1. Metric Measure Spaces

A metric measure space is a triplet (X, d, μ) where X is a complete and separable space (e.g. a metric space, \mathbb{R}^{n}, S^{n}, a Riemanninan manfiold, $\{0,1\}^{n}$, etc.), d is a distance function and μ is a Borel measure.

1.1. Examples.

(1) $K \subseteq \mathbb{R}^{n}$ a convex set, d is Euclidean and μ is the Lebesque measure on K
(2) S^{n} with geodesic distance and uniform measure.
(3) \mathbb{R}^{n} with Euclidean distance and the Gaussian measure γ_{n} where

$$
\frac{d \gamma_{n}}{d x}=(2 \pi)^{-n / 2} e^{-\frac{|x|^{2}}{2}}
$$

(4) A weighted graph with weight function $w: V \cup E \rightarrow \mathbb{R}$ on vertices and edges and distance

$$
d(u, v)=\min _{\text {path from } u \text { to } v} \text { length(path) }
$$

measure $\mu(v)=w(v)$ or for paths $\mu(\gamma)=\sum_{e \in \gamma} w(e)$.

1.2. Poincaré Inequality.

Theorem 1 (Poincaré, 1892). Let $K \subseteq \mathbb{R}^{n}$ be a convex, open, bounded set. Let $f: K \rightarrow \mathbb{R}$ be a C^{1}-smooth, $\int_{K} f=0$. Then

$$
\operatorname{Var}_{K}(f)=\int_{K} f^{2} d \mu \leq C_{p}(K) \int_{K}\|\nabla f\|^{2}
$$

when $C_{p}(K) \leq 2^{n-1} \cdot \operatorname{diam}^{2}(K)$ and $C_{p}(K)$ is called the Poincaré constant.
We could think of the Poincaré as having units meters squared.
Proof. Normalize $K \mapsto \lambda K$ so $\operatorname{vol}(K)=1$

$$
\begin{equation*}
\int_{K} f^{2}=\frac{1}{2} \int_{K} \int_{K}|f(x)-f(y)|^{2} d x d y \tag{1.1}
\end{equation*}
$$

which follows from expanding the expression and noting that $\int_{K} f=0$. We choose a path from x to y and by the Fundamental Theorem of Calculus

$$
\begin{equation*}
f(y)-f(x)=\int_{0}^{1} \frac{d}{d t} f((1-t) x+t y) d t=\int_{0}^{1} \nabla f((1-t) x+t y)(y-x) d t \tag{1.2}
\end{equation*}
$$

since $|x-y| \leq \operatorname{diam}(K)$ we can bound $|f(x)-f(y)|$:

$$
\begin{equation*}
|f(x)-f(y)| \leq \int_{0}^{1}\|\nabla f((1-t) x+t y)\| d t \cdot \operatorname{diam}(K) \tag{1.3}
\end{equation*}
$$

by Caucy Schwartz inequality

$$
\begin{equation*}
|f(y)-f(x)|^{2} \leq \operatorname{diam}^{2}(K) \int_{0}^{1}|\nabla f((1-t) x+t y)|^{2} d t \tag{1.4}
\end{equation*}
$$

now we take an integral to obtain the inequality

$$
\begin{align*}
\int_{K} f^{2} & \leq \frac{1}{2} \operatorname{diam}^{2} \int_{K} \int_{K} \int_{0}^{1}\|\nabla f((1-t) x+t y)\|^{2} d x d y d t \tag{1.5}\\
& =\operatorname{diam}^{2}(K) \int_{\frac{1}{2}}^{1} \int_{K} \int_{K}\|\nabla f((1-t) x+t y)\|^{2} d y d x d t \tag{1.6}
\end{align*}
$$

fix x, change variable $z=(1-t) x+t y$ for $t \geq \frac{1}{2}$

$$
\begin{align*}
\int_{K}\|\nabla f((1-t) x+t y)\|^{2} d y & =\int_{(1-t) x+t K}\|\nabla f(z)\|^{2} \frac{d z}{t^{n}} \tag{1.7}\\
& =2^{n} \int_{K}\|\nabla f(z)\|^{2} d z \tag{1.8}
\end{align*}
$$

Hence
(1.9)
$\int_{K} f^{2} \leq \int_{\frac{1}{2}}^{1} d t \int_{K} d x \int_{K}\|\nabla f(z)\|^{2} d z \cdot 2^{n} \cdot \operatorname{diam}^{2}(K)=2^{n-1} \cdot \operatorname{diam}^{2}(K) \cdot \int_{K}\|\nabla f(z)\|^{2} d z$

2. Introduction to the heat equation

Let $K \subseteq \mathbb{R}^{n}$ be a set ∂K is smooth but open. Write $u_{t}(x)$ for $t \geq 0$ and $x \in K$ for the temperature at the point $x \in K$ at time t. The heat equation is

$$
\begin{cases}\frac{d u_{t}}{d t}=\triangle u_{t} & x \in K \\ \left\langle\nabla u_{t}, \nu\right\rangle=0 & x \in \partial K\end{cases}
$$

where ν is a unit normal. These conditions are called Neumanns Boundary Conditions. These means that the heat is insulated by Fourier's Law. Here $\triangle u=\sum_{i} \partial^{i i} u$ is the Laplacian operator.

For every smooth $u_{0}: K \mapsto \mathbb{R}$ there exists a solution to the heat equation, starting from u_{0}, and it is smooth in all variables.

Lemma (Preservation of Total Heat).

$$
\int_{K} u_{t}
$$

is constant in t

Proof.

$$
\begin{aligned}
\frac{d}{d t} \int_{K} u_{t} & =\int_{k} \frac{d u}{d t} \\
& =\int_{K} \nabla u_{t} \\
& =\int_{K} \operatorname{div}\left(\nabla u_{t}\right) \\
& =\int_{\partial K} \nabla u_{t} \cdot \nu=0
\end{aligned}
$$

Proposition. Suppose $\operatorname{Vol}_{n}(K)=1$. Suppose that $\int_{K} u_{0}=1$. Then

$$
\left\|u_{t}-1\right\|_{L^{2}(K)}^{2} \leq e^{-\frac{t}{c_{p}(K)}}\left\|u_{0}-1\right\|_{L^{2}(K)}^{2}
$$

where $c_{p}(K)$ the Poincaré coefficient, is the relaxation time.
Proof. There exists an orthonormal basis for \triangle,

$$
1 \equiv \varphi_{0}, \varphi_{1}, \cdots \in L^{2}(K)
$$

Define $\varphi_{0} \equiv 1$, and φ_{i} are the minimizers of the Rayleigh quotient

$$
\lambda_{i}=\inf _{u \perp \varphi_{0}, \ldots, \varphi_{i-1}} \frac{\int_{K}\|\nabla u\|^{2}}{\int_{K} u^{2}}=R_{k}(u)
$$

Then φ_{i} are eigenfunctions of \triangle with eigenvalues

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow \infty
$$

and satisify

$$
\begin{cases}\triangle \varphi_{i}=-\lambda_{i} \varphi_{i} & \in K \backslash \partial K \\ \nabla \varphi_{i} \cdot \nu=0 & \in \partial K\end{cases}
$$

(Exercise: Prove this).
An example for a solution to the heat equation

$$
\begin{aligned}
u_{t}(x) & =e^{-\lambda_{i} t} \varphi_{i}(x) \\
-\lambda_{i} u_{t} & =\frac{d}{d t} u_{t}(x)=e^{-\lambda_{i} t} \triangle \varphi_{i}
\end{aligned}
$$

The heat operator is $P_{t}\left(u_{0}\right)=u_{t}$ is diagonal in the basis $\varphi_{0}, \varphi_{1}, \ldots$

$$
P_{t}\left(\varphi_{i}\right)=e^{-\lambda_{i} t} \varphi_{i}
$$

Notice that

$$
\lambda_{1}=\inf \left\{\frac{\int_{K}|\nabla f|^{2}}{\int_{K} u^{2}} ; \int_{K} u=0\right\}
$$

Thus

$$
\lambda_{1} \int_{K} u^{2} \leq \int_{K}|\nabla u|^{2}
$$

for all $u: K \rightarrow \mathbb{R}$ such that $\int_{K} f=0$. Given $u_{0}: K \rightarrow \mathbb{R}$ such that $\int_{K} u_{0}=1$ we expand u_{0} in the orthogonal basis

$$
u_{0}=\sum_{i=0}^{\infty} a_{i} \varphi_{i}=1+\sum_{i=1}^{\infty} a_{i} \varphi_{i}
$$

when $a_{i}=\left\langle u_{i}, \varphi_{i}\right\rangle$. For example for $i=0$, we have $a_{0}=\int u_{0}=1$. Thus,

$$
u_{t}=P_{t}\left(u_{0}\right)=1+\sum_{i=1}^{\infty} a_{i} e^{-\lambda_{i} t} \varphi_{i}
$$

since $\lambda_{i} \geq \lambda_{1}=\frac{1}{c_{p}(K)}$.

$$
\left\|u_{t}-1\right\|_{L^{2}(K)}^{2}=\sum_{i=1}^{\infty}\left|a_{i}\right|^{2} e^{-2 \lambda_{i} t} \leq e^{-\frac{2 t}{c_{p}(K)}} \cdot \sum_{i=1}^{\infty}\left|a_{i}\right|^{2}=e^{-\frac{2 t}{c_{p}(K)}}\left\|u_{0}-1\right\|_{L^{2}(K)}^{2}
$$

as desired

We could think of the Poincaré coefficient as a measure of conductance of a set.
2.1. Other ways to measure connnectivity / conductance. Isoperimetric / Cheeger constant of $K \subseteq \mathbb{R}^{n}$ open

$$
h_{K}=\inf _{A \subseteq K} \frac{\operatorname{Vol}_{n-1}(\partial A \cap K)}{\min \left\{\operatorname{Vol}_{n}(A), \operatorname{Vol}_{n}(K \backslash A)\right\}}
$$

when ∂A is smooth.

Fact 2. Cheeger Inequality (Under general assumption)

$$
h_{K}^{2} \cdot C_{p}(K) \leq 4
$$

Fact 3. If $K \subseteq \mathbb{R}^{n}$ is convex then

$$
\frac{1}{9} \leq h_{K}^{2} \cdot C_{p}(K) \leq 4
$$

Cheeger Inequality on metric-measure spaces. (X, d, μ) is a metric-measure space with $\mu(X)=1$. Let $A \subseteq X$ be a measurable set.

Definition 4. The surface area is defined as

$$
\mu^{+}(\partial A)=\lim _{\varepsilon \rightarrow 0} \frac{\mu\left(N_{\varepsilon}(A)\right)-\mu(A)}{\varepsilon}
$$

where $N_{\varepsilon}(A)=\{x \in X \mid d(x, A)<\varepsilon\}$

Definition 5. The isoperimetric / Cheeger constant is

$$
h_{X}=\inf _{A \subseteq X, 0<\mu(A)<1} \frac{\mu^{+}(\partial A)}{\min \{\mu(A), 1-\mu(A)\}}
$$

Remark. for $X=K \subseteq \mathbb{R}^{n}$ convex the infimum in the Cheeger constant is attained and satisfies $\mu(A)=\frac{1}{2}$. What's the Poincare's constant $C_{p}(X)$?

$$
\forall f \quad \operatorname{Var}(f) \leq C_{p}(X) \cdot \int_{X}|\nabla f|^{2} d \mu
$$

Definition 6. Let $f: X \rightarrow \mathbb{R}$ and f is Lipschitz on balls that is for every ball $B\left(x_{0}, r\right)$ exists L such that

$$
|f(x)-f(y)| \leq L \cdot d(x, y) \quad \forall x, y \in B\left(x_{0}, r\right)
$$

We define the gradient

$$
|\nabla f|(x)=\lim _{\varepsilon \rightarrow 0} \sup _{0<d(y, x)<\varepsilon} \frac{|f(y)-f(x)|}{d(x, y)}
$$

Definition 7. $C_{p}(X)$ is the infimal $C \geq 0$ such that $\forall f: X \rightarrow \mathbb{R}$ Lipschitz on balls such that

$$
\operatorname{Var}(\mathrm{f}) \leq \mathrm{C} \cdot \int_{\mathrm{X}}|\nabla \mathrm{f}|^{2}
$$

Theorem 8. Cheeger's Inequality

$$
h_{X}^{2} \cdot C_{p}(X) \leq 4
$$

Lemma 9. For any Lipschitz $f: X \rightarrow \mathbb{R}$,

$$
\int_{-\infty}^{\infty} \mu^{+}(\partial\{f \geq t\}) d t \leq \int_{X}|\nabla f| d \mu
$$

Remark 10. The co-area formula $\forall f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\int_{-\infty}^{\infty} \operatorname{vol}_{n-1(\{f=t\})} d t=\int_{\mathbb{R}^{n}}|\nabla f|
$$

Remark 11. $\forall f: X \rightarrow[0, \infty)$ which μ-integrable

$$
\int_{X} f d \mu=\int_{X} \int_{0}^{\infty} 1_{\{f(x) \geq t\}} d t d \mu=\int_{0}^{\infty} \mu(\{f \geq t\}) d t
$$

Remark 12. Co-area inequality can be indentity if we add regularity assumptions
Proof. (In the case when f in bounded) so $\sup |f|<\infty$. We may add a constant to f, and make it non-negative. Define $f_{h}(x)=\sup _{d(x, y)<h} f(y) \geq f(x)$. For any t

$$
\left\{f_{h}>t\right\}=N_{h}(\{f>t\})
$$

So

$$
\int_{X} f_{h} d \mu=\int_{0}^{\infty} \mu\left(\left\{f_{h}>t\right\}\right) d t=\int_{0}^{\infty} \mu\left(N_{h}(\{f>t\})\right) d t
$$

For f we have

$$
\int_{X} f d \mu=\int_{0}^{\infty} \mu(\{f>t\}) d t
$$

then

$$
\int_{X} \frac{f_{h}-f}{h} d \mu=\int_{0}^{\infty} \frac{\mu\left(N_{h}(\{f>t\})\right)-\mu\{f>t\}}{h} d t
$$

By the bounded convergence theorem

$$
\int_{X} \frac{f_{h}-f}{h}=\int_{X} \frac{\left|f_{h}-f\right|}{h} \rightarrow \int|\nabla f| d \mu \leq \int_{X} \limsup _{h \rightarrow 0^{+}} \frac{f_{h}-f}{h} d \mu
$$

By Fatou's lemma

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\mu\left(N_{h}(\{f>t\})\right)-\mu\{f>t\}}{h} d t & \geq \int_{0}^{\infty} \lim _{\inf _{h \rightarrow 0^{+}}} \frac{\mu\left(N_{h}\{f>t\}\right)-\mu\{f>t\}}{h} d t \\
& \geq \int_{0}^{\infty} \mu^{+}(\{f>t\}) d t
\end{aligned}
$$

