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Lecture 10: The covariance process of stochastic localization

In this lecture we complete the proof of the thin-shell theorem. Let p be an
isotropic, log-concave probability measure in R™ with density p. It is an exercise
to show that for proving the thin-shell theorem we may approximate p and assume
that p is continuous and compactly-supported.

Recall that for £ > 0 and y € R™ we consider the probability density
z—tlz|?/2— + n
Pry(@) = ev e 2m M W (g) (z €R") ()

where
At(y) — log/ ey-zft\z\Q/Qp(x)dx
Rn,

is a normalizing factor. The barycenter and covariance of p; , are given by

a(y) = VA(y) = / xpyy(z)de € R?

n

and

A(y) = VA (y) = Cov(ps,) € R™™

We would also need the symmetric 3-tensor
V) = [ (o - auw)*puy(a)de € B

Recall that p, , is t-uniformly log-concave, i.e., V*(—logp;,) > t - Id for almost
every y € R". The main advantage of t-uniform log-concavity is the possibility
to apply the improved Lichnerowicz inequality. It would help us bound the tensor
V3A;(y) of third moments of p,. In fact, one of our main proof ingredients is the
following:

Lemma 10.1. Lett > 0 and suppose that X is a centered, t-uniformly log-concave
random vector in R™. Let Ay, ..., \, > 0 be the eigenvalues of Cov(X) and let
U, ..., U, € R"™ be a corresponding orthonormal basis of eigenvectors. Abbreviate
X; = (X, u;). Thenfor1 <k <nands >0,

D (EXiX;X0) L, <sy < 47128720, 2)

ij=1

where a V b = max{a, b}, i.e., in (2) we only sum over i, j with max{\;, \;} < s.



Proof. Write E C R™ for the subspace spanned by the vectors u; for which A; < s.
Let Projg be the orthogonal projection operator onto E in R™. Denote

Y = ProjpX.

It follows from the Prékopa-Leindler inequality that Y is also ¢-uniformly log-concave,
and
[Cov(Y)lop < 5.

The improved log-concave Lichnerowicz inequality thus implies that the Poincaré con-
stant of Y, denoted by C'p(Y), satisfies

Cp(Y) < y/-. 3)
Set
H=E[X;Y®Y]eR"™".
By the definition of the subspace E,

n

> (EXiX;X0) Linua,<sy = Tr(H?) 4)

i,j=1

Moreover, by using (3) and the Poincaré inequalitry,

Var((HY,Y)) < Cp(Y) -E2HY |> < 4t7'/25"2 . Tr(H?Cov(Y))
< 4712632 TrH2. (5)

On the other hand, since EX};, = 0, the Cauchy-Schwarz inequality shows that

Tr(H?) = EX,(HY,Y) < (EX2)Y? - (Var(HY,Y))"/?

=\/?-\/Var(HY,Y). (6)

Var(HY,Y) < 4t~ /2532 \,/%, )

From (5) and (6),

The conclusion of the lemma follows from (4), (6) and (7). O

Let (W;);>0 be a standard Brownian motion in R™ with Wy = 0. Consider the
stochastic process (6;);>o from the last lecture, for whose definition we offer two
alternatives:



1. The first option is to introduce a random vector X in R™ with law y, independent
of the Brownian motion (W, );>0, and set

Qt :tX+Wt

2. The second option is to uniquely define (6;);>o via the integral equation
t
915 — Wt +/ as(es)ds.
0

The two options coincide in law, as we have seen last week. Write JF; for the o-algebra
generated by (6;)o<s<;. When we say that 7 is a stopping time we mean that for any
t > 0, the event {7 < t} is measurable with respect to ;. Denote

Pt = Dt,6,5 ay = at(et)v A= At<0t)7 Ay = At(et)

and write
>MN(E) > X(t) > ... >N (t) >0 )

S

for the eigenvalues of the covariance matrix A;, repeated according to their multiplic-
ity. Since p is isotropic, at t = 0 we have Ay = Id and hence

AL(0) = Ap(0) = ... = A\, (0) = L.

For any k, the eigenvalue A (t) equals 1 at time ¢ = 0, and it is smaller than 1 at
any time ¢ > 1. In the interval (0, 1), however, the eigenvalue \; (t) is typically very
large, see the example in the exercise below. In view of Corollary 9.10 from last week,
the missing ingredient in the proof of the thin-shell theorem along the lines of [4] is
the following:

Proposition 10.2. We have

n 1
ZEexp <2/ /\k(t)dt> < Chn,
k=1 0

where C' > 0 is a universal constant.

The proof of Proposition 10.2 relies on the following proposition, which is a straight-
forward variant of a recent breakthrough bound by Guan [2].

Proposition 10.3. For anyt > 0 and any stopping time T,
1 n [e3
=Y P(A(tAT) =3) < Ce T,
n
k=1

where a A b = min{a, b} and where C, o« > 0 are universal constants.



It is conceivable that o« = 1 in Proposition 10.3, see [3]. Proposition 10.3 tells us
that while a single eigenvalue may explode at some time ¢ € (0, 1), it is unlikely that
many eigenvalues are simultaneously large.

Proof of Proposition 10.2 assuming Proposition 10.3. Fork = 1, ..., n consider the
stopping time
T = inf {t > 0; \y(t) > 3}.

For any fixedt > 0 and i = 1,..., k, under the event 7, < t we have
Ni(t A1) > Ap(EATE) > 3.
Hence, fori =1,...,k,
P(r, <t) <P(\(tAT) >3).

By adding these k inequalities and using Proposition 10.3, for any £ > 0,
1k
P(Tkgt)ggzp(utmk ZIP’ J(EATL) > 3)

exp(—1/t%). 9)

Recall that o > 0 is a universal constant. It follows from (9) that

2/«
2§C’(1+log%) . (10)
Indeed, in view of (9) inequality (10) clearly holds if k& > n/2. For k < n/2 we
obtain from (39) that for s > 2%/,

/2

2 1-s L a2
P <W > s) < C’% exp(—so‘/2 . log%) =C (%) <Ce !
k

By integrating over 22/% < s < oo we obtain (10) . Consequently, since A, (t) < 1/,

1 1 dt
0 Te A1

Therefore, by (10) and (11),

n 1
EZexp(Z/ /\k(t)dt) EZE 2V 1] <CZE +1]
k=1 0 k=1

gcn.%z(1+1og%)2/a < Cn, (12)

k=1



where the last passage follows from the fact that the function (1 + log(1/x))%* is
monotone and integrable in [0, 1], and the Riemann sum in (12) may be bounded by
the integral. O

The proof of Proposition 10.3 requires rather elaborate analysis of the time evolu-
tion of the eigenvalues of the covariance matrix A,. Write

§ij () = (&ij1(t), Sija(t) - Eijn (1)) € R™
where
Eir(t) = / (x — ar,u;) - (x — ag,u;) - (x — a, ug)pe(x)der € R,
with u (t), ..., u,(t) € R™ being any orthonormal basis of eigenvectors of A, cor-
responding to the eigenvalues A\; () > ... > A, (t). Let us fix a stopping time 7.

Lemma 10.4. For any smooth, increasing function f : [0,00) — R and almost any
t >0,

where we interpret the quotient by continuity as " (X\;(t)) when \;(t) = \;(t). More-
over, the function that is differentiated on the left-hand side of (13) is absolutely con-
tinuous in t € [0, 00).

The expression in the right-hand side of (13) is reminiscent of the Daleckii-Krein
formula for the second derivative of matrix functions. For a function f : R — R and
a symmetric matrix A whose spectral decomposition is

=1

for numbers Aq, ..., A, € R and an orthonormal basis 11, . .., u, € R™ we write

Zf ’LL7®'U:'L

The Daleckii-Krein formula states that for any two symmetric matrices A, H € R™*™,
ase — 0,

2

Tef(A+eH) = Tef(A) + ¢ - Te[f/(A) H] + % “Te[(B o H)H] + o(?)



where o is the Schur product or Hadamard product (i.e., entry-wise product), and

U ¥ O (O

D S
For v = (vy,...,v,) € R" we write (V3A;)v € R"*" for the symmetric matrix
whose 7, j entry is
[ VSAt Z At Lijk Uk

where Ay = (At k)i j k=1, - Lemma 10.4 follows from the following identity:

Lemma 10.5. For any smooth function f : [0,00) — R and almost any t > 0,

FEY SO ) ;ZE[@()!”N( SO s,

ij=1
Z N(t 1{t<7}]

Moreover, the function that is differentiated is absolutely-continuous int € [0, +00).

Proof. We will prove this lemma by using It6 calculus and the “first option” above for
the definition of (6;);>o, i.e.,
9,5 == tX + Wt'

Recall from last week that for some Brownian motion (B;);>o we have
det == dBt “I— atdt (14)

and that
Dt = Pt,0,

is the conditional law of X given (6)o<s<;. Recall that F; is the o-algebra generated
by (es)ogsgt- Hence, for any continuous test function ¢ : R — R,

| en =Elpx)i7. (15)

The stochastic process on the left-hand side of (15) is a martingale, since it represents
conditional expectations with respect to a non-decreasing family of o-algebras. In
fact, since p is compactly-supported and continuous, it follows that for any x € R",

(pe(2))e0 (16)



is a martingale as well. Recalling that

0t-z—t\z|2/2—1\t(0t)

pi(x) =e p(z)

we may apply the Itd formula based on (14) and obtain the evolution equation of the
martingale (16), namely

dp(z) = (x — ay, dBy)p(x). (17)
It follows from (17) that
da; = d [/ xpt(a:)dw] = / x(x — a;, dBy)p(z)dx = A;dB;.

Thus,
d(at ® at) = (AtdBt X Q¢ + Qg X AtdBt) + A?dt

and consequently,
A, = d { / (z® x)pt(m)dzx} — dlay ® a)] = (V9A,)dB, — A2dt,
Hence, for any stopping time 7,
dAipnr = lery - [(VPA)dB, — AZdt] .
Consequently,

/ é / 1
dTrf(At/\T) = 1{t<7’} -Tr |:f (At)(V‘SAt)dBt — f (At)A?dt + iDtdt s (18)

where the It6 term equals

RS S OND) = 'O ()
N v s VO

thanks to the Daleckii-Krein formula. By taking expectation the dB; term in (18)
vanishes, completing the proof. O

Since the measure p is compactly-supported, there exists R > 0 depending on p
such that
& (< R for all 4, j and t > 0.

It is an instructive exercise to use Lemma 10.4 with f(z) = €’ in order to prove that
forall 0 <t < ¢,
P\ (tAT) > 2) < e/t (19)



for some constants c,,, ¢, > 0 depending on the compactly-supported measure /.

Our next goal is to use Lemma 10.4 and prove a bootstrap estimate for a certain
class of functions considered by Guan [2], which generalizes the class of functions
f(t) =t (¢ > 3) considered in Chen [1].

Lemma 10.6. Let D > 1,7 € [2,3],t > 0 and let T be a stopping time. Suppose
that f : [0,00) — [0, 00) is a smooth, increasing function such that

{f(x):xz, Vo >r

f(x) < D*f(x), Yz >0 (20)

Then, for almost any t > 0,

IEZf (tAT)) <C< )]EZf (tAT)) (21)

where C' > 0 is a universal constant.

Proof. Abbreviate \; = \;(t) and &;; = &;;(t). Since f is positive, by Lemma 10.4
it suffices to prove that

o ' (M) = f1(\) 1 D\ ¢
”21 1€ ZfA] <C <t + \/i) ;f(/\z) (22)

Since the probability density p; is t-uniformly log-concave, Lemma 10.1 shows that
forany s >0and k =1,...,n,

z": Elinva, <t < 4232\, (23)
i,j=1
The bound (22) follows from several applications of (23) as well as from the bound
A <1/t
which was discussed in (8).

Step 1. Since &, ;;, is symmetric in ¢, j and k, by using (23) with s = \; we see that

Z &P L = Z‘fljkl{,\ >rp < 32 Tovsn Z@jkl{,\ Vi< (24

i,j=1 4,9,k Jk

< WZ/\E/ZL[A >rp < *Z)\ Lisry < 2Zf()‘)
- i=1



Step 2. Consider the contribution to the left-hand side of (22) of all ¢, j with
min{)\i, A]} > (25)

Since f’(x) = 2x when x > r, this contribution equals

f') = ')
Z )\ — )\ |€z]’ 1{m1n(>\ Xj)>ry = 22‘51” 1{m1n(>\ Aj)>r}

1,7=1 1,9
24
< 22 |§ij|21{)\7;2r} < 77

,J

where we used (24) in the last passage.
Step 3. Consider the contribution to the left-hand side of (22) of all z, j with
A <r A >r+1 or A <r, A >r+1. (26)

This contribution equals

f'(A Ai)
2 Z )\ — A ’fzy‘ 1{)\ >7+1}1{)\ <r}

3,j=1

4N,
< Z N \ﬁw\ Tinsrlpy<ry S 16 (€5 1 en <

,J

16 - 12
t

Here we used that f° > 0 as well as the fact that A\;/(A\; — A;) < r+ 1 < 4 when
A; <rand \; > 7+ 1, and in the last passage we used (24).

Step 4. Let us show that

Z ’51]‘ f(A 1{>\ VA <ra1) S \[ Zf k). 27

1,7=1

Write a V bV ¢ = max{a, b, c}. By applying (23) with s = r + 1, and recalling that
r <3,

Z f(A gzjkl{A VA; VAR <r41} (28)

i,5,k=1
47/2 n
(r+1)%2X\; - 1pa,<rq1y < ).
_\[Zf (r n<ri1} \/E;f( )



Next, we use that if \; < r + 1 then f(A

) < f(r+1) = (r+1)% < 16 while if
i > 1+ 1then f()\;) = \2. We again apply (23) with s = r + 1 to obtain

Zf

fu;gl{x VA <1<} S \/ Z)\kl{Ak>r+1} (29)
i,7,k=1

\[ Z)\ Togsreny < \[ Zf (Ak)-
By adding (28) and (29) we obtain (27)

Step 5. Consider the contribution to the left-hand side of (22) of all ¢, 7 with
max{\;, \;} <r+1

(30)
By using (20) and the fact that f is non-negative and increasing, we see that this
contribution is at most

i,7=1

f'
2 Z /\ -\ 0y )’&J|21{A ugri1} S 4D? Zf ‘§1J| Lo <n<rtny

,J

i
where we used (27) in the last passage

The results of Step 2, Step 3 and Step 5 imply the desired bound (22)

O
It is a calculus exercise to prove that for any € [2,3] and D > 1 there exists a
smooth, increasing function f : [0, 00) — (0, 00) with
D(z—r) <p_ L1
e r<r
= {5 5

(€29

T>r
and f”(z) < D?f(x) for all z > 0. We denote this function f by f, p, and observe
that it satisfies condition (20) of From Lemma 10.6. From the conclusion of the lemma
we conclude that for any D > 1,2 < < 3 and a stopping time 7, if

0<t<D™* (32)
then D?/+/t < 1/t and hence for f = f, p
]EZf (tAT) g% g (EAT)). (33)

10



The function f = f, p isslightly complicated, and we prefer to reformulate the growth
condition (33) in terms of the much simpler function

gr(x) = 2° - Liasry-

From (31),
gr S fr,D- (34)

In the other direction, we claim that for any D > 1 and ¢ > 0, if
2<r+ 1 <r<3
T
DTS

then 9
frp(x) < ZgT(:c) +exp(—=D(F —)). (35)
Indeed, if < r then by (31), since r <7 —1/D,
fo(@) < fi(r) = exp(=D(F — 1)),

and (35) holds true in this case. If z > 7 then both f;(x) and g, (z) equal %, and
(35) trivially holds. In the remaining case r < x < 7 we have

o\ 2
9
fF( )<fr( )_T <|- 'x2§7$2:79r(:p)5
4 4
completing the proof of (35).

Proof of Proposition 10.3. We may assume that ¢ < 273 as otherwise there is nothing
to prove. We will set ¢, = t and partition the interval [0, ¢] into intervals

[t1,t0], [t2, t1], - -, [thr1y tr)s - -

For k > 0 we define
k—1
te=2"%,  Dy=t"" n=3->t"€[23

Since t;, < D,;4 we may use the differential inequality (33) for all s € [tx11,tx). By
integrating this differential inequality over this interval, we obtain

e\
Eka itk AT)) < (t) Eka()\i(tkH/\T))a (36)

k+1

11



where f, = f,, p,. Setalso g, = g,, and define

]Eka tk/\T) and Ezgk tk/\T)

Note that 7441 + 1/Dy, < 1411 + 1/v/ Dy = 71. From (36), as well as the two
inequalities (34) and (35), we obtain for k£ > 0,

t
Gy < Fi < < : ) EZfrk,Dk i(ter1 A T))

c
t o
< ( b ) EZ { Grp1(Ni(tegr AT)) + e_D’“(7"_r’“+1)]

7581

= 28¢ ( Gry1 +nexp(—t Ug)) <C |:Gk+1 + neXP(_thil/g)} - 3D

From this recursive inequality we obtain that for & > 0,

k-1
Go < C*Gr+n - Z CHlexp(—21t7Y%) < C*G\ + Cn - e (38)

=0

since the sum in (38) is at most

e
i

— _4-1/8

C'exp(—2t71/%) §Z Yexp(=2' =t /%) =C-e
=0

Il
=]

i

We next show that C*G, — 0 as k — oo. To this end we use (19). Since f is
compactly-supported, for some C), > 0 depending on . and for a sufficiently large k,

Gr<Cu- PNt AT) >2) < Cheon/ts = éue_c“'QSk/t.
Hence indeed C*G), — 0 as k — oo, and from (38),

ZIP’ (tAT)>3)<Go<Cn-e "
O

We end this lecture with an interpretation of our results in the context of the
Prékopa-Leindler inequality. Recall that we write

7s(x) = (2m5) "2 exp(—|a[*/(25))

12



for the density of a centered Gaussian random vector of covariance s - Id in R™. Let
p be an isotropic, log-concave density in R™ and for ¢ > 0 set

g =P *V1/t-

By the Prékopa-Leindler inequality, the probability density g; is log-concave, since it
is a convolution of two log-concave probability measures. A straightforward compu-
tation based on (1) shows that

V2(— log g,) () = 12 (If _ Cov(ptm)) _p (If _ At(tx)> |

Thus the log-concavity of ¢; amounts to the inequality A; < Id /¢, which was one of
the starting points of our analysis today. By using the “Option 1” definition of 8;, we
see that for t > 0,

/.

where | - | is the Hilbert-Schmidt norm, and where the last inequality in (39) follows
from Proposition 10.3. Thus, on a quantitative level, inequality (39) is a refinement of
the Prékopa-Leindler inequality which amounts to the pointwise bound

Id  V2(—loggq)(x) |’

; ” q(r)dz = E|A)* < COn (39)

0<V3(~loggq,) <t-Id.

Exercises.

1. Why can we assume that p is compactly-supported when proving the thin-shell
theorem?

2. prove that for any D > 1 and r € [2,3] there exists a smooth, increasing
function f : [0,00) — [0, 00) satisfying (20).
3. Consider the isotropic, log-concave probability density

2l

Pz, ..., z,) = 2" X

(a) Prove that in this case, for any ¢ > 0 the matrix A, is diagonal and its
diagonal entries are independent and identically-distributed. Write Z; for
the (1, 1)-entry of A;, and explain that its law does not depend on n.

(b) Prove that the support of the random variable Z, is not uniformly bounded
forallt € (0,1).

13



(c) Prove thatif z > 0 is such that P(Z; > x) > 1/n, then E||A;||,, > z/2.

(d) Conclude that sup,; E|[A¢||op, > v, for some sequence o,, — 0.
4. Assume that p is isotropic, compactly-supported probability measure in R™.

(a) Use Lemma 10.4 and show that there exists R = R,, > 0 such that for
a convex, smooth, increasing function f : [0,00) — R, and almost all
t>0,

SEY D) < R Y BFO0)

ij=1

(b) For 8 > 0 and ¢t > 0 define

1 n
Fs; = =1ogE Z i),
B i=1
Prove that L
Fs, <tRB+—2" 41,

(c) Write p = P(\;(t) > 2). Prove that for § > 2logn,

logp < tRB* — g

Set 5 = 1/(4tR) and conclude that for a sufficiently small ¢ > 0,
P(Ai(t) > 2) < exp(—c,/t)

for some c,, > 0 depending on .
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