1. METRIC MEASURE SPACES

A metric measure space is a triplet (X, d, u) where X is a complete and separable space
(e.g. a metric space, R, S™, a Riemanninan manfiold, {0,1}", etc.), d is a distance
function and p is a Borel measure.

1.1. Examples.
(1) K CR™ a convex set, d is Euclidean and p is the Lebesque measure on K
(2) S™ with geodesic distance and uniform measure.

(3) R™ with Euclidean distance and the Gaussian measure ~,, where

=2

d
% = (2m) " %e

(4) A weighted graph with weight function w : V.U E — R on vertices and edges
and distance

d(u,v) = min length(path)

path from u to v
measure (i(v) = w(v) or for paths pu(y) = ..., w(e).

1.2. Poincaré Inequality.

Theorem 1 (Poincaré, 1892). Let K C R™ be a convex, open, bounded set. Let
f:K — R beaC'-smooth, [,. f=0. Then

Vark(f) = [ fdu< Gy [ 10112
K K
when C,(K) < 27! . diam?(K) and C,,(K) is called the Poincaré constant.

We could think of the Poincaré as having units meters squared.

Proof. Normalize K — AK so vol(K)

=1
(1) [ 2 =5 ] [ 1@ = sy

which follows from expanding the expression and noting that fK f =0. We choose a
path from z to y and by the Fundamental Theorem of Calculus

1 1
(12) 1)~ f@) = [ A0+t = [ V=0 + )y - )
since |z — y| < diam(K) we can bound |f(z) — f(y)]:
(13) (@) - fly)| < / IV £((1 = ) + ty)||di - diam(F)

by Caucy Schwartz inequality

1
(1.4) @) — F@)P < diam? () / V(L )+ ty)2de

1



now we take an integral to obtain the inequality

1
(1.5) /KfQS%diamQ/K/K/O IV F((L = t)z + ty) | dedydt

(1.6) = diam?(K) [ /K /K||Vf((1 — )z + ty)||*dydxdt

fix , change variable z = (1 — t)x2+ ty fort > 4

(L7) J V(= 0+ 1) Py = / VIS
1-t)z+tK

(1) =2 [ Vs

Hence
9)
1
/Kf?g/é dt/Kda;/KHVf(z)H?dz-Q”.diam2(K):2“*1.diamz(K)./K||Vf(z)||2dz
0

2. INTRODUCTION TO THE HEAT EQUATION

Let K C R™ be a set OK is smooth but open. Write u; (z) for t > 0 and « € K for
the temperature at the point z € K at time ¢. The heat equation is
duy Auy re K
{(Vut, v)y=0 ze€0K
where v is a unit normal. These conditions are called Neumanns Boundary Conditions.

These means that the heat is insulated by Fourier's Law. Here Au = Y, 0"u is the
Laplacian operator.

For every smooth uy : K + R there exists a solution to the heat equation, start-
ing from ug, and it is smooth in all variables.

K

Lemma (Preservation of Total Heat).

is constant in t

Proof.

dt/“t /7
—/KVut

. /K div (Vuy)

= Vut-l/:O
0K



Proposition. Suppose Vol,, (K) = 1. Suppose that [}, ug = 1. Then
2 -t 2
||ut—1||L2(K) Se cp (K) Hu0_1||L2(K)

where ¢, (K') the Poincaré coefficient, is the relaxation time.

Proof. There exists an orthonormal basis for A\,
1 = $0,P1," " €L2(K)
Define g = 1, and ; are the minimizers of the Rayleigh quotient

Ai = inf M = Ry (u)
ulgo,pio1 [ u?
Then ¢; are eigenfunctions of A with eigenvalues
O=X<A <A< - 50
and satisify
ANp; = =Nip; € K\ 0K
{Vg@i v=20 € 0K

(Exercise: Prove this).
An example for a solution to the heat equation
u (x) = e My ()
d Y
—Aijug = ﬁut (x)=e At A
The heat operator is P; (ug) = u; is diagonal in the basis ©g, ¢1,. . .

P, (p;) = e My,

. IV fI°
)qlnf{foKuQ;/KuO}

/\1/ u2§/ IVul?
K K

for all w : K — R such that [, f = 0. Given ug : K — R such that [,.up = 1 we
expand ug in the orthogonal basis

o oo
up = Zaz‘%‘ =1 +Zaz‘%‘
1=0 i=1

when a; = (u;, ;). For example for i = 0, we have ag = [ug = 1. Thus,

Notice that

Thus

o0
ur =Py (ug) =1+ Zaief)‘itgoi
i=1

sinceAiZ)\lzc(l y-

o0 oo

— 2t 2t
e = Uzegaey = D laif* e <7503 fauf* = 77 fJug = 1)
i=1 i=1




as desired O

We could think of the Poincaré coefficient as a measure of conductance of a set.

2.1. Other ways to measure connnectivity / conductance. Isoperimetric / Cheeger
constant of K C R™ open

O Vol,_1 (AN K)
K= 2K min {Vol, (4), Vol, (K \ A)}

when 0A is smooth.

Fact 2. Cheeger Inequality (Under general assumption)

hi - Cp (K) < 4

Fact 3. If K C R"™ is convex then
1
9 Sh%{'cp(K)Sll

Cheeger Inequality on metric-measure spaces. (X, d, 1) is a metric-measure space
with p (X) =1. Let A C X be a measurable set.

Definition 4. The surface area is defined as

/~L+ (8A) — lim N(Ne (A)) - M(A)

e—0 I3

where N (A) ={x € X |d(z,A) < e}

Definition 5. The isoperimetric / Cheeger constant is

hx = inf i (04)
X7 Acx0<u(A)<1 min {p (A),1 — p(A)}

Remark. for X = K C R”™ convex the infimum in the Cheeger constant is attained and
satisfies y1 (A) = 1. What's the Poincare’s constant C,, (X)?

Vi Var(f) < G (X)- /X VFP dy

Definition 6. Let f : X — R and f is Lipschitz on balls that is for every ball B (zq, )
exists L such that

|f (@) = fl<L-d(z,y) Va,ye B(zo,r)
We define the gradient

IV/|(z) = lim 1 () = f (@)]

sup
€0 0<d(y,x)<e d (LE, y)
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Definition 7. C), (X) is the infimal C' > 0 such that Vf : X — R Lipschitz on balls
such that

wu@)gc-/NVﬂQ
X

Theorem 8. Cheeger’s Inequality
h% - Cp(X) <4

Lemma 9. For any Lipschitz f : X — R,

| wrouzmas [ v
X

— 00

Remark 10. The co-area formula Vf : R* — R

/ VOln—l({f:t})dt = / |Vf‘
—00 RTL

Remark 11. Vf : X — [0, 00) which p-integrable

[ tan= | / Loy didp = / w({f > 1)) dt

Remark 12. Co-area inequality can be indentity if we add regularity assumptions

Proof. (In the case when f in bounded) so sup |f| < co. We may add a constant to
f, and make it non-negative. Define f, (z) = supy(, ,<p f (y) > f (x). For any ¢

>t} =N,({f>1})
So

/thduzfooomfh>t}>dt=/0°°u<zvh<{f>t}>>dt

For f we have -
[ gau= [ nitr>ma
X 0

fhh_fdﬂ:/oooﬂ(Nh({f>t;))_u{f>t}dt

then

By the bounded convergence theorem

/thh_f=/x|fhh_f|%/IVfldué/)(liﬁ%gpfh;fdu

By Fatou’'s lemma

/°° p (N0 (S > ) —pdf > 1}, >/
0 0

hmiM/MMdf>ﬂ%wdf>ﬂﬁ

h h—0*t h

Z/Ooou+({f>t})dt



