(x/t) is a convex function on R” x (0, 00).

(b) Assume that e~¥ is integrable. Deduce from Preﬁopa—Leindler that

t— e W@/ gy
R

is log-concave.
(¢) Conclude that the function

G(p) =p" f(z)Pdx (1)

Rn
is log-concave in (0, 00).

(d) Let X be a random vector in R with log-concave density f = e~¥. Prove that
Var(¢¥(X)) —n = (log G)"(1) where G is given in (1).
(e) Recall that Et)(X) = Ent(X) and conclude Nguyen’s varentropy bound

Var(¢y(X)) < n.

6. (a) Improve the bound obtained in class, and establish the Rogers-Shepherd in-
equality: For any centrally-symmetric, convex body KX C R™ and an /-dimensional
subspace £ C R",

Vol(K N E) - Voly_o(Projs K) < (Z) Vol, (K).

(b) Prove the Spingarn inequality: If the barycenter of K lies at the origin, then,
Vol(KNE)-Vol,_(Projz K) > Vol,(K)
[Hint: f(z) = Vol,(K N (E + x)) is log-concave + Jensen].

7. Some time ago we proved in class that for a 1-Lipschitz function f : S"~! — R, and
a random k—dimensional subspace £ C R",

Baup (o) —m] < /%
zckE n

where m = [ fdo,_;. Prove that

P <sup f(2) —ml < cﬁ) > 1 ek,
zel n

where ¢, C' > (0 are universal constants.
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8. A probability density f in R" is more peaked than a probability density g in R™ if for
any centrally-symmetric convex set X C R",

=]

(a) Prove that if f is more peaked than g, then for any even, log-concave function

p:R" = 10,00),
/npr/npg‘

(b) In one dimension, show that 1[_1 1 /9/(¢) is more peaked than exp(—t?).

(c) Prove that if a log-concave f;(¢) is more peaked than a log-concave g;(t) for
i=1,...,n,fort € R, then [[_, f;(z;) is more peaked than [, g;(z;) for
r=(x1,...,2,) € R™
[Hint: Enough to prove for n = 2, and use Prékopa-Leindler]

(d) Conclude that uniform probability density on ) = [—1/2,1/2]™ is more peaked
than the Gaussian density exp(—m|z|?) in R™.

(e) Use the comparison with the Gaussian to prove Vaaler’s theorem: For any sub-
space ¥ C R",
Vol ,(QNE) > 1.



