High dim. geometry, homework assignment no. 4

You are asked to solve at least 4 questions. Please submit your solution in pdf format by Wednesday, February 10 at the link:
https://www.dropbox.com/request/n9P7IhbaVpSscPbaKzRC

1. Let X be a random vector in \mathbb{R}^{n} with log-concave density f. Prove that

$$
\left(\int_{\mathbb{R}^{n}} f^{2}\right)^{1 / n} \sim \int_{\mathbb{R}^{n}} f^{1+1 / n} \sim e^{-\operatorname{Ent}(X) / n}
$$

where $A \sim B$ means that $c A \leq B \leq C A$ for universal constants $c, C>0$. [Hint: Recall the body $K(f)$ defined in class]
2. Let $K \subseteq \mathbb{R}^{n}$ be a centrally-symmetric convex body, n even. Let $E \in G_{n, n / 2}$ be a random $n / 2$-dimensional subspace.
(a) Prove that

$$
\mathbb{E} v . \operatorname{rad} .(K \cap E) \lesssim v . r a d .(K)
$$

where $v . r a d .(K)$ is the radius of the Euclidean ball (of the same dimension) whose volume equals that of K, and $A \lesssim B$ means that $A \leq C B$ for a universal constant $C>0$. [Actually, there is a direct proof without the volume-diameter balance theorem showing that $\mathbb{E v}$.rad. $(K \cap E) \leq$ v.rad. $(K)]$
(b) Recall that $M(K)=\int_{S^{n-1}}\|x\|_{K} d \sigma_{n-1}(x)$. Assume that v.rad. $(K)=1$. Prove that $M(K) \geq 1$ and that

$$
\mathbb{E D i a m}(K \cap E) \lesssim M(K)
$$

3. (i) Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a log-concave probability density with $\int_{-\infty}^{\infty} t f(t) d t=0$. Prove that

$$
\int_{0}^{\infty} f(t) d t \geq c
$$

for a universal constant $c>0$. [Bonus: prove with $c=1 / e$, the optimal constant].
(ii) Grünbaum inequality: Let $K \subseteq \mathbb{R}^{n}$ be a convex body of volume one. Prove that any hyperplane H through its barycenter splits K into two convex parts, each of volume at least c.
4. Let $K \subseteq \mathbb{R}^{n}$ be a centrally-symmetric convex body of volume one.
(a) Prove that there exists a hyperplane $H \subseteq \mathbb{R}^{n}$ with $\operatorname{Vol}_{n-1}(K \cap H) \gtrsim 1 / \sqrt{n}$. [Hint: Find a direction in which the width is at most $C \sqrt{n}$].
(b) Conclude that $L_{K} \lesssim \sqrt{n}$.
5. Let $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex, set $f=e^{-\psi}$ and assume that f is integrable.
(a) Prove that $\varphi(x, t)=t \psi(x / t)$ is a convex function on $\mathbb{R}^{n} \times(0, \infty)$.
(b) Assume that $e^{-\psi}$ is integrable. Deduce from Preḱopa-Leindler that

$$
t \mapsto \int_{\mathbb{R}^{n}} e^{-t \psi(x / t)} d x
$$

is log-concave.
(c) Conclude that the function

$$
\begin{equation*}
G(p)=p^{n} \int_{\mathbb{R}^{n}} f(x)^{p} d x \tag{1}
\end{equation*}
$$

is log-concave in $(0, \infty)$.
(d) Let X be a random vector in \mathbb{R}^{n} with log-concave density $f=e^{-\psi}$. Prove that $\operatorname{Var}(\psi(X))-n=(\log G)^{\prime \prime}(1)$ where G is given in (1).
(e) Recall that $\mathbb{E} \psi(X)=\operatorname{Ent}(X)$ and conclude Nguyen's varentropy bound

$$
\operatorname{Var}(\psi(X)) \leq n
$$

6. (a) Improve the bound obtained in class, and establish the Rogers-Shepherd inequality: For any centrally-symmetric, convex body $K \subseteq \mathbb{R}^{n}$ and an ℓ-dimensional subspace $E \subseteq \mathbb{R}^{n}$,

$$
V o l_{\ell}(K \cap E) \cdot V_{o l_{n-\ell}}\left(\operatorname{Proj}_{E}^{\perp} K\right) \leq\binom{ n}{\ell} \operatorname{Vol}_{n}(K) .
$$

(b) Prove the Spingarn inequality: If the barycenter of K lies at the origin, then,

$$
\operatorname{Vol}_{\ell}(K \cap E) \cdot \operatorname{Vol}_{n-\ell}\left(\operatorname{Proj}_{E}^{\perp} K\right) \geq \operatorname{Vol}_{n}(K)
$$

[Hint: $f(x)=\operatorname{Vol}_{n}(K \cap(E+x))$ is log-concave + Jensen].
7. Some time ago we proved in class that for a 1-Lipschitz function $f: S^{n-1} \rightarrow \mathbb{R}$, and a random k-dimensional subspace $E \subseteq \mathbb{R}^{n}$,

$$
\mathbb{E} \sup _{x \in E}|f(x)-m| \leq C \sqrt{\frac{k}{n}},
$$

where $m=\int f d \sigma_{n-1}$. Prove that

$$
\mathbb{P}\left(\sup _{x \in E}|f(x)-m| \leq C \sqrt{\frac{k}{n}}\right) \geq 1-C e^{-c k},
$$

where $c, C>0$ are universal constants.
8. A probability density f in \mathbb{R}^{n} is more peaked than a probability density g in \mathbb{R}^{n} if for any centrally-symmetric convex set $K \subseteq \mathbb{R}^{n}$,

$$
\int_{K} f \geq \int_{K} g
$$

(a) Prove that if f is more peaked than g, then for any even, log-concave function $\rho: \mathbb{R}^{n} \rightarrow[0, \infty)$,

$$
\int_{\mathbb{R}^{n}} \rho f \geq \int_{\mathbb{R}^{n}} \rho g .
$$

(b) In one dimension, show that $1_{[-1 / 2,1 / 2]}(t)$ is more peaked than $\exp \left(-\pi t^{2}\right)$.
(c) Prove that if a log-concave $f_{i}(t)$ is more peaked than a log-concave $g_{i}(t)$ for $i=1, \ldots, n$, for $t \in \mathbb{R}$, then $\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ is more peaked than $\prod_{i=1}^{n} g_{i}\left(x_{i}\right)$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
[Hint: Enough to prove for $n=2$, and use Prékopa-Leindler]
(d) Conclude that uniform probability density on $Q=[-1 / 2,1 / 2]^{n}$ is more peaked than the Gaussian density $\exp \left(-\pi|x|^{2}\right)$ in \mathbb{R}^{n}.
(e) Use the comparison with the Gaussian to prove Vaaler's theorem: For any subspace $E \subseteq \mathbb{R}^{n}$,

$$
\operatorname{Vol}_{n}(Q \cap E) \geq 1
$$

