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Lecture 10: The covariance process of stochastic localization

In this lecture we complete the proof of the thin-shell theorem. Let µ be an
isotropic, log-concave probability measure in Rn with density p. It is an exercise
to show that for proving the thin-shell theorem we may approximate µ and assume
that p is continuous and compactly-supported.

Recall that for t ≥ 0 and y ∈ Rn we consider the probability density

pt,y(x) = ey·x−t|x|2/2−Λt(y)p(x) (x ∈ Rn) (1)

where
Λt(y) = log

∫
Rn

ey·x−t|x|2/2p(x)dx

is a normalizing factor. The barycenter and covariance of pt,y are given by

at(y) = ∇Λt(y) =

∫
Rn

xpt,y(x)dx ∈ Rn

and
At(y) = ∇2Λt(y) = Cov(pt,y) ∈ Rn×n.

We would also need the symmetric 3-tensor

∇3Λt(y) =

∫
Rn

(x− at(y))
⊗3pt,y(x)dx ∈ Rn×n×n.

Recall that pt,y is t-uniformly log-concave, i.e., ∇2(− log pt,y) ≥ t · Id for almost
every y ∈ Rn. The main advantage of t-uniform log-concavity is the possibility
to apply the improved Lichnerowicz inequality. It would help us bound the tensor
∇3Λt(y) of third moments of pt. In fact, one of our main proof ingredients is the
following:

Lemma 10.1. Let t > 0 and suppose that X is a centered, t-uniformly log-concave
random vector in Rn. Let λ1, . . . , λn ≥ 0 be the eigenvalues of Cov(X) and let
u1, . . . , un ∈ Rn be a corresponding orthonormal basis of eigenvectors. Abbreviate
Xi = ⟨X,ui⟩. Then for 1 ≤ k ≤ n and s > 0,

n∑
i,j=1

(EXiXjXk)
21{λi∨λj≤s} ≤ 4t−1/2s3/2λk, (2)

where a ∨ b = max{a, b}, i.e., in (2) we only sum over i, j with max{λi, λj} ≤ s.
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Proof. Write E ⊆ Rn for the subspace spanned by the vectors ui for which λi ≤ s.
Let ProjE be the orthogonal projection operator onto E in Rn. Denote

Y = ProjEX.

It follows from the Prékopa-Leindler inequality thatY is also t-uniformly log-concave,
and

∥Cov(Y )∥op ≤ s.

The improved log-concave Lichnerowicz inequality thus implies that the Poincaré con-
stant of Y , denoted by CP (Y ), satisfies

CP (Y ) ≤
√

s

t
. (3)

Set
H = E [XkY ⊗ Y ] ∈ Rn×n.

By the definition of the subspace E,
n∑

i,j=1

(EXiXjXk)
21{λi∨λj≤s} = Tr(H2) (4)

Moreover, by using (3) and the Poincaré inequalitry,

Var(⟨HY, Y ⟩) ≤ CP (Y ) · E|2HY |2 ≤ 4t−1/2s1/2 · Tr(H2Cov(Y ))

≤ 4t−1/2s3/2 · TrH2. (5)

On the other hand, since EXk = 0, the Cauchy-Schwarz inequality shows that

Tr(H2) = EXk⟨HY, Y ⟩ ≤ (EX2
k)

1/2 · (Var⟨HY, Y ⟩)1/2

= λ
1/2
k ·

√
Var⟨HY, Y ⟩. (6)

From (5) and (6), √
Var⟨HY, Y ⟩ ≤ 4t−1/2s3/2λ

1/2
k . (7)

The conclusion of the lemma follows from (4), (6) and (7).

Let (Wt)t≥0 be a standard Brownian motion in Rn with W0 = 0. Consider the
stochastic process (θt)t≥0 from the last lecture, for whose definition we offer two
alternatives:
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1. The first option is to introduce a random vectorX inRn with lawµ, independent
of the Brownian motion (Wt)t≥0, and set

θt = tX +Wt.

2. The second option is to uniquely define (θt)t≥0 via the integral equation

θt = Wt +

∫ t

0

as(θs)ds.

The two options coincide in law, as we have seen last week. WriteFt for the σ-algebra
generated by (θs)0≤s≤t. When we say that τ is a stopping time we mean that for any
t > 0, the event {τ ≤ t} is measurable with respect to Ft. Denote

pt = pt,θt , at = at(θt), At = At(θt), Λt = Λt(θt)

and write
1

t
≥ λ1(t) ≥ λ2(t) ≥ . . . ≥ λn(t) > 0 (8)

for the eigenvalues of the covariance matrix At, repeated according to their multiplic-
ity. Since µ is isotropic, at t = 0 we have A0 = Id and hence

λ1(0) = λ2(0) = . . . = λn(0) = 1.

For any k, the eigenvalue λk(t) equals 1 at time t = 0, and it is smaller than 1 at
any time t > 1. In the interval (0, 1), however, the eigenvalue λ1(t) is typically very
large, see the example in the exercise below. In view of Corollary 9.10 from last week,
the missing ingredient in the proof of the thin-shell theorem along the lines of [4] is
the following:

Proposition 10.2. We have
n∑

k=1

E exp

(
2

∫ 1

0

λk(t)dt

)
≤ Cn,

where C > 0 is a universal constant.

The proof of Proposition 10.2 relies on the following proposition, which is a straight-
forward variant of a recent breakthrough bound by Guan [2].

Proposition 10.3. For any t > 0 and any stopping time τ ,

1

n

n∑
k=1

P (λk(t ∧ τ) ≥ 3) ≤ Ce−1/tα ,

where a ∧ b = min{a, b} and where C,α > 0 are universal constants.
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It is conceivable that α = 1 in Proposition 10.3, see [3]. Proposition 10.3 tells us
that while a single eigenvalue may explode at some time t ∈ (0, 1), it is unlikely that
many eigenvalues are simultaneously large.

Proof of Proposition 10.2 assuming Proposition 10.3. For k = 1, . . . , n consider the
stopping time

τk = inf {t > 0 ; λk(t) ≥ 3} .
For any fixed t > 0 and i = 1, . . . , k, under the event τk ≤ t we have

λi(t ∧ τk) ≥ λk(t ∧ τk) ≥ 3.

Hence, for i = 1, . . . , k,

P (τk ≤ t) ≤ P (λi(t ∧ τk) ≥ 3) .

By adding these k inequalities and using Proposition 10.3, for any t > 0,

P (τk ≤ t) ≤ 1

k

k∑
i=1

P (λi(t ∧ τk) ≥ 3) ≤ 1

k

n∑
i=1

P (λi(t ∧ τk) ≥ 3)

≤ C
n

k
exp(−1/tα). (9)

Recall that α > 0 is a universal constant. It follows from (9) that

Eτ−2
k ≤ C

(
1 + log

n

k

)2/α
. (10)

Indeed, in view of (9) inequality (10) clearly holds if k ≥ n/2. For k < n/2 we
obtain from (39) that for s ≥ 22/α,

P

(
τ−2
k(

log n
k

)2/α ≥ s

)
≤ C

n

k
exp(−sα/2 · log n

k
) = C

(n
k

)1−sα/2

≤ Ce−c̃sα/2

.

By integrating over 22/α ≤ s < ∞we obtain (10) . Consequently, sinceλk(t) ≤ 1/t,∫ 1

0

λk(t)dt ≤ 3(τk ∧ 1) +

∫ 1

τk∧1

dt

t
≤ 3− log(τk ∧ 1). (11)

Therefore, by (10) and (11),

E
n∑

k=1

exp

(
2

∫ 1

0

λk(t)dt

)
≤ e6 · E

n∑
k=1

E
[
τ−2
k ∨ 1

]
≤ C

n∑
k=1

E[τ−2
k + 1]

≤ Cn · 1
n

n∑
k=1

(
1 + log

n

k

)2/α
≤ C̃n, (12)
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where the last passage follows from the fact that the function (1 + log(1/x))2/α is
monotone and integrable in [0, 1], and the Riemann sum in (12) may be bounded by
the integral.

The proof of Proposition 10.3 requires rather elaborate analysis of the time evolu-
tion of the eigenvalues of the covariance matrix At. Write

ξij(t) = (ξij1(t), ξij2(t) . . . , ξijn(t)) ∈ Rn

where

ξijk(t) =

∫
Rn

⟨x− at, ui⟩ · ⟨x− at, uj⟩ · ⟨x− at, uk⟩pt(x)dx ∈ R,

with u1(t), . . . , un(t) ∈ Rn being any orthonormal basis of eigenvectors of At cor-
responding to the eigenvalues λ1(t) ≥ . . . ≥ λn(t). Let us fix a stopping time τ .

Lemma 10.4. For any smooth, increasing function f : [0,∞) → R and almost any
t > 0,

d

dt
E

n∑
i=1

f(λi(t∧τ)) ≤
1

2

n∑
i,j=1

E
[
|ξij(t)|2

f ′(λi(t))− f ′(λj(t))

λi(t)− λj(t)
· 1{t<τ}

]
, (13)

where we interpret the quotient by continuity as f ′′(λi(t))whenλi(t) = λj(t). More-
over, the function that is differentiated on the left-hand side of (13) is absolutely con-
tinuous in t ∈ [0,∞).

The expression in the right-hand side of (13) is reminiscent of the Daleckii-Krein
formula for the second derivative of matrix functions. For a function f : R → R and
a symmetric matrix A whose spectral decomposition is

A =
n∑

i=1

λiui ⊗ ui

for numbers λ1, . . . , λn ∈ R and an orthonormal basis u1, . . . , un ∈ Rn we write

f(A) =
n∑

i=1

f(λi)ui ⊗ ui.

The Daleckii-Krein formula states that for any two symmetric matricesA,H ∈ Rn×n,
as ε → 0,

Trf(A+ εH) = Trf(A) + ε · Tr[f ′(A)H] +
ε2

2
· Tr[(B ◦H)H] + o(ε2)
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where ◦ is the Schur product or Hadamard product (i.e., entry-wise product), and

B =
n∑

i,j=1

f ′(λi)− f ′(λj)

λi − λj

ui ⊗ uj.

For v = (v1, . . . , vn) ∈ Rn we write (∇3Λt)v ∈ Rn×n for the symmetric matrix
whose i, j entry is [

(∇3Λt)v
]
ij
=

n∑
k=1

Λt,ijkvk

where Λt = (Λt,ijk)i,j,k=1,...,n. Lemma 10.4 follows from the following identity:

Lemma 10.5. For any smooth function f : [0,∞) → R and almost any t > 0,

d

dt
E

n∑
i=1

f(λi(t ∧ τ)) =
1

2

n∑
i,j=1

E
[
|ξij(t)|2

f ′(λi(t))− f ′(λj(t))

λi(t)− λj(t)
· 1{t<τ}

]

− E

[
n∑

i=1

λ2
i (t)f

′(λi(t)) · 1{t<τ}

]
.

Moreover, the function that is differentiated is absolutely-continuous in t ∈ [0,+∞).

Proof. We will prove this lemma by using Itô calculus and the “first option” above for
the definition of (θt)t≥0, i.e.,

θt = tX +Wt.

Recall from last week that for some Brownian motion (Bt)t≥0 we have

dθt = dBt + atdt (14)

and that
pt = pt,θt

is the conditional law of X given (θs)0≤s≤t. Recall that Ft is the σ-algebra generated
by (θs)0≤s≤t. Hence, for any continuous test function φ : Rn → R,∫

Rn

φpt = E [φ(X)|Ft] . (15)

The stochastic process on the left-hand side of (15) is a martingale, since it represents
conditional expectations with respect to a non-decreasing family of σ-algebras. In
fact, since p is compactly-supported and continuous, it follows that for any x ∈ Rn,

(pt(x))t≥0 (16)
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is a martingale as well. Recalling that

pt(x) = eθt·x−t|x|2/2−Λt(θt)p(x)

we may apply the Itô formula based on (14) and obtain the evolution equation of the
martingale (16), namely

dpt(x) = ⟨x− at, dBt⟩pt(x). (17)

It follows from (17) that

dat = d

[∫
Rn

xpt(x)dx

]
=

∫
Rn

x⟨x− at, dBt⟩pt(x)dx = AtdBt.

Thus,
d(at ⊗ at) = (AtdBt ⊗ at + at ⊗AtdBt) +A2

tdt

and consequently,

dAt = d

[∫
Rn

(x⊗ x)pt(x)dx

]
− d[at ⊗ at] = (∇3Λt)dBt −A2

tdt.

Hence, for any stopping time τ ,

dAt∧τ = 1{t<τ} ·
[
(∇3Λt)dBt −A2

tdt
]
.

Consequently,

dTrf(At∧τ ) = 1{t<τ} · Tr
[
f ′(At)(∇3Λt)dBt − f ′(At)A

2
tdt+

1

2
Dtdt

]
, (18)

where the Itô term equals

Dt =
n∑

i,j=1

|ξij(t)|2
f ′(λi(t))− f ′(λj(t))

λi(t)− λj(t)
,

thanks to the Daleckii-Krein formula. By taking expectation the dBt term in (18)
vanishes, completing the proof.

Since the measure µ is compactly-supported, there exists R > 0 depending on µ
such that

|ξij(t)| ≤ R for all i, j and t ≥ 0.

It is an instructive exercise to use Lemma 10.4 with f(x) = eβx in order to prove that
for all 0 < t < cµ,

P(λ1(t ∧ τ) ≥ 2) ≤ e−c̃µ/t (19)
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for some constants cµ, c̃µ > 0 depending on the compactly-supported measure µ.

Our next goal is to use Lemma 10.4 and prove a bootstrap estimate for a certain
class of functions considered by Guan [2], which generalizes the class of functions
f(t) = tq (q ≥ 3) considered in Chen [1].

Lemma 10.6. Let D > 1, r ∈ [2, 3], t > 0 and let τ be a stopping time. Suppose
that f : [0,∞) → [0,∞) is a smooth, increasing function such that{

f(x) = x2, ∀x ≥ r

f ′′(x) ≤ D2f(x), ∀x ≥ 0
(20)

Then, for almost any t > 0,

d

dt
E

n∑
i=1

f(λi(t ∧ τ)) ≤ C

(
1

t
+

D2

√
t

)
· E

n∑
i=1

f(λi(t ∧ τ)). (21)

where C > 0 is a universal constant.

Proof. Abbreviate λi = λi(t) and ξij = ξij(t). Since f is positive, by Lemma 10.4
it suffices to prove that

n∑
i,j=1

|ξij|2
f ′(λi)− f ′(λj)

λi − λj

≤ C

(
1

t
+

D2

√
t

)
·

n∑
i=1

f(λi). (22)

Since the probability density pt is t-uniformly log-concave, Lemma 10.1 shows that
for any s > 0 and k = 1, . . . , n,

n∑
i,j=1

ξ2ijk1{λi∨λj≤s} ≤ 4t−1/2s3/2λk. (23)

The bound (22) follows from several applications of (23) as well as from the bound

λi ≤ 1/t

which was discussed in (8).

Step 1. Since ξijk is symmetric in i, j and k, by using (23) with s = λi we see that
n∑

i,j=1

|ξij|21{λi≥r} =
∑
i,j,k

ξ2ijk1{λi≥r} ≤ 3
∑
i

1{λi≥r}
∑
j,k

ξ2ijk1{λj∨λk≤λi} (24)

≤ 12√
t

∑
i

λ
5/2
i 1{λi≥r} ≤

12

t

∑
i

λ2
i 1{λi≥r} ≤

12

t

n∑
i=1

f(λi).
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Step 2. Consider the contribution to the left-hand side of (22) of all i, j with

min{λi, λj} ≥ r. (25)

Since f ′(x) = 2x when x ≥ r, this contribution equals

n∑
i,j=1

f ′(λi)− f ′(λj)

λi − λj

|ξij|21{min(λi,λj)≥r} = 2
∑
i,j

|ξij|21{min(λi,λj)≥r}

≤ 2
∑
i,j

|ξij|21{λi≥r} ≤
24

t
,

where we used (24) in the last passage.

Step 3. Consider the contribution to the left-hand side of (22) of all i, j with

λi ≤ r, λj ≥ r + 1 or λj ≤ r, λi ≥ r + 1. (26)

This contribution equals

2
n∑

i,j=1

f ′(λi)− f ′(λj)

λi − λj

|ξij|21{λi≥r+1}1{λj≤r}

≤
∑
i,j

4λi

λi − λj

|ξij|21{λi≥r+1}1{λj≤r} ≤ 16
∑
i,j

|ξij|21{λi≥r} ≤
16 · 12

t

Here we used that f ′ ≥ 0 as well as the fact that λi/(λi − λj) ≤ r + 1 ≤ 4 when
λj ≤ r and λi ≥ r + 1, and in the last passage we used (24).

Step 4. Let us show that
n∑

i,j=1

|ξij|2f(λi)1{λi∨λj≤r+1} ≤
C√
t

n∑
k=1

f(λk). (27)

Write a∨ b∨ c = max{a, b, c}. By applying (23) with s = r+1, and recalling that
r ≤ 3,

n∑
i,j,k=1

f(λi)ξ
2
ijk1{λi∨λj∨λk≤r+1} (28)

≤ 4√
t

∑
i

f(λi) · (r + 1)3/2λi · 1{λi≤r+1} ≤
47/2√

t

n∑
i=1

f(λi).
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Next, we use that if λi ≤ r + 1 then f(λi) ≤ f(r + 1) = (r + 1)2 ≤ 16 while if
λi ≥ r + 1 then f(λi) = λ2

i . We again apply (23) with s = r + 1 to obtain
n∑

i,j,k=1

f(λi)ξ
2
ijk1{λi∨λj≤r+1≤λk} ≤

C√
t

∑
k

λk1{λk≥r+1} (29)

≤ C ′
√
t

∑
k

λ2
k1{λk≥r+1} ≤

C ′
√
t

n∑
k=1

f(λk).

By adding (28) and (29) we obtain (27).

Step 5. Consider the contribution to the left-hand side of (22) of all i, j with

max{λi, λj} ≤ r + 1. (30)

By using (20) and the fact that f is non-negative and increasing, we see that this
contribution is at most

2
n∑

i,j=1

f ′(λi)− f ′(λj)

λi − λj

|ξij|21{λj≤λi≤r+1} ≤ 4D2
∑
i,j

f(λi)|ξij|21{λj≤λi≤r+1}

≤ C
D2

√
t

n∑
k=1

f(λk),

where we used (27) in the last passage.

The results of Step 2, Step 3 and Step 5 imply the desired bound (22).

It is a calculus exercise to prove that for any r ∈ [2, 3] and D > 1 there exists a
smooth, increasing function f : [0,∞) → (0,∞) with

f(x) =

{
eD(x−r) x ≤ r − 1

D

x2 x ≥ r
(31)

and f ′′(x) ≤ D2f(x) for all x ≥ 0. We denote this function f by fr,D, and observe
that it satisfies condition (20) of From Lemma 10.6. From the conclusion of the lemma
we conclude that for any D > 1, 2 ≤ r ≤ 3 and a stopping time τ , if

0 < t ≤ D−4 (32)

then D2/
√
t ≤ 1/t and hence for f = fr,D

d

dt
E

n∑
i=1

f(λi(t ∧ τ)) ≤ C

t
· E

n∑
i=1

f(λi(t ∧ τ)). (33)
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The function f = fr,D is slightly complicated, and we prefer to reformulate the growth
condition (33) in terms of the much simpler function

gr(x) = x2 · 1{x≥r}.

From (31),
gr ≤ fr,D. (34)

In the other direction, we claim that for any D > 1 and x ≥ 0, if

2 ≤ r +
1

D
≤ r̃ ≤ 3

then
fr̃,D(x) ≤

9

4
gr(x) + exp(−D(r̃ − r)). (35)

Indeed, if x ≤ r then by (31), since r ≤ r̃ − 1/D,

fr̃(x) ≤ fr̃(r) = exp(−D(r̃ − r)),

and (35) holds true in this case. If x ≥ r̃ then both fr̃(x) and gr(x) equal x2, and
(35) trivially holds. In the remaining case r < x < r̃ we have

fr̃(x) ≤ fr̃(r̃) = r̃2 ≤
(
r̃

r

)2

· x2 ≤ 9

4
x2 =

9

4
gr(x),

completing the proof of (35).

Proof of Proposition 10.3. We may assume that t ≤ 2−8 as otherwise there is nothing
to prove. We will set t0 = t and partition the interval [0, t] into intervals

[t1, t0], [t2, t1], . . . , [tk+1, tk], . . .

For k ≥ 0 we define

tk = 2−8kt, Dk = t
−1/4
k , rk = 3−

k−1∑
i=0

t
1/8
i ∈ [2, 3].

Since tk ≤ D−4
k we may use the differential inequality (33) for all s ∈ [tk+1, tk]. By

integrating this differential inequality over this interval, we obtain

E
n∑

i=1

fk(λi(tk ∧ τ)) ≤
(

tk
tk+1

)C

E
n∑

i=1

fk(λi(tk+1 ∧ τ)), (36)
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where fk = frk,Dk
. Set also gk = grk and define

Fk = E
n∑

i=1

fk(λi(tk ∧ τ)) and Gk = E
n∑

i=1

gk(λi(tk ∧ τ)).

Note that rk+1 + 1/Dk ≤ rk+1 + 1/
√
Dk = rk. From (36), as well as the two

inequalities (34) and (35), we obtain for k ≥ 0,

Gk ≤ Fk ≤
(

tk
tk+1

)C

E
n∑

i=1

frk,Dk
(λi(tk+1 ∧ τ))

≤
(

tk
tk+1

)C

E
n∑

i=1

[
9

4
gk+1(λi(tk+1 ∧ τ)) + e−Dk(rk−rk+1)

]
= 28C

(
9

4
Gk+1 + n exp(−t

−1/8
k )

)
≤ C̄

[
Gk+1 + n exp(−2kt−1/8)

]
. (37)

From this recursive inequality we obtain that for k ≥ 0,

G0 ≤ C̄kGk + n ·
k−1∑
i=0

C̄i+1 exp(−2it−1/8) ≤ C̄kGk + C̃n · e−t−1/8

, (38)

since the sum in (38) is at most

k−1∑
i=0

C̄i+1 exp(−2it−1/8) ≤
∞∑
i=0

C̄i+1 exp(−2i − t−1/8) = C̄ · e−t−1/8

.

We next show that C̄kGk −→ 0 as k → ∞. To this end we use (19). Since µ is
compactly-supported, for some Cµ > 0 depending on µ and for a sufficiently large k,

Gk ≤ Cµ · P (λ1(tk ∧ τ) ≥ 2) ≤ C̃µe
−cµ/tk = C̃µe

−cµ·28k/t.

Hence indeed C̄kGk −→ 0 as k → ∞, and from (38),
n∑

i=0

P(λi(t ∧ τ) ≥ 3) ≤ G0 ≤ C̃n · e−t−1/8

.

We end this lecture with an interpretation of our results in the context of the
Prékopa-Leindler inequality. Recall that we write

γs(x) = (2πs)−n/2 exp(−|x|2/(2s))
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for the density of a centered Gaussian random vector of covariance s · Id in Rn. Let
p be an isotropic, log-concave density in Rn and for t > 0 set

qt = p ∗ γ1/t.

By the Prékopa-Leindler inequality, the probability density qt is log-concave, since it
is a convolution of two log-concave probability measures. A straightforward compu-
tation based on (1) shows that

∇2(− log qt)(x) = t2
(
Id

t
− Cov(pt,tx)

)
= t2

(
Id

t
−At(tx)

)
.

Thus the log-concavity of qt amounts to the inequality At ≤ Id/t, which was one of
the starting points of our analysis today. By using the “Option 1” definition of θt, we
see that for t > 0,∫

Rn

∣∣∣∣ Idt − ∇2(− log qt)(x)

t2

∣∣∣∣2 qt(x)dx = E|At|2 ≤ Cn (39)

where | · | is the Hilbert-Schmidt norm, and where the last inequality in (39) follows
from Proposition 10.3. Thus, on a quantitative level, inequality (39) is a refinement of
the Prékopa-Leindler inequality which amounts to the pointwise bound

0 ≤ ∇2(− log qt) ≤ t · Id.

Exercises.

1. Why can we assume that µ is compactly-supported when proving the thin-shell
theorem?

2. prove that for any D > 1 and r ∈ [2, 3] there exists a smooth, increasing
function f : [0,∞) → [0,∞) satisfying (20).

3. Consider the isotropic, log-concave probability density

p(x1, . . . , xn) = 2ne−
∑n

i=1 2|xi|.

(a) Prove that in this case, for any t > 0 the matrix At is diagonal and its
diagonal entries are independent and identically-distributed. Write Zt for
the (1, 1)-entry of At, and explain that its law does not depend on n.

(b) Prove that the support of the random variable Zt is not uniformly bounded
for all t ∈ (0, 1).
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(c) Prove that if x > 0 is such that P(Zt ≥ x) ≥ 1/n, then E∥At∥op ≥ x/2.
(d) Conclude that sup0<t<1 E∥At∥op ≥ αn, for some sequence αn −→ ∞.

4. Assume that µ is isotropic, compactly-supported probability measure in Rn.

(a) Use Lemma 10.4 and show that there exists R = Rµ > 0 such that for
a convex, smooth, increasing function f : [0,∞) → R, and almost all
t > 0,

d

dt
E

n∑
i=1

f(λi(t)) ≤ R
n∑

i,j=1

Ef ′′(λi(t)).

(b) For β > 0 and t > 0 define

Fβ,t =
1

β
logE

n∑
i=1

eβλi(t).

Prove that
Fβ,t ≤ tRβ +

log n

β
+ 1.

(c) Write p = P(λ1(t) ≥ 2). Prove that for β ≥ 2 log n,

log p ≤ tRβ2 − β

2
.

Set β = 1/(4tR) and conclude that for a sufficiently small t > 0,

P(λ1(t) ≥ 2) ≤ exp(−cµ/t)

for some cµ > 0 depending on µ.

References
[1] Chen, Y., An almost constant lower bound of the isoperimetric coefficient in the

KLS conjecture. Geom. Funct. Anal. (GAFA), Vol. 31, no. 1, (2021), 34–61.

[2] Guan, Q., A note on Bourgain’s slicing problem. arXiv:2412.09075

[3] Guan, Q., On tail probability of the covariance matrix in Eldan’s stochastic lo-
calization. arXiv:2508.14943

[4] Klartag, B., Lehec, J., Thin-shell bounds via parallel coupling.
arXiv:2507.15495

December 10, 2025

14


