$$
19 / 11 / 20
$$

Tutorial on Brunn-Minkourski
A geonetric inepuality from 1987.
Useful for isoperimetry, concentrafion, etce.
Minkowskisum: $A, B \subseteq \mathbb{R}^{n}$

$$
\begin{aligned}
& A+B=\{x+y ; x \in A, \quad y \in B\} \\
& t A=\{t x ; x \in A\}
\end{aligned}
$$

Exanple: $\quad B=B^{7}$ Eucliden ruit ball,

$$
A+t B^{n}=t-n b b \cdot . t A
$$

$\operatorname{Aren}\left(A+t B^{n}\right)=|A|+t|\partial A|+\pi t^{2}$ A conver
In general, in $\mathbb{R}^{\top}, \quad\binom{$ Minkons $k_{i} t_{s}}{t_{n}}$
$K, T \subseteq \mathbb{R}^{-}$convex, $\forall s=0$
$|K+s T|=$ polynominl in s

$$
\begin{aligned}
= & V_{2}^{l}(K)+c_{1} s+\ldots+c_{n-1} s^{n-1} \\
& +V_{2} \ln (T) s^{n}
\end{aligned}
$$

- The coeflicing-s of these polynomings are calld mixd volumes, inportat in convexity. (Minkouslic)
Brunn- $\mu_{\text {inkowski ine jualiky: }}^{n_{n}} \forall A, B \subseteq \mathbb{R}^{n}$, non-empty, Brel sets. Thee,

$$
|A+B|^{\frac{1}{n}} \geqslant|A|^{\frac{1}{n}}+|B|^{\frac{1}{n}} .
$$

Exauple:

$$
B\left(0, r_{1}\right)+B\left(0, r_{2}\right)=B\left(0, r_{1}+r_{2}\right)
$$

$$
\begin{aligned}
\left|B\left(0, r_{1}+r_{r}\right)\right|^{\frac{1}{n}} & =\left|B\left(0, r_{1}\right)\right|^{1}+\left|B\left(0, r_{2}\right)\right|^{1} \mid \\
\gamma_{n}\left(r_{1}+r_{2}\right) & \gamma_{n} r_{1}+{R_{n} r_{2}}^{\gamma_{n}=} r_{2}(B(0,1))=
\end{aligned}
$$

Equaliky case, when A, B are compact, is when A, B ore conrex and B is a honotbetic fras lefe of A.
Application: Isoperinetric inequaliky in \mathbb{R}^{n}.

$$
\forall A \leq\left.\left|\mathbb{R}^{-} \frac{|\partial A|}{|A|^{\frac{n-1}{n}}} \geq \frac{|\partial B|}{|B|^{\frac{n-1}{n}}}=n\right| B\right|^{\frac{1}{n}} .
$$

when $B=B(0,1)$ is a Euclite \quad unit 1 all

- In fact, we con suyi $\forall A$
$(+)|A|=|B| \Rightarrow|A+\varepsilon B| \geq|B+\varepsilon B|$
- The latter formulation implies the former:

$$
|\partial A|=\lim _{\varepsilon \rightarrow 0} \frac{|A+\varepsilon B|-|A|}{\varepsilon}
$$

$$
\begin{aligned}
& \text { In particular, } \\
& \begin{aligned}
|\partial B| & =\lim _{\varepsilon \rightarrow 0} \frac{|B+\varepsilon B|-|B|}{\varepsilon} \\
& =|B| \lim _{\varepsilon \rightarrow 0} \frac{(1+\varepsilon)^{n}-1}{\varepsilon}=n|B|
\end{aligned}
\end{aligned}
$$

Proof if (t):

$$
\begin{aligned}
|A+\varepsilon B| & \geqslant\left(|A|^{\frac{1}{n}}+|\varepsilon B|^{\frac{1}{n}}\right)^{n} \\
& =\left(|B|^{\frac{1}{n}}+|\varepsilon B|^{\frac{1}{n}}\right)^{n}
\end{aligned}
$$

Howeve, for B we hore eqruliky in $B-M$, S_{0}

$$
|B+\varepsilon B|=\left(|B|^{\frac{1}{n}}+\left(\left.\varepsilon B\right|^{\frac{1}{n}}\right)^{n}\right.
$$

So

$$
|A+\varepsilon B| \geqslant|B+\varepsilon B| .
$$

- The unultiplicative form of B-m:

$$
\forall K, T \subseteq \mathbb{R}^{n} \quad \beta_{\text {oxl }} \text { sibs, } 0<\lambda<1
$$

$$
|(1-\lambda) K+\lambda T| \geq|K|^{1-\lambda} \cdot|T|^{\lambda}
$$

Proit; Follars from B-M and $A M-G M$, as

$$
\begin{aligned}
|(1-\lambda) K+\lambda T|^{\frac{1}{n}} & \geqslant|(1-\lambda) K|^{\frac{1}{n}}+|\lambda T|^{\frac{1}{n}} \\
& =(1-\lambda)|K|^{\frac{1}{n}}+\lambda|T|^{\frac{1}{n}}
\end{aligned}
$$

$$
\geq\left(|K|^{1-\lambda}|T|^{\lambda}\right)^{\frac{1}{n}}
$$

fenuk: Easy bo go back. In fach, the "main poirt" of β, M is

$$
|k|=|T|=1 \Rightarrow\left|\frac{K+T}{2}\right| \geq 1
$$

The multiplicatire rersion admils Jeneralitalion do netrie spaces, Riemmaion moll. Why

$$
\begin{aligned}
& \frac{1 L+T}{2}=\left\{\frac{x+y}{2} ; x \in T, y \in T\right\} \\
& =\left\{\begin{array}{l}
\text { all midpoins of geolesics connection' } \\
\text { a paing in } K \text { with a } \\
\text { poink in } T
\end{array}\right. \\
& \dot{x}-\frac{r+y}{2}-x
\end{aligned}
$$

B-M on the sphex: $K, T \leqslant S^{n-1}$

$$
\frac{K+T}{2}=\left\{\begin{array}{lll}
\text { All midpoinhe of ALL} \\
\text { minimiting gelesics } \\
\text { connecring } & K & \text { to } T
\end{array}\right\}
$$

Intral, BM is trues

$$
\left|\frac{K+T}{2}\right| \geq \sqrt{|K| \cdot|T|}
$$

- In fact, true is arlld with non-negativ Ricci carantore.

Proots at Brunn-Minkowski
Steiner symmetrization $\quad(1338)$

- Giren $A \leq \mathbb{R}^{n} \quad B_{m o l}$ se人 and a byperplore $H \leq \mathbb{R}$
We defin anobher sef
$S_{H}(A)$
The Steiner symnetul of A wrt H.
Def: Take ony line $l \perp H$.

$$
\text { - } S_{H}(A) \cap l \neq \phi \Leftrightarrow A \cap l \neq \varnothing
$$

- Th set $S_{H}(A) d l$
is an interval centerd at H
 at length $|A \cap e|$.
Exercise: Ellipsoits go fo ellipsoits.
Propertios: $\forall A \subseteq \mathbb{R}^{1}$, \forall hyperplace $H \mid$
$\sqrt{1}$) $|A|=\left|S_{H}(A)\right|$
(2) $A \subseteq B \Rightarrow S_{H}(A) \subseteq S_{H}(B)$

3 A conver $\Rightarrow S_{H}(A)$ is conrex
4) $\quad S_{H}(A+B) \supseteq S_{H}(A)+S_{H}(B)$

About 4:

$\forall l$

$$
\begin{aligned}
& (A+B) \cap l=\bigcup_{l_{1}+l_{2}=l}\left(A \cap l_{1}\right)+\left(B \cap l_{2}\right) \\
& \left(S_{H}(A)+S_{H}(B)\right) \cap l \\
& =\bigcup_{l_{1}+l_{2}=l}(\underbrace{}_{\text {first center th }}\left(S_{H}(A) \cap l_{1}\right)+\left(S_{H}(B) l_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
S_{H}(A+B) \cap l= & \begin{array}{l}
\text { first ald the } \\
\\
\\
\\
\\
\\
\text { Unimenn, the table their }
\end{array}
\end{aligned} \\
& \text { first wild the } \\
& \text { intervals, tale their } \\
& \text { union, at cure }
\end{aligned}
$$

Fill in the ligate argument.
5) Eluiblelssi For any compact $A \subseteq \mathbb{R}^{2}$
\exists hyperplanes $H_{1}, H_{2}, H_{3}, \ldots \leq \mathbb{R}^{2}$ such that

$$
S_{H_{n}}\left(\sim S_{H_{2}}\left(S_{H_{1}}(A)\right)\right) \underset{N \rightarrow \infty}{\longrightarrow} B
$$

in Hassbor.ff retie, when B is a Euclidean ball with $|A|=|B|$.
Remark: Rorlom bice of H_{i} 's work.
Proof of Prunn-Minkouski:

Choose H_{1}, H_{2}, that work sinulfanerally tor $A, B, A+B$. Then

$$
\begin{aligned}
& S_{H_{1}}(A+B) \geq S_{H_{1}}(A)+S_{H_{1}}(B) \\
& S_{H_{H}-S_{H_{1}}}(A+B) \supseteq S_{H_{\dot{H}} \mathcal{H}_{H_{1}}}(A)+S_{H_{+\dot{N}} \cdot} S_{H_{1}}(B) \\
& \downarrow \quad \downarrow \\
& B\left(0, c_{n}|A+B|^{\frac{1}{n}}\right) \stackrel{\supseteq}{-} \underbrace{B\left(0, c_{n}|A|^{\frac{1}{1}}\right)+B\left(0, c_{1}|B|^{\frac{1}{1}}\right)}_{11}
\end{aligned}
$$

whee $C_{n}=V_{2 n}\left(R^{1}\right)^{-\frac{1}{n}}$.

$$
B \cdot\left(0, C_{n}\left(|A|^{\frac{1}{n}}+|B|^{\frac{1}{1}}\right)\right)
$$

Hence

$$
\zeta_{n}|A+B|^{\frac{1}{n}} \geq \zeta_{\eta}\left(|A|^{\frac{1}{n}}+|\beta|^{\frac{1}{n}}\right)
$$

