High dim. geometry, homework assignment no. 4

You are asked to solve at least 4 questions. Please submit your solution in pdf format by Wednesday, February 10 at the link:

https://www.dropbox.com/request/n9P7IhbaVpSscPbaKzRC

1. Let X be a random vector in \mathbb{R}^n with log-concave density f. Prove that

$$\left(\int_{\mathbb{R}^n} f^2\right)^{1/n} \sim \int_{\mathbb{R}^n} f^{1+1/n} \sim e^{-\operatorname{Ent}(X)/n}$$

where $A \sim B$ means that $cA \leq B \leq CA$ for universal constants c, C > 0. [Hint: Recall the body K(f) defined in class]

- 2. Let $K \subseteq \mathbb{R}^n$ be a centrally-symmetric convex body, n even. Let $E \in G_{n,n/2}$ be a random n/2-dimensional subspace.
 - (a) Prove that

$$\mathbb{E}v.rad.(K \cap E) \lesssim v.rad.(K),$$

where v.rad.(K) is the radius of the Euclidean ball (of the same dimension) whose volume equals that of K, and $A \leq B$ means that $A \leq CB$ for a universal constant C > 0. [Actually, there is a direct proof without the volume-diameter balance theorem showing that $\mathbb{E}v.rad.(K \cap E) \leq v.rad.(K)$]

(b) Recall that $M(K) = \int_{S^{n-1}} ||x||_K d\sigma_{n-1}(x)$. Assume that v.rad.(K) = 1. Prove that $M(K) \ge 1$ and that

$$\mathbb{E}\mathrm{Diam}(K \cap E) \lesssim M(K).$$

3. (i) Let $f : \mathbb{R} \to [0, \infty)$ be a log-concave probability density with $\int_{-\infty}^{\infty} tf(t)dt = 0$. Prove that

$$\int_0^\infty f(t)dt \ge c$$

for a universal constant c > 0. [Bonus: prove with c = 1/e, the optimal constant].

(ii) Grünbaum inequality: Let $K \subseteq \mathbb{R}^n$ be a convex body of volume one. Prove that any hyperplane H through its barycenter splits K into two convex parts, each of volume at least c.

- 4. Let $K \subseteq \mathbb{R}^n$ be a centrally-symmetric convex body of volume one.
 - (a) Prove that there exists a hyperplane $H \subseteq \mathbb{R}^n$ with $Vol_{n-1}(K \cap H) \gtrsim 1/\sqrt{n}$. [Hint: Find a direction in which the width is at most $C\sqrt{n}$].
 - (b) Conclude that $L_K \lesssim \sqrt{n}$.
- 5. Let $\psi : \mathbb{R}^n \to \mathbb{R}$ be convex, set $f = e^{-\psi}$ and assume that f is integrable.
 - (a) Prove that $\varphi(x,t) = t\psi(x/t)$ is a convex function on $\mathbb{R}^n \times (0,\infty)$.
 - (b) Assume that $e^{-\psi}$ is integrable. Deduce from Prekopa-Leindler that

$$t \mapsto \int_{\mathbb{R}^n} e^{-t\psi(x/t)} dx$$

is log-concave.

(c) Conclude that the function

$$G(p) = p^n \int_{\mathbb{R}^n} f(x)^p dx \tag{1}$$

is log-concave in $(0, \infty)$.

- (d) Let X be a random vector in \mathbb{R}^n with log-concave density $f = e^{-\psi}$. Prove that $Var(\psi(X)) n = (\log G)''(1)$ where G is given in (1).
- (e) Recall that $\mathbb{E}\psi(X) = \text{Ent}(X)$ and conclude Nguyen's varentropy bound

$$Var(\psi(X)) \le n.$$

(a) Improve the bound obtained in class, and establish the Rogers-Shepherd inequality: For any centrally-symmetric, convex body K ⊆ ℝⁿ and an ℓ-dimensional subspace E ⊆ ℝⁿ,

$$Vol_{\ell}(K \cap E) \cdot Vol_{n-\ell}(Proj_E^{\perp}K) \leq \binom{n}{\ell} Vol_n(K).$$

(b) Prove the Spingarn inequality: If the barycenter of K lies at the origin, then,

$$Vol_{\ell}(K \cap E) \cdot Vol_{n-\ell}(Proj_E^{\perp}K) \ge Vol_n(K)$$

[Hint: $f(x) = Vol_n(K \cap (E + x))$ is log-concave + Jensen].

7. Some time ago we proved in class that for a 1-Lipschitz function $f : S^{n-1} \to \mathbb{R}$, and a random k-dimensional subspace $E \subseteq \mathbb{R}^n$,

$$\mathbb{E}\sup_{x\in E}|f(x)-m| \le C\sqrt{\frac{k}{n}},$$

where $m = \int f d\sigma_{n-1}$. Prove that

$$\mathbb{P}\left(\sup_{x\in E}|f(x)-m|\leq C\sqrt{\frac{k}{n}}\right)\geq 1-Ce^{-ck},$$

where c, C > 0 are universal constants.

8. A probability density f in \mathbb{R}^n is *more peaked* than a probability density g in \mathbb{R}^n if for any centrally-symmetric convex set $K \subseteq \mathbb{R}^n$,

$$\int_{K} f \ge \int_{K} g.$$

(a) Prove that if f is more peaked than g, then for any even, log-concave function $\rho : \mathbb{R}^n \to [0, \infty)$,

$$\int_{\mathbb{R}^n} \rho f \ge \int_{\mathbb{R}^n} \rho g.$$

- (b) In one dimension, show that $1_{[-1/2,1/2]}(t)$ is more peaked than $\exp(-\pi t^2)$.
- (c) Prove that if a log-concave $f_i(t)$ is more peaked than a log-concave $g_i(t)$ for i = 1, ..., n, for $t \in \mathbb{R}$, then $\prod_{i=1}^n f_i(x_i)$ is more peaked than $\prod_{i=1}^n g_i(x_i)$ for $x = (x_1, ..., x_n) \in \mathbb{R}^n$.

[Hint: Enough to prove for n = 2, and use Prékopa-Leindler]

- (d) Conclude that uniform probability density on $Q = [-1/2, 1/2]^n$ is more peaked than the Gaussian density $\exp(-\pi |x|^2)$ in \mathbb{R}^n .
- (e) Use the comparison with the Gaussian to prove Vaaler's theorem: For any subspace $E \subseteq \mathbb{R}^n$,

$$Vol_n(Q \cap E) \ge 1.$$