
High dim. geometry, homework assignment no. 4

You are asked to solve at least 4 questions. Please submit your solution in pdf format
by Wednesday, February 10 at the link:

https://www.dropbox.com/request/n9P7IhbaVpSscPbaKzRC

1. Let X be a random vector in Rn with log-concave density f . Prove that(∫
Rn

f 2

)1/n

∼
∫
Rn

f 1+1/n ∼ e−Ent(X)/n

where A ∼ B means that cA ≤ B ≤ CA for universal constants c, C > 0. [Hint:
Recall the body K(f) defined in class]

2. Let K ⊆ Rn be a centrally-symmetric convex body, n even. Let E ∈ Gn,n/2 be a
random n/2-dimensional subspace.

(a) Prove that
Ev.rad.(K ∩ E) ≲ v.rad.(K),

where v.rad.(K) is the radius of the Euclidean ball (of the same dimension)
whose volume equals that ofK, andA ≲ B means thatA ≤ CB for a universal
constant C > 0. [Actually, there is a direct proof without the volume-diameter
balance theorem showing that Ev.rad.(K ∩ E) ≤ v.rad.(K)]

(b) Recall that M(K) =
∫
Sn−1 ∥x∥Kdσn−1(x). Assume that v.rad.(K) = 1. Prove

that M(K) ≥ 1 and that

EDiam(K ∩ E) ≲M(K).

3. (i) Let f : R → [0,∞) be a log-concave probability density with
∫∞
−∞ tf(t)dt = 0.

Prove that ∫ ∞

0

f(t)dt ≥ c

for a universal constant c > 0. [Bonus: prove with c = 1/e, the optimal
constant].

(ii) Grünbaum inequality: LetK ⊆ Rn be a convex body of volume one. Prove that
any hyperplane H through its barycenter splits K into two convex parts, each
of volume at least c.
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4. Let K ⊆ Rn be a centrally-symmetric convex body of volume one.

(a) Prove that there exists a hyperplane H ⊆ Rn with V oln−1(K ∩ H) ≳ 1/
√
n.

[Hint: Find a direction in which the width is at most C
√
n].

(b) Conclude that LK ≲
√
n.

5. Let ψ : Rn → R be convex, set f = e−ψ and assume that f is integrable.

(a) Prove that φ(x, t) = tψ(x/t) is a convex function on Rn × (0,∞).

(b) Assume that e−ψ is integrable. Deduce from Preḱopa-Leindler that

t 7→
∫
Rn

e−tψ(x/t)dx

is log-concave.

(c) Conclude that the function

G(p) = pn
∫
Rn

f(x)pdx (1)

is log-concave in (0,∞).

(d) Let X be a random vector in Rn with log-concave density f = e−ψ. Prove that
V ar(ψ(X))− n = (logG)′′(1) where G is given in (1).

(e) Recall that Eψ(X) = Ent(X) and conclude Nguyen’s varentropy bound

V ar(ψ(X)) ≤ n.

6. (a) Improve the bound obtained in class, and establish the Rogers-Shepherd in-
equality: For any centrally-symmetric, convex bodyK ⊆ Rn and an ℓ-dimensional
subspace E ⊆ Rn,

V olℓ(K ∩ E) · V oln−ℓ(Proj⊥EK) ≤
(
n

ℓ

)
V oln(K).

(b) Prove the Spingarn inequality: If the barycenter of K lies at the origin, then,

V olℓ(K ∩ E) · V oln−ℓ(Proj⊥EK) ≥ V oln(K)

[Hint: f(x) = V oln(K ∩ (E + x)) is log-concave + Jensen].

7. Some time ago we proved in class that for a 1-Lipschitz function f : Sn−1 → R, and
a random k−dimensional subspace E ⊆ Rn,

E sup
x∈E

|f(x)−m| ≤ C

√
k

n
,

where m =
∫
fdσn−1. Prove that

P

(
sup
x∈E

|f(x)−m| ≤ C

√
k

n

)
≥ 1− Ce−ck,

where c, C > 0 are universal constants.
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8. A probability density f in Rn is more peaked than a probability density g in Rn if for
any centrally-symmetric convex set K ⊆ Rn,∫

K

f ≥
∫
K

g.

(a) Prove that if f is more peaked than g, then for any even, log-concave function
ρ : Rn → [0,∞), ∫

Rn

ρf ≥
∫
Rn

ρg.

(b) In one dimension, show that 1[−1/2,1/2](t) is more peaked than exp(−πt2).
(c) Prove that if a log-concave fi(t) is more peaked than a log-concave gi(t) for

i = 1, . . . , n, for t ∈ R, then
∏n

i=1 fi(xi) is more peaked than
∏n

i=1 gi(xi) for
x = (x1, . . . , xn) ∈ Rn.
[Hint: Enough to prove for n = 2, and use Prékopa-Leindler]

(d) Conclude that uniform probability density onQ = [−1/2, 1/2]n is more peaked
than the Gaussian density exp(−π|x|2) in Rn.

(e) Use the comparison with the Gaussian to prove Vaaler’s theorem: For any sub-
space E ⊆ Rn,

V oln(Q ∩ E) ≥ 1.
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