

Lecture 10: The covariance process of stochastic localization

In this lecture we complete the proof of the thin-shell theorem. Let μ be an isotropic, log-concave probability measure in \mathbb{R}^n with density p . It is an exercise to show that for proving the thin-shell theorem we may approximate μ and assume that p is continuous and compactly-supported.

Recall that for $t \geq 0$ and $y \in \mathbb{R}^n$ we consider the probability density

$$p_{t,y}(x) = e^{y \cdot x - t|x|^2/2 - \Lambda_t(y)} p(x) \quad (x \in \mathbb{R}^n) \quad (1)$$

where

$$\Lambda_t(y) = \log \int_{\mathbb{R}^n} e^{y \cdot x - t|x|^2/2} p(x) dx$$

is a normalizing factor. The barycenter and covariance of $p_{t,y}$ are given by

$$a_t(y) = \nabla \Lambda_t(y) = \int_{\mathbb{R}^n} x p_{t,y}(x) dx \in \mathbb{R}^n$$

and

$$A_t(y) = \nabla^2 \Lambda_t(y) = \text{Cov}(p_{t,y}) \in \mathbb{R}^{n \times n}.$$

We would also need the symmetric 3-tensor

$$\nabla^3 \Lambda_t(y) = \int_{\mathbb{R}^n} (x - a_t(y))^{\otimes 3} p_{t,y}(x) dx \in \mathbb{R}^{n \times n \times n}.$$

Recall that $p_{t,y}$ is t -uniformly log-concave, i.e., $\nabla^2(-\log p_{t,y}) \geq t \cdot \text{Id}$ for almost every $y \in \mathbb{R}^n$. The main advantage of t -uniform log-concavity is the possibility to apply the improved Lichnerowicz inequality. It would help us bound the tensor $\nabla^3 \Lambda_t(y)$ of third moments of p_t . In fact, one of our main proof ingredients is the following:

Lemma 10.1. *Let $t > 0$ and suppose that X is a centered, t -uniformly log-concave random vector in \mathbb{R}^n . Let $\lambda_1, \dots, \lambda_n \geq 0$ be the eigenvalues of $\text{Cov}(X)$ and let $u_1, \dots, u_n \in \mathbb{R}^n$ be a corresponding orthonormal basis of eigenvectors. Abbreviate $X_i = \langle X, u_i \rangle$. Then for $1 \leq k \leq n$ and $s > 0$,*

$$\sum_{i,j=1}^n (\mathbb{E} X_i X_j X_k)^2 \mathbf{1}_{\{\lambda_i \vee \lambda_j \leq s\}} \leq 4t^{-1/2} s^{3/2} \lambda_k, \quad (2)$$

where $a \vee b = \max\{a, b\}$, i.e., in (2) we only sum over i, j with $\max\{\lambda_i, \lambda_j\} \leq s$.

Proof. Write $E \subseteq \mathbb{R}^n$ for the subspace spanned by the vectors u_i for which $\lambda_i \leq s$. Let $Proj_E$ be the orthogonal projection operator onto E in \mathbb{R}^n . Denote

$$Y = Proj_E X.$$

It follows from the Prékopa-Leindler inequality that Y is also t -uniformly log-concave, and

$$\|\text{Cov}(Y)\|_{op} \leq s.$$

The improved log-concave Lichnerowicz inequality thus implies that the Poincaré constant of Y , denoted by $C_P(Y)$, satisfies

$$C_P(Y) \leq \sqrt{\frac{s}{t}}. \quad (3)$$

Set

$$H = \mathbb{E}[X_k Y \otimes Y] \in \mathbb{R}^{n \times n}.$$

By the definition of the subspace E ,

$$\sum_{i,j=1}^n (\mathbb{E} X_i X_j X_k)^2 \mathbf{1}_{\{\lambda_i \vee \lambda_j \leq s\}} = \text{Tr}(H^2) \quad (4)$$

Moreover, by using (3) and the Poincaré inequality,

$$\begin{aligned} \text{Var}(\langle HY, Y \rangle) &\leq C_P(Y) \cdot \mathbb{E}|2HY|^2 \leq 4t^{-1/2}s^{1/2} \cdot \text{Tr}(H^2 \text{Cov}(Y)) \\ &\leq 4t^{-1/2}s^{3/2} \cdot \text{Tr}H^2. \end{aligned} \quad (5)$$

On the other hand, since $\mathbb{E} X_k = 0$, the Cauchy-Schwarz inequality shows that

$$\begin{aligned} \text{Tr}(H^2) &= \mathbb{E} X_k \langle HY, Y \rangle \leq (\mathbb{E} X_k^2)^{1/2} \cdot (\text{Var} \langle HY, Y \rangle)^{1/2} \\ &= \lambda_k^{1/2} \cdot \sqrt{\text{Var} \langle HY, Y \rangle}. \end{aligned} \quad (6)$$

From (5) and (6),

$$\sqrt{\text{Var} \langle HY, Y \rangle} \leq 4t^{-1/2}s^{3/2}\lambda_k^{1/2}. \quad (7)$$

The conclusion of the lemma follows from (4), (6) and (7). \square

Let $(W_t)_{t \geq 0}$ be a standard Brownian motion in \mathbb{R}^n with $W_0 = 0$. Consider the stochastic process $(\theta_t)_{t \geq 0}$ from the last lecture, for whose definition we offer two alternatives:

1. The first option is to introduce a random vector X in \mathbb{R}^n with law μ , independent of the Brownian motion $(W_t)_{t \geq 0}$, and set

$$\theta_t = tX + W_t.$$

2. The second option is to uniquely define $(\theta_t)_{t \geq 0}$ via the integral equation

$$\theta_t = W_t + \int_0^t a_s(\theta_s) ds.$$

The two options coincide in law, as we have seen last week. Write \mathcal{F}_t for the σ -algebra generated by $(\theta_s)_{0 \leq s \leq t}$. When we say that τ is a *stopping time* we mean that for any $t > 0$, the event $\{\tau \leq t\}$ is measurable with respect to \mathcal{F}_t . Denote

$$p_t = p_{t, \theta_t}, \quad a_t = a_t(\theta_t), \quad A_t = A_t(\theta_t), \quad \Lambda_t = \Lambda_t(\theta_t)$$

and write

$$\frac{1}{t} \geq \lambda_1(t) \geq \lambda_2(t) \geq \dots \geq \lambda_n(t) > 0 \quad (8)$$

for the eigenvalues of the covariance matrix A_t , repeated according to their multiplicity. Since μ is isotropic, at $t = 0$ we have $A_0 = \text{Id}$ and hence

$$\lambda_1(0) = \lambda_2(0) = \dots = \lambda_n(0) = 1.$$

For any k , the eigenvalue $\lambda_k(t)$ equals 1 at time $t = 0$, and it is smaller than 1 at any time $t > 1$. In the interval $(0, 1)$, however, the eigenvalue $\lambda_1(t)$ is typically very large, see the example in the exercise below. In view of Corollary 9.10 from last week, the missing ingredient in the proof of the thin-shell theorem along the lines of [4] is the following:

Proposition 10.2. *We have*

$$\sum_{k=1}^n \mathbb{E} \exp \left(2 \int_0^1 \lambda_k(t) dt \right) \leq Cn,$$

where $C > 0$ is a universal constant.

The proof of Proposition 10.2 relies on the following proposition, which is a straightforward variant of a recent breakthrough bound by Guan [2].

Proposition 10.3. *For any $t > 0$ and any stopping time τ ,*

$$\frac{1}{n} \sum_{k=1}^n \mathbb{P}(\lambda_k(t \wedge \tau) \geq 3) \leq Ce^{-1/t^\alpha},$$

where $a \wedge b = \min\{a, b\}$ and where $C, \alpha > 0$ are universal constants.

It is conceivable that $\alpha = 1$ in Proposition 10.3, see [3]. Proposition 10.3 tells us that while a single eigenvalue may explode at some time $t \in (0, 1)$, it is unlikely that many eigenvalues are simultaneously large.

Proof of Proposition 10.2 assuming Proposition 10.3. For $k = 1, \dots, n$ consider the stopping time

$$\tau_k = \inf \{t > 0 ; \lambda_k(t) \geq 3\}.$$

For any fixed $t > 0$ and $i = 1, \dots, k$, under the event $\tau_k \leq t$ we have

$$\lambda_i(t \wedge \tau_k) \geq \lambda_k(t \wedge \tau_k) \geq 3.$$

Hence, for $i = 1, \dots, k$,

$$\mathbb{P}(\tau_k \leq t) \leq \mathbb{P}(\lambda_i(t \wedge \tau_k) \geq 3).$$

By adding these k inequalities and using Proposition 10.3, for any $t > 0$,

$$\begin{aligned} \mathbb{P}(\tau_k \leq t) &\leq \frac{1}{k} \sum_{i=1}^k \mathbb{P}(\lambda_i(t \wedge \tau_k) \geq 3) \leq \frac{1}{k} \sum_{i=1}^n \mathbb{P}(\lambda_i(t \wedge \tau_k) \geq 3) \\ &\leq C \frac{n}{k} \exp(-1/t^\alpha). \end{aligned} \tag{9}$$

Recall that $\alpha > 0$ is a universal constant. It follows from (9) that

$$\mathbb{E}\tau_k^{-2} \leq C \left(1 + \log \frac{n}{k}\right)^{2/\alpha}. \tag{10}$$

Indeed, in view of (9) inequality (10) clearly holds if $k \geq n/2$. For $k < n/2$ we obtain from (39) that for $s \geq 2^{2/\alpha}$,

$$\mathbb{P}\left(\frac{\tau_k^{-2}}{(\log \frac{n}{k})^{2/\alpha}} \geq s\right) \leq C \frac{n}{k} \exp(-s^{\alpha/2} \cdot \log \frac{n}{k}) = C \left(\frac{n}{k}\right)^{1-s^{\alpha/2}} \leq C e^{-\tilde{c}s^{\alpha/2}}.$$

By integrating over $2^{2/\alpha} \leq s < \infty$ we obtain (10). Consequently, since $\lambda_k(t) \leq 1/t$,

$$\int_0^1 \lambda_k(t) dt \leq 3(\tau_k \wedge 1) + \int_{\tau_k \wedge 1}^1 \frac{dt}{t} \leq 3 - \log(\tau_k \wedge 1). \tag{11}$$

Therefore, by (10) and (11),

$$\begin{aligned} \mathbb{E} \sum_{k=1}^n \exp\left(2 \int_0^1 \lambda_k(t) dt\right) &\leq e^6 \cdot \mathbb{E} \sum_{k=1}^n \mathbb{E}[\tau_k^{-2} \vee 1] \leq C \sum_{k=1}^n \mathbb{E}[\tau_k^{-2} + 1] \\ &\leq Cn \cdot \frac{1}{n} \sum_{k=1}^n \left(1 + \log \frac{n}{k}\right)^{2/\alpha} \leq \tilde{C}n, \end{aligned} \tag{12}$$

where the last passage follows from the fact that the function $(1 + \log(1/x))^{2/\alpha}$ is monotone and integrable in $[0, 1]$, and the Riemann sum in (12) may be bounded by the integral. \square

The proof of Proposition 10.3 requires rather elaborate analysis of the time evolution of the eigenvalues of the covariance matrix A_t . Write

$$\xi_{ij}(t) = (\xi_{ij1}(t), \xi_{ij2}(t), \dots, \xi_{ijn}(t)) \in \mathbb{R}^n$$

where

$$\xi_{ijk}(t) = \int_{\mathbb{R}^n} \langle x - a_t, u_i \rangle \cdot \langle x - a_t, u_j \rangle \cdot \langle x - a_t, u_k \rangle p_t(x) dx \in \mathbb{R},$$

with $u_1(t), \dots, u_n(t) \in \mathbb{R}^n$ being any orthonormal basis of eigenvectors of A_t corresponding to the eigenvalues $\lambda_1(t) \geq \dots \geq \lambda_n(t)$. Let us fix a stopping time τ .

Lemma 10.4. *For any smooth, increasing function $f : [0, \infty) \rightarrow \mathbb{R}$ and almost any $t > 0$,*

$$\frac{d}{dt} \mathbb{E} \sum_{i=1}^n f(\lambda_i(t \wedge \tau)) \leq \frac{1}{2} \sum_{i,j=1}^n \mathbb{E} \left[|\xi_{ij}(t)|^2 \frac{f'(\lambda_i(t)) - f'(\lambda_j(t))}{\lambda_i(t) - \lambda_j(t)} \cdot 1_{\{t < \tau\}} \right], \quad (13)$$

where we interpret the quotient by continuity as $f''(\lambda_i(t))$ when $\lambda_i(t) = \lambda_j(t)$. Moreover, the function that is differentiated on the left-hand side of (13) is absolutely continuous in $t \in [0, \infty)$.

The expression in the right-hand side of (13) is reminiscent of the Daleckii-Krein formula for the second derivative of matrix functions. For a function $f : \mathbb{R} \rightarrow \mathbb{R}$ and a symmetric matrix A whose spectral decomposition is

$$A = \sum_{i=1}^n \lambda_i u_i \otimes u_i$$

for numbers $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ and an orthonormal basis $u_1, \dots, u_n \in \mathbb{R}^n$ we write

$$f(A) = \sum_{i=1}^n f(\lambda_i) u_i \otimes u_i.$$

The Daleckii-Krein formula states that for any two symmetric matrices $A, H \in \mathbb{R}^{n \times n}$, as $\varepsilon \rightarrow 0$,

$$\mathrm{Tr} f(A + \varepsilon H) = \mathrm{Tr} f(A) + \varepsilon \cdot \mathrm{Tr}[f'(A)H] + \frac{\varepsilon^2}{2} \cdot \mathrm{Tr}[(B \circ H)H] + o(\varepsilon^2)$$

where \circ is the Schur product or Hadamard product (i.e., entry-wise product), and

$$B = \sum_{i,j=1}^n \frac{f'(\lambda_i) - f'(\lambda_j)}{\lambda_i - \lambda_j} u_i \otimes u_j.$$

For $v = (v_1, \dots, v_n) \in \mathbb{R}^n$ we write $(\nabla^3 \Lambda_t)v \in \mathbb{R}^{n \times n}$ for the symmetric matrix whose i, j entry is

$$[(\nabla^3 \Lambda_t)v]_{ij} = \sum_{k=1}^n \Lambda_{t,ijk} v_k$$

where $\Lambda_t = (\Lambda_{t,ijk})_{i,j,k=1,\dots,n}$. Lemma 10.4 follows from the following identity:

Lemma 10.5. *For any smooth function $f : [0, \infty) \rightarrow \mathbb{R}$ and almost any $t > 0$,*

$$\begin{aligned} \frac{d}{dt} \mathbb{E} \sum_{i=1}^n f(\lambda_i(t \wedge \tau)) &= \frac{1}{2} \sum_{i,j=1}^n \mathbb{E} \left[|\xi_{ij}(t)|^2 \frac{f'(\lambda_i(t)) - f'(\lambda_j(t))}{\lambda_i(t) - \lambda_j(t)} \cdot 1_{\{t < \tau\}} \right] \\ &\quad - \mathbb{E} \left[\sum_{i=1}^n \lambda_i^2(t) f'(\lambda_i(t)) \cdot 1_{\{t < \tau\}} \right]. \end{aligned}$$

Moreover, the function that is differentiated is absolutely-continuous in $t \in [0, +\infty)$.

Proof. We will prove this lemma by using Itô calculus and the “first option” above for the definition of $(\theta_t)_{t \geq 0}$, i.e.,

$$\theta_t = tX + W_t.$$

Recall from last week that for some Brownian motion $(B_t)_{t \geq 0}$ we have

$$d\theta_t = dB_t + a_t dt \tag{14}$$

and that

$$p_t = p_{t, \theta_t}$$

is the conditional law of X given $(\theta_s)_{0 \leq s \leq t}$. Recall that \mathcal{F}_t is the σ -algebra generated by $(\theta_s)_{0 \leq s \leq t}$. Hence, for any continuous test function $\varphi : \mathbb{R}^n \rightarrow \mathbb{R}$,

$$\int_{\mathbb{R}^n} \varphi p_t = \mathbb{E} [\varphi(X) | \mathcal{F}_t]. \tag{15}$$

The stochastic process on the left-hand side of (15) is a martingale, since it represents conditional expectations with respect to a non-decreasing family of σ -algebras. In fact, since p is compactly-supported and continuous, it follows that for any $x \in \mathbb{R}^n$,

$$(p_t(x))_{t \geq 0} \tag{16}$$

is a martingale as well. Recalling that

$$p_t(x) = e^{\theta_t \cdot x - t|x|^2/2 - \Lambda_t(\theta_t)} p(x)$$

we may apply the Itô formula based on (14) and obtain the evolution equation of the martingale (16), namely

$$dp_t(x) = \langle x - a_t, dB_t \rangle p_t(x). \quad (17)$$

It follows from (17) that

$$da_t = d \left[\int_{\mathbb{R}^n} x p_t(x) dx \right] = \int_{\mathbb{R}^n} x \langle x - a_t, dB_t \rangle p_t(x) dx = A_t dB_t.$$

Thus,

$$d(a_t \otimes a_t) = (A_t dB_t \otimes a_t + a_t \otimes A_t dB_t) + A_t^2 dt$$

and consequently,

$$dA_t = d \left[\int_{\mathbb{R}^n} (x \otimes x) p_t(x) dx \right] - d[a_t \otimes a_t] = (\nabla^3 \Lambda_t) dB_t - A_t^2 dt.$$

Hence, for any stopping time τ ,

$$dA_{t \wedge \tau} = 1_{\{t < \tau\}} \cdot [(\nabla^3 \Lambda_t) dB_t - A_t^2 dt].$$

Consequently,

$$d\text{Tr}f(A_{t \wedge \tau}) = 1_{\{t < \tau\}} \cdot \text{Tr} \left[f'(A_t)(\nabla^3 \Lambda_t) dB_t - f'(A_t)A_t^2 dt + \frac{1}{2} D_t dt \right], \quad (18)$$

where the Itô term equals

$$D_t = \sum_{i,j=1}^n |\xi_{ij}(t)|^2 \frac{f'(\lambda_i(t)) - f'(\lambda_j(t))}{\lambda_i(t) - \lambda_j(t)},$$

thanks to the Daleckii-Krein formula. By taking expectation the dB_t term in (18) vanishes, completing the proof. \square

Since the measure μ is compactly-supported, there exists $R > 0$ depending on μ such that

$$|\xi_{ij}(t)| \leq R \quad \text{for all } i, j \text{ and } t \geq 0.$$

It is an instructive exercise to use Lemma 10.4 with $f(x) = e^{\beta x}$ in order to prove that for all $0 < t < c_\mu$,

$$\mathbb{P}(\lambda_1(t \wedge \tau) \geq 2) \leq e^{-\tilde{c}_\mu/t} \quad (19)$$

for some constants $c_\mu, \tilde{c}_\mu > 0$ depending on the compactly-supported measure μ .

Our next goal is to use Lemma 10.4 and prove a bootstrap estimate for a certain class of functions considered by Guan [2], which generalizes the class of functions $f(t) = t^q$ ($q \geq 3$) considered in Chen [1].

Lemma 10.6. *Let $D > 1, r \in [2, 3], t > 0$ and let τ be a stopping time. Suppose that $f : [0, \infty) \rightarrow [0, \infty)$ is a smooth, increasing function such that*

$$\begin{cases} f(x) = x^2, & \forall x \geq r \\ f''(x) \leq D^2 f(x), & \forall x \geq 0 \end{cases} \quad (20)$$

Then, for almost any $t > 0$,

$$\frac{d}{dt} \mathbb{E} \sum_{i=1}^n f(\lambda_i(t \wedge \tau)) \leq C \left(\frac{1}{t} + \frac{D^2}{\sqrt{t}} \right) \cdot \mathbb{E} \sum_{i=1}^n f(\lambda_i(t \wedge \tau)). \quad (21)$$

where $C > 0$ is a universal constant.

Proof. Abbreviate $\lambda_i = \lambda_i(t)$ and $\xi_{ij} = \xi_{ij}(t)$. Since f is positive, by Lemma 10.4 it suffices to prove that

$$\sum_{i,j=1}^n |\xi_{ij}|^2 \frac{f'(\lambda_i) - f'(\lambda_j)}{\lambda_i - \lambda_j} \leq C \left(\frac{1}{t} + \frac{D^2}{\sqrt{t}} \right) \cdot \sum_{i=1}^n f(\lambda_i). \quad (22)$$

Since the probability density p_t is t -uniformly log-concave, Lemma 10.1 shows that for any $s > 0$ and $k = 1, \dots, n$,

$$\sum_{i,j=1}^n \xi_{ijk}^2 1_{\{\lambda_i \vee \lambda_j \leq s\}} \leq 4t^{-1/2} s^{3/2} \lambda_k. \quad (23)$$

The bound (22) follows from several applications of (23) as well as from the bound

$$\lambda_i \leq 1/t$$

which was discussed in (8).

Step 1. Since ξ_{ijk} is symmetric in i, j and k , by using (23) with $s = \lambda_i$ we see that

$$\begin{aligned} \sum_{i,j=1}^n |\xi_{ij}|^2 1_{\{\lambda_i \geq r\}} &= \sum_{i,j,k} \xi_{ijk}^2 1_{\{\lambda_i \geq r\}} \leq 3 \sum_i 1_{\{\lambda_i \geq r\}} \sum_{j,k} \xi_{ijk}^2 1_{\{\lambda_j \vee \lambda_k \leq \lambda_i\}} \\ &\leq \frac{12}{\sqrt{t}} \sum_i \lambda_i^{5/2} 1_{\{\lambda_i \geq r\}} \leq \frac{12}{t} \sum_i \lambda_i^2 1_{\{\lambda_i \geq r\}} \leq \frac{12}{t} \sum_{i=1}^n f(\lambda_i). \end{aligned} \quad (24)$$

Step 2. Consider the contribution to the left-hand side of (22) of all i, j with

$$\min\{\lambda_i, \lambda_j\} \geq r. \quad (25)$$

Since $f'(x) = 2x$ when $x \geq r$, this contribution equals

$$\begin{aligned} \sum_{i,j=1}^n \frac{f'(\lambda_i) - f'(\lambda_j)}{\lambda_i - \lambda_j} |\xi_{ij}|^2 1_{\{\min(\lambda_i, \lambda_j) \geq r\}} &= 2 \sum_{i,j} |\xi_{ij}|^2 1_{\{\min(\lambda_i, \lambda_j) \geq r\}} \\ &\leq 2 \sum_{i,j} |\xi_{ij}|^2 1_{\{\lambda_i \geq r\}} \leq \frac{24}{t}, \end{aligned}$$

where we used (24) in the last passage.

Step 3. Consider the contribution to the left-hand side of (22) of all i, j with

$$\lambda_i \leq r, \lambda_j \geq r+1 \quad \text{or} \quad \lambda_j \leq r, \lambda_i \geq r+1. \quad (26)$$

This contribution equals

$$\begin{aligned} 2 \sum_{i,j=1}^n \frac{f'(\lambda_i) - f'(\lambda_j)}{\lambda_i - \lambda_j} |\xi_{ij}|^2 1_{\{\lambda_i \geq r+1\}} 1_{\{\lambda_j \leq r\}} \\ \leq \sum_{i,j} \frac{4\lambda_i}{\lambda_i - \lambda_j} |\xi_{ij}|^2 1_{\{\lambda_i \geq r+1\}} 1_{\{\lambda_j \leq r\}} \leq 16 \sum_{i,j} |\xi_{ij}|^2 1_{\{\lambda_i \geq r\}} \leq \frac{16 \cdot 12}{t} \end{aligned}$$

Here we used that $f' \geq 0$ as well as the fact that $\lambda_i/(\lambda_i - \lambda_j) \leq r+1 \leq 4$ when $\lambda_j \leq r$ and $\lambda_i \geq r+1$, and in the last passage we used (24).

Step 4. Let us show that

$$\sum_{i,j=1}^n |\xi_{ij}|^2 f(\lambda_i) 1_{\{\lambda_i \vee \lambda_j \leq r+1\}} \leq \frac{C}{\sqrt{t}} \sum_{k=1}^n f(\lambda_k). \quad (27)$$

Write $a \vee b \vee c = \max\{a, b, c\}$. By applying (23) with $s = r+1$, and recalling that $r \leq 3$,

$$\begin{aligned} \sum_{i,j,k=1}^n f(\lambda_i) \xi_{ijk}^2 1_{\{\lambda_i \vee \lambda_j \vee \lambda_k \leq r+1\}} \\ \leq \frac{4}{\sqrt{t}} \sum_i f(\lambda_i) \cdot (r+1)^{3/2} \lambda_i \cdot 1_{\{\lambda_i \leq r+1\}} \leq \frac{4^{7/2}}{\sqrt{t}} \sum_{i=1}^n f(\lambda_i). \end{aligned} \quad (28)$$

Next, we use that if $\lambda_i \leq r + 1$ then $f(\lambda_i) \leq f(r + 1) = (r + 1)^2 \leq 16$ while if $\lambda_i \geq r + 1$ then $f(\lambda_i) = \lambda_i^2$. We again apply (23) with $s = r + 1$ to obtain

$$\begin{aligned} \sum_{i,j,k=1}^n f(\lambda_i) \xi_{ijk}^2 1_{\{\lambda_i \vee \lambda_j \leq r + 1 \leq \lambda_k\}} &\leq \frac{C}{\sqrt{t}} \sum_k \lambda_k 1_{\{\lambda_k \geq r + 1\}} \\ &\leq \frac{C'}{\sqrt{t}} \sum_k \lambda_k^2 1_{\{\lambda_k \geq r + 1\}} \leq \frac{C'}{\sqrt{t}} \sum_{k=1}^n f(\lambda_k). \end{aligned} \quad (29)$$

By adding (28) and (29) we obtain (27).

Step 5. Consider the contribution to the left-hand side of (22) of all i, j with

$$\max\{\lambda_i, \lambda_j\} \leq r + 1. \quad (30)$$

By using (20) and the fact that f is non-negative and increasing, we see that this contribution is at most

$$\begin{aligned} 2 \sum_{i,j=1}^n \frac{f'(\lambda_i) - f'(\lambda_j)}{\lambda_i - \lambda_j} |\xi_{ij}|^2 1_{\{\lambda_j \leq \lambda_i \leq r + 1\}} &\leq 4D^2 \sum_{i,j} f(\lambda_i) |\xi_{ij}|^2 1_{\{\lambda_j \leq \lambda_i \leq r + 1\}} \\ &\leq C \frac{D^2}{\sqrt{t}} \sum_{k=1}^n f(\lambda_k), \end{aligned}$$

where we used (27) in the last passage.

The results of Step 2, Step 3 and Step 5 imply the desired bound (22). \square

It is a calculus exercise to prove that for any $r \in [2, 3]$ and $D > 1$ there exists a smooth, increasing function $f : [0, \infty) \rightarrow (0, \infty)$ with

$$f(x) = \begin{cases} e^{D(x-r)} & x \leq r - \frac{1}{D} \\ x^2 & x \geq r \end{cases} \quad (31)$$

and $f''(x) \leq D^2 f(x)$ for all $x \geq 0$. We denote this function f by $f_{r,D}$, and observe that it satisfies condition (20) of From Lemma 10.6. From the conclusion of the lemma we conclude that for any $D > 1$, $2 \leq r \leq 3$ and a stopping time τ , if

$$0 < t \leq D^{-4} \quad (32)$$

then $D^2/\sqrt{t} \leq 1/t$ and hence for $f = f_{r,D}$

$$\frac{d}{dt} \mathbb{E} \sum_{i=1}^n f(\lambda_i(t \wedge \tau)) \leq \frac{C}{t} \cdot \mathbb{E} \sum_{i=1}^n f(\lambda_i(t \wedge \tau)). \quad (33)$$

The function $f = f_{r,D}$ is slightly complicated, and we prefer to reformulate the growth condition (33) in terms of the much simpler function

$$g_r(x) = x^2 \cdot 1_{\{x \geq r\}}.$$

From (31),

$$g_r \leq f_{r,D}. \quad (34)$$

In the other direction, we claim that for any $D > 1$ and $x \geq 0$, if

$$2 \leq r + \frac{1}{D} \leq \tilde{r} \leq 3$$

then

$$f_{\tilde{r},D}(x) \leq \frac{9}{4}g_r(x) + \exp(-D(\tilde{r} - r)). \quad (35)$$

Indeed, if $x \leq r$ then by (31), since $r \leq \tilde{r} - 1/D$,

$$f_{\tilde{r}}(x) \leq f_{\tilde{r}}(r) = \exp(-D(\tilde{r} - r)),$$

and (35) holds true in this case. If $x \geq \tilde{r}$ then both $f_{\tilde{r}}(x)$ and $g_r(x)$ equal x^2 , and (35) trivially holds. In the remaining case $r < x < \tilde{r}$ we have

$$f_{\tilde{r}}(x) \leq f_{\tilde{r}}(\tilde{r}) = \tilde{r}^2 \leq \left(\frac{\tilde{r}}{r}\right)^2 \cdot x^2 \leq \frac{9}{4}x^2 = \frac{9}{4}g_r(x),$$

completing the proof of (35).

Proof of Proposition 10.3. We may assume that $t \leq 2^{-8}$ as otherwise there is nothing to prove. We will set $t_0 = t$ and partition the interval $[0, t]$ into intervals

$$[t_1, t_0], [t_2, t_1], \dots, [t_{k+1}, t_k], \dots$$

For $k \geq 0$ we define

$$t_k = 2^{-8k}t, \quad D_k = t_k^{-1/4}, \quad r_k = 3 - \sum_{i=0}^{k-1} t_i^{1/8} \in [2, 3].$$

Since $t_k \leq D_k^{-4}$ we may use the differential inequality (33) for all $s \in [t_{k+1}, t_k]$. By integrating this differential inequality over this interval, we obtain

$$\mathbb{E} \sum_{i=1}^n f_k(\lambda_i(t_k \wedge \tau)) \leq \left(\frac{t_k}{t_{k+1}}\right)^C \mathbb{E} \sum_{i=1}^n f_k(\lambda_i(t_{k+1} \wedge \tau)), \quad (36)$$

where $f_k = f_{r_k, D_k}$. Set also $g_k = g_{r_k}$ and define

$$F_k = \mathbb{E} \sum_{i=1}^n f_k(\lambda_i(t_k \wedge \tau)) \quad \text{and} \quad G_k = \mathbb{E} \sum_{i=1}^n g_k(\lambda_i(t_k \wedge \tau)).$$

Note that $r_{k+1} + 1/D_k \leq r_{k+1} + 1/\sqrt{D_k} = r_k$. From (36), as well as the two inequalities (34) and (35), we obtain for $k \geq 0$,

$$\begin{aligned} G_k &\leq F_k \leq \left(\frac{t_k}{t_{k+1}} \right)^C \mathbb{E} \sum_{i=1}^n f_{r_k, D_k}(\lambda_i(t_{k+1} \wedge \tau)) \\ &\leq \left(\frac{t_k}{t_{k+1}} \right)^C \mathbb{E} \sum_{i=1}^n \left[\frac{9}{4} g_{k+1}(\lambda_i(t_{k+1} \wedge \tau)) + e^{-D_k(r_k - r_{k+1})} \right] \\ &= 2^{8C} \left(\frac{9}{4} G_{k+1} + n \exp(-t_k^{-1/8}) \right) \leq \bar{C} \left[G_{k+1} + n \exp(-2^k t^{-1/8}) \right]. \end{aligned} \quad (37)$$

From this recursive inequality we obtain that for $k \geq 0$,

$$G_0 \leq \bar{C}^k G_k + n \cdot \sum_{i=0}^{k-1} \bar{C}^{i+1} \exp(-2^i t^{-1/8}) \leq \bar{C}^k G_k + \tilde{C} n \cdot e^{-t^{-1/8}}, \quad (38)$$

since the sum in (38) is at most

$$\sum_{i=0}^{k-1} \bar{C}^{i+1} \exp(-2^i t^{-1/8}) \leq \sum_{i=0}^{\infty} \bar{C}^{i+1} \exp(-2^i t^{-1/8}) = \bar{C} \cdot e^{-t^{-1/8}}.$$

We next show that $\bar{C}^k G_k \rightarrow 0$ as $k \rightarrow \infty$. To this end we use (19). Since μ is compactly-supported, for some $C_\mu > 0$ depending on μ and for a sufficiently large k ,

$$G_k \leq C_\mu \cdot \mathbb{P}(\lambda_1(t_k \wedge \tau) \geq 2) \leq \tilde{C}_\mu e^{-c_\mu/t_k} = \tilde{C}_\mu e^{-c_\mu \cdot 2^{8k}/t}.$$

Hence indeed $\bar{C}^k G_k \rightarrow 0$ as $k \rightarrow \infty$, and from (38),

$$\sum_{i=0}^n \mathbb{P}(\lambda_i(t \wedge \tau) \geq 3) \leq G_0 \leq \tilde{C} n \cdot e^{-t^{-1/8}}.$$

□

We end this lecture with an interpretation of our results in the context of the Prékopa-Leindler inequality. Recall that we write

$$\gamma_s(x) = (2\pi s)^{-n/2} \exp(-|x|^2/(2s))$$

for the density of a centered Gaussian random vector of covariance $s \cdot \text{Id}$ in \mathbb{R}^n . Let p be an isotropic, log-concave density in \mathbb{R}^n and for $t > 0$ set

$$q_t = p * \gamma_{1/t}.$$

By the Prékopa-Leindler inequality, the probability density q_t is log-concave, since it is a convolution of two log-concave probability measures. A straightforward computation based on (1) shows that

$$\nabla^2(-\log q_t)(x) = t^2 \left(\frac{\text{Id}}{t} - \text{Cov}(p_{t,tx}) \right) = t^2 \left(\frac{\text{Id}}{t} - A_t(tx) \right).$$

Thus the log-concavity of q_t amounts to the inequality $A_t \leq \text{Id}/t$, which was one of the starting points of our analysis today. By using the “Option 1” definition of θ_t , we see that for $t > 0$,

$$\int_{\mathbb{R}^n} \left| \frac{\text{Id}}{t} - \frac{\nabla^2(-\log q_t)(x)}{t^2} \right|^2 q_t(x) dx = \mathbb{E}|A_t|^2 \leq Cn \quad (39)$$

where $|\cdot|$ is the Hilbert-Schmidt norm, and where the last inequality in (39) follows from Proposition 10.3. Thus, on a quantitative level, inequality (39) is a refinement of the Prékopa-Leindler inequality which amounts to the pointwise bound

$$0 \leq \nabla^2(-\log q_t) \leq t \cdot \text{Id}.$$

Exercises.

1. Why can we assume that μ is compactly-supported when proving the thin-shell theorem?
2. prove that for any $D > 1$ and $r \in [2, 3]$ there exists a smooth, increasing function $f : [0, \infty) \rightarrow [0, \infty)$ satisfying (20).
3. Consider the isotropic, log-concave probability density

$$p(x_1, \dots, x_n) = 2^n e^{-\sum_{i=1}^n 2|x_i|}.$$

- (a) Prove that in this case, for any $t > 0$ the matrix A_t is diagonal and its diagonal entries are independent and identically-distributed. Write Z_t for the $(1, 1)$ -entry of A_t , and explain that its law does not depend on n .
- (b) Prove that the support of the random variable Z_t is *not* uniformly bounded for all $t \in (0, 1)$.

(c) Prove that if $x > 0$ is such that $\mathbb{P}(Z_t \geq x) \geq 1/n$, then $\mathbb{E}\|A_t\|_{op} \geq x/2$.
 (d) Conclude that $\sup_{0 < t < 1} \mathbb{E}\|A_t\|_{op} \geq \alpha_n$, for some sequence $\alpha_n \rightarrow \infty$.

4. Assume that μ is isotropic, compactly-supported probability measure in \mathbb{R}^n .

(a) Use Lemma 10.4 and show that there exists $R = R_\mu > 0$ such that for a convex, smooth, increasing function $f : [0, \infty) \rightarrow \mathbb{R}$, and almost all $t > 0$,

$$\frac{d}{dt} \mathbb{E} \sum_{i=1}^n f(\lambda_i(t)) \leq R \sum_{i,j=1}^n \mathbb{E} f''(\lambda_i(t)).$$

(b) For $\beta > 0$ and $t > 0$ define

$$F_{\beta,t} = \frac{1}{\beta} \log \mathbb{E} \sum_{i=1}^n e^{\beta \lambda_i(t)}.$$

Prove that

$$F_{\beta,t} \leq tR\beta + \frac{\log n}{\beta} + 1.$$

(c) Write $p = \mathbb{P}(\lambda_1(t) \geq 2)$. Prove that for $\beta \geq 2 \log n$,

$$\log p \leq tR\beta^2 - \frac{\beta}{2}.$$

Set $\beta = 1/(4tR)$ and conclude that for a sufficiently small $t > 0$,

$$\mathbb{P}(\lambda_1(t) \geq 2) \leq \exp(-c_\mu/t)$$

for some $c_\mu > 0$ depending on μ .

References

- [1] Chen, Y., *An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture*. Geom. Funct. Anal. (GAFA), Vol. 31, no. 1, (2021), 34–61.
- [2] Guan, Q., *A note on Bourgain’s slicing problem*. arXiv:2412.09075
- [3] Guan, Q., *On tail probability of the covariance matrix in Eldan’s stochastic localization*. arXiv:2508.14943
- [4] Klartag, B., Lehec, J., *Thin-shell bounds via parallel coupling*. arXiv:2507.15495

December 10, 2025