
1. Metric Measure Spaces

A metric measure space is a triplet (X, d, µ) where X is a complete and separable space
(e.g. a metric space, Rn, Sn, a Riemanninan manfiold, {0, 1}n, etc.), d is a distance
function and µ is a Borel measure.

1.1. Examples.

(1) K ⊆ Rn a convex set, d is Euclidean and µ is the Lebesque measure on K

(2) Sn with geodesic distance and uniform measure.

(3) Rn with Euclidean distance and the Gaussian measure γn where
dγn
dx

= (2π)−n/2e−
|x|2

2

.

(4) A weighted graph with weight function w : V ∪ E → R on vertices and edges
and distance

d(u, v) = min
path from u to v

length(path)

measure µ(v) = w(v) or for paths µ(γ) =
∑
e∈γ w(e).

1.2. Poincaré Inequality.

Theorem 1 (Poincaré, 1892). Let K ⊆ Rn be a convex, open, bounded set. Let
f : K → R be a C1-smooth,

∫
K
f = 0. Then

VarK(f) =
∫
K

f2dµ ≤ Cp(K)
∫
K

‖∇f‖2

when Cp(K) ≤ 2n−1 · diam2(K) and Cp(K) is called the Poincaré constant.

We could think of the Poincaré as having units meters squared.

Proof. Normalize K 7→ λK so vol(K) = 1∫
K

f2 = 1
2

∫
K

∫
K

|f(x)− f(y)|2dxdy(1.1)

which follows from expanding the expression and noting that
∫
K
f = 0. We choose a

path from x to y and by the Fundamental Theorem of Calculus

f(y)− f(x) =
∫ 1

0

d

dt
f((1− t)x+ ty)dt =

∫ 1

0
∇f((1− t)x+ ty)(y − x)dt(1.2)

since |x− y| ≤ diam(K) we can bound |f(x)− f(y)|:

|f(x)− f(y)| ≤
∫ 1

0
‖∇f((1− t)x+ ty)‖dt · diam(K)(1.3)

by Caucy Schwartz inequality

|f(y)− f(x)|2 ≤ diam2(K)
∫ 1

0
|∇f((1− t)x+ ty)|2 dt(1.4)
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now we take an integral to obtain the inequality∫
K

f2 ≤ 1
2diam2

∫
K

∫
K

∫ 1

0
‖∇f((1− t)x+ ty)‖2dxdydt(1.5)

= diam2(K)
∫ 1

1
2

∫
K

∫
K

‖∇f((1− t)x+ ty)‖2dydxdt(1.6)

fix x, change variable z = (1− t)x+ ty for t ≥ 1
2∫

K

‖∇f((1− t)x+ ty)‖2dy =
∫

(1−t)x+tK
‖∇f(z)‖2 dz

tn
(1.7)

= 2n
∫
K

‖∇f(z)‖2dz(1.8)

Hence

∫
K

f2 ≤
∫ 1

1
2

dt

∫
K

dx

∫
K

‖∇f(z)‖2dz · 2n · diam2(K) = 2n−1 · diam2(K) ·
∫
K

‖∇f(z)‖2dz

(1.9)

�

2. Introduction to the heat equation

Let K ⊆ Rn be a set ∂K is smooth but open. Write ut (x) for t ≥ 0 and x ∈ K for
the temperature at the point x ∈ K at time t. The heat equation is{

dut

dt = 4ut x ∈ K
〈∇ut, ν〉 = 0 x ∈ ∂K

where ν is a unit normal. These conditions are called Neumanns Boundary Conditions.
These means that the heat is insulated by Fourier’s Law. Here 4u =

∑
i ∂

iiu is the
Laplacian operator.

For every smooth u0 : K 7→ R there exists a solution to the heat equation, start-
ing from u0, and it is smooth in all variables.

Lemma (Preservation of Total Heat). ∫
K

ut

is constant in t

Proof.
d

dt

∫
K

ut =
∫
k

du

dt

=
∫
K

∇ut

=
∫
K

div (∇ut)

=
∫
∂K

∇ut · ν = 0
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Proposition. Suppose Voln (K) = 1. Suppose that
∫
K
u0 = 1. Then

‖ut − 1‖2
L2(K) ≤ e

− t
cp(K) ‖u0 − 1‖2

L2(K)

where cp (K) the Poincaré coefficient, is the relaxation time.

Proof. There exists an orthonormal basis for 4,
1 ≡ ϕ0, ϕ1, · · · ∈ L2 (K)

Define ϕ0 ≡ 1, and ϕi are the minimizers of the Rayleigh quotient

λi = inf
u⊥ϕ0,...,ϕi−1

∫
K
‖∇u‖2∫
K
u2 = Rk (u)

Then ϕi are eigenfunctions of 4 with eigenvalues
0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞

and satisify {
4ϕi = −λiϕi ∈ K \ ∂K
∇ϕi · ν = 0 ∈ ∂K

(Exercise: Prove this).
An example for a solution to the heat equation

ut (x) = e−λitϕi (x)

−λiut = d

dt
ut (x) = e−λit4ϕi

The heat operator is Pt (u0) = ut is diagonal in the basis ϕ0, ϕ1, . . .

Pt (ϕi) = e−λitϕi

Notice that

λ1 = inf
{∫

K
|∇f |2∫
K
u2 ;

∫
K

u = 0
}

Thus
λ1

∫
K

u2 ≤
∫
K

|∇u|2

for all u : K → R such that
∫
K
f = 0. Given u0 : K → R such that

∫
K
u0 = 1 we

expand u0 in the orthogonal basis

u0 =
∞∑
i=0

aiϕi = 1 +
∞∑
i=1

aiϕi

when ai = 〈ui, ϕi〉. For example for i = 0, we have a0 =
∫
u0 = 1. Thus,

ut = Pt (u0) = 1 +
∞∑
i=1

aie
−λitϕi

since λi ≥ λ1 = 1
cp(K) .

‖ut − 1‖2
L2(K) =

∞∑
i=1
|ai|2 e−2λit ≤ e−

2t
cp(K) ·

∞∑
i=1
|ai|2 = e

− 2t
cp(K) ‖u0 − 1‖2

L2(K)
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as desired �

We could think of the Poincaré coefficient as a measure of conductance of a set.

2.1. Other ways to measure connnectivity / conductance. Isoperimetric / Cheeger
constant of K ⊆ Rn open

hK = inf
A⊆K

Voln−1 (∂A ∩K)
min {Voln (A) ,Voln (K \A)}

when ∂A is smooth.

Fact 2. Cheeger Inequality (Under general assumption)

h2
K · Cp (K) ≤ 4

Fact 3. If K ⊆ Rn is convex then
1
9 ≤ h

2
K · Cp (K) ≤ 4

Cheeger Inequality on metric-measure spaces. (X, d, µ) is a metric-measure space
with µ (X) = 1. Let A ⊆ X be a measurable set.

Definition 4. The surface area is defined as

µ+ (∂A) = lim
ε→0

µ (Nε (A))− µ (A)
ε

where Nε (A) = {x ∈ X | d (x,A) < ε}

Definition 5. The isoperimetric / Cheeger constant is

hX = inf
A⊆X,0<µ(A)<1

µ+ (∂A)
min {µ (A) , 1− µ (A)}

Remark. for X = K ⊆ Rn convex the infimum in the Cheeger constant is attained and
satisfies µ (A) = 1

2 . What’s the Poincare’s constant Cp (X)?

∀f Var (f) ≤ Cp (X) ·
∫
X

|∇f |2 dµ

Definition 6. Let f : X → R and f is Lipschitz on balls that is for every ball B (x0, r)
exists L such that

|f (x)− f (y)| ≤ L · d (x, y) ∀x, y ∈ B (x0, r)

We define the gradient

|∇f | (x) = lim
ε→0

sup
0<d(y,x)<ε

|f (y)− f (x)|
d (x, y)
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Definition 7. Cp (X) is the infimal C ≥ 0 such that ∀f : X → R Lipschitz on balls
such that

Var (f) ≤ C ·
∫

X
|∇f|2

Theorem 8. Cheeger’s Inequality
h2
X · Cp (X) ≤ 4

Lemma 9. For any Lipschitz f : X → R ,∫ ∞
−∞

µ+ (∂ {f ≥ t}) dt ≤
∫
X

|∇f | dµ

Remark 10. The co-area formula ∀f : Rn → R∫ ∞
−∞

voln−1({f=t})dt =
∫
Rn

|∇f |

Remark 11. ∀f : X → [0,∞) which µ-integrable∫
X

fdµ =
∫
X

∫ ∞
0

1{f(x)≥t}dtdµ =
∫ ∞

0
µ ({f ≥ t}) dt

Remark 12. Co-area inequality can be indentity if we add regularity assumptions

Proof. (In the case when f in bounded) so sup |f | < ∞. We may add a constant to
f , and make it non-negative. Define fh (x) = supd(x,y)<h f (y) ≥ f (x). For any t

{fh > t} = Nh ({f > t})
So ∫

X

fhdµ =
∫ ∞

0
µ ({fh > t}) dt =

∫ ∞
0

µ (Nh ({f > t})) dt

For f we have ∫
X

fdµ =
∫ ∞

0
µ ({f > t}) dt

then ∫
X

fh − f
h

dµ =
∫ ∞

0

µ (Nh ({f > t}))− µ {f > t}
h

dt

By the bounded convergence theorem∫
X

fh − f
h

=
∫
X

|fh − f |
h

→
∫
|∇f | dµ ≤

∫
X

lim sup
h→0+

fh − f
h

dµ

By Fatou’s lemma∫ ∞
0

µ (Nh ({f > t}))− µ {f > t}
h

dt ≥
∫ ∞

0
lim inf

h→0+

µ (Nh {f > t})− µ {f > t}
h

dt

≥
∫ ∞

0
µ+ ({f > t}) dt
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