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1 The Poincaré inequality
Even if we were not hosted by an institution that honors Poincaré, a good starting point for
these lectures would be the mathematical inequality that carries his name. It was published by
Poincaré in 1892–1896 in the case where the dimension is 2 or 3, and the measure µ is the
uniform probability measure on the convex body K.

Recall that an absolutely-continuous probability measure µ in Rn is log-concave if its density
ρ satisfies

ρ(λx+ (1− λ)y) ≥ ρ(x)λρ(y)1−λ (x, y ∈ Rn, 0 < λ < 1). (1)

A probability measure µ in Rn is log-concave if it is supported in an affine subspace and has
a log-concave density in this subspace. The uniform probability measure on a convex body is
log-concave, as well as all Gaussian measures.

Theorem 1 (“The Poincaré inequality”). Let K ⊆ Rn be a convex body, let µ be a log-concave
probability measure on K. Then for any C1-smooth function f : K → R with

∫
K
fdµ = 0,∫

K

f 2dµ ≤ CP (µ) ·
∫
K

|∇f |2dµ (2)

where CP (µ) ≤ Cn ·Diam2(K), and Cn > 0 depends only on the dimension n.

*draft, version of May 27, 2024
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HereDiam(K) = supx,y∈K |x−y| is the diameter ofK and |·| is the standard Euclidean norm
in Rn. Intuitively, the inequality says that if f does not vary too wildly locally, i.e. controlled
gradient, then it does not vary too much globally, i.e. bounded variance.

For a historical account of the Poincaré inequality, see Allaire [1]. The Poincaré constant
CP (µ) of the probability measure µ is defined as the smallest number for which (2) is valid for
all C1-smooth functions f with

∫
fdµ = 0.

The quantity 1/CP (µ) is often referred to as the spectral gap of µ, for reasons to be ex-
plained. In 1960, Payne and Weinberger [42] found that for any n, the best possible value of the
supposedly-dimensional constant Cn is in fact

Cn =
1

π2
,

which does not depend on the dimension. We proceed with an adaptation of the original proof
by Poincaré, a proof which does not yield the optimal (in)dependence on the dimension, yet it
suffices for some purposes.

Proof of Theorem 1. Passing to a subspace if necessary, we may assume that the probability
measure µ is absolutely-continuous with a log-concave density ρ : Rn → [0,∞), which vanishes
outside K. We express the variance as a double integral and use the fundamental theorem of
calculus: ∫

K

f 2dµ =
1

2

∫
K

∫
K

|f(y)− f(x)|2dµ(x)dµ(y)

=
1

2

∫
K

∫
K

∣∣∣∣∫ 1

0

∇f((1− t)x+ ty) · (y − x)dt

∣∣∣∣2 dµ(x)dµ(y)
≤ Diam2(K)

2

∫
K

∫
K

∫ 1

0

|∇f((1− t)x+ ty)|2 ρ(x)ρ(y)dtdxdy,

where we used the inequality |y − x| ≤ Diam(K). Let us show that for any 0 ≤ t ≤ 1,∫
Rn

∫
Rn

|∇f((1− t)x+ ty)|2 ρ(x)ρ(y)dxdy ≤ Cn,t

∫
K

|∇f |2dµ. (3)

Our goal is to replace the product ρ(x)ρ(y) in (3) by some expression involving ρ((1− t)x+ ty)
and then apply a linear change of variables. Log-concavity will be handy here. We split the
argument into two cases. If t ≈ 1/2, then we will use the inequality

min{ρ(x), ρ(y)} ≤ ρ((1− t)x+ ty)

that follows from the definition (1) of log-concavity. It implies that

ρ(x)ρ(y) ≤ ρ((1− t)x+ ty) ·max{ρ(x), ρ(y)} ≤ ρ((1− t)x+ ty) · [ρ(x) + ρ(y)].
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Thus the integral in (3) is at most∫
Rn

∫
Rn

|∇f((1− t)x+ ty)|2 ρ((1− t)x+ ty) · [ρ(x) + ρ(y)]dxdy “u = (1− t)x+ ty′′∫
Rn

∫
Rn

|∇f(u)|2ρ(u)ρ(x)du
tn
dx+

∫
Rn

∫
Rn

|∇f(u)|2ρ(u)ρ(y) du

(1− t)n
dy

=

[
1

tn
+

1

(1− t)n

] ∫
|∇f |2dµ.

In the case where t is not too close to 1/2 we will use the inequality

ρ(x)ρ(y) ≤ ρ((1− t)x+ ty)ρ(tx+ (1− t)y)

and change variables linearly via

u = (1− t)x+ ty, v = tx+ (1− t)y.

Since duj ∧ dvj = [(1− t)2 − t2]dxj ∧ dyj for j = 1, . . . , n, the integral in (3) is bounded by∫
Rn

∫
Rn

|∇f((1− t)x+ ty)|2 ρ((1− t)x+ ty)ρ(tx+ (1− t)y)dxdy

=

∫
Rn

∫
Rn

|∇f(u)|2ρ(u)ρ(v) dudv

|tn − (1− t)n|
=

1

|tn − (1− t)n|

∫
Rn

|∇f |2dµ.

Thus the Poincaré inequality follows with

Cn ≤ 1

2

∫ 1

0

min

{
1

tn
+

1

(1− t)n
,

1

|tn − (1− t)n|

}
dt ≤ C · 2

n

n
,

for some universal constant C > 0, where we separately consider the contribution of the interval
[1/2− 1/n, 1/2 + 1/n] to the integral.

Throughout these lectures, we write C, c, C̃, c̃, C̄ etc. to denote various positive universal
constants whose value may change from one line to the next. Consider the case where µ is the
uniform probability measure on a domain K ⊆ Rn. Its Poincaré constant, sometimes denoted
also by CP (K), measures the conductance of K. It is large when K has a bottleneck.

(some picture here)

Intuitively, it seems that convexity assumptions rule out many types of bottlenecks, possibly
in high dimensions as well. Can we describe the Poincaré constant in terms of simple geometric
characteristics of K ⊆ Rn, under convexity assumptions?
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Conjecture 2 (Kannan-Lovász-Simonovits [24]). For any log-concave probability measure µ on
Rn,

∥Cov(µ)∥op ≤ CP (µ) ≤ C · ∥Cov(µ)∥op (4)

where C > 0 is a universal constant.

Here ∥A∥op is the operator norm of the symmetric matrix A ∈ Rn×n, i.e., its maximal eigen-
value in absolute value, and Cov(µ) ∈ Rn×n is the inertia matrix or the covariance matrix of µ.
The i, j entry of the matrix Cov(µ) is∫

Rn
xixjdµ(x)−

∫
Rn
xidµ

∫
Rn
xjdµ(x).

The covariance matrix is a symmetric, positive semi-definite matrix. IfX is a random vector with
law µ and density ρ, we write CP (X) = CP (µ) = CP (ρ) and Cov(X) = Cov(µ) = Cov(ρ).
With this notation, the Poincaré inequality states that for any C1-smooth function f ,

V arf(X) ≤ CP (X) · E|∇f(X)|2.

We note that the left-hand side inequality in (4) is a trivial fact: for any linear functional fθ(x) =
x · θ with θ ∈ Sn−1 = {x ∈ Rn ; |x| = 1},

Cov(X)θ · θ = V ar(fθ(X)) ≤ CP (X) · E|∇fθ(X)|2 = CP (X),

and (4) follows by taking the supremum over all θ ∈ Sn−1. Thus the KLS conjecture suggests
that in the log-concave case, the Poincaré inequality is saturated by linear functions, up to a
universal constant. Some examples:

1. Consider the one-dimensional case, where X is a random variable that is distributed uni-
formly in some interval of length L. Then,

V ar(X) =
L2

12
and CP (X) =

L2

π2
,

with the extremal function for the Poincaré inequality on [0, π] being f(x) = cos x.

2. Consider the case where X is distributed uniformly in K = [0, 1]n. In this case,

Diam(K) =
√
n

while by the tensorization property of the Poincaré constant,

CP (X) =
1

π2

and
Cov(X) =

1

12
· Id.

We thus see that the diameter bound for the Poincaré constant is rather weak in high di-
mensions, even with the optimal, dimension-independent constant.
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3. Suppose that X is distributed uniformly in a Euclidean ball. The Euclidean unit ball Bn =
{x ∈ Rn ; |x| ≤ 1} has volume

πn/2

Γ(1 + n/2)
=

(√
2πe+ o(1)√

n

)n

,

which is a rather small number in high dimensions. In order to normalize the volume (or
the covariance, or the Poincaré constant), we had better look at the random vector X that
is distributed uniformly in a Euclidean ball K =

√
n ·Bn. In this case,

diam(K) = 2
√
n, Cov(X) =

n

n+ 2
· Id.

The Poincaré constant of X may be described using Bessel functions, and it has the order
of magnitude of a universal constant, in accordance with the KLS conjecture. The Szegö-
Weinberger inequality [45, 46] states that among all uniform distributions on domains in
Rn of fixed volume, the Poincaré constant is minimized for a Euclidean ball.

4. Next we discuss the case where X is a standard Gaussian random vector in Rn. Here,

Cov(X) = Id and CP (X) = 1.

Thus the Poincaré inequality in the Gaussian case is precisely saturated by linear functions.

Furthermore, by considering Hermite polynomials one can show the following: In the
Gaussian case, a function nearly saturates the Poincare inequality if and only if it is nearly
a low-degree polynomial. Indeed, in one direction, if f is a polynomial of degree at most
d in n real variables then we can reverse the Poincaré inequality as follows:

E|∇f(X)|2 ≤ d · V ar(f(X)).

In the other direction, if f is a smooth function with

E|∇f(X)|2 ≤ R · V ar(f(X))

then the function f may be approximated by a polynomial of bounded degree: For any
d ≥ 0 there exists a polynomial P of degree at most d such that

E|(f − P )(X)|2 ≤ R

d+ 1
· V ar(f(X)).

5. Let us work in Cn and consider the probability measure µ on Cn with density

n∏
j=1

e−|zj |

2π
.
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The measure µ is a log-concave probability measure on Cn. Its covariance matrix is

Cov(µ) = 3 · Id

and its Poincaré constant has the order of magnitude of a universal constant, in accordance
with the KLS conjecture.

The density of µ decays expoentially at infinity. Exponentially, but not faster; any log-
concave probability density decays exponentially at infinity, yet the Gaussian density decay
even faster. This reflects on spectral properties. In the exponential case there are functions
that nearly saturate the Poincaré inequality, and they do not necessarily resemble low-
degree polynomials. For instance:

Claim: For any holomorphic function f : Cn → C with f ∈ L2(µ) and
∫
fdµ = 0 (or

equivalently, with f(0) = 0), the Rayleigh quotient satisfies

1

3
≤
∫
Cn |∇f |

2dµ∫
Cn |f |2dµ

≤ 1

2
. (5)

Here is a proof for n = 1, which can be easily generalized for any dimension. It suffices to
check the validity of (5) for monomials zk, because of orthogonality relations. If f(z) = zk

with k ≥ 1 then,
∥f∥2L2(µ) = (2k + 1)!

while
∥f ′∥2L2(µ) = k2(2k − 1)!

The ratio between the two is always between 4 and 6. We remark that by considering
the real part of f , we see that (5) holds true for any pluri-harmonic function f , and in
particular, when n = 1 the relation (5) holds true for any harmonic function f : R2 → R
(thanks to A. Eskenazis for suggesting to add this remark).

6. Exercise: (“subadditivity of the Poincaré constant”) For two independent random vectors
X and Y in Rn,

CP (X + Y ) ≤ CP (X) + CP (Y ).

1.1 Applications
Poincaré’s original motivation for his inequality was related to analysis of partial differential
equations such as the heat equation. The motivation of Kannan, Lovász and Simonovits in the
1990s came from algorithms based on Markov chains (MCMC) for sampling and for estimating
the volume of a high-dimensional convex body. Such tasks appear in linear programming. An-
other motivation for this research direction, that was put forth by Ball in the early 2000s and later
jointly with Nguyen [4], was the relation to Bourgain’s slicing problem discussed below. There
are models in probability and statistical physics for which log-concavity and Poincaré inequal-
ities are relevant. Let us describe here anther application, related to the Central Limit Theorem
for Convex Sets [27] from 2006.
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A random vector X in Rn is isotropic or normalized if EX = 0 and

Cov(X) = Id.

Any random vector with finite second moments can be made isotropic by applying an affine-
linear transformation. The relation between Gaussian approximation and the Poincaré constant
stems from the following:

(i) The Poincaré inequality with f(x) = |x| yields V ar(|X|) ≤ CP (X). Thus most of the
mass of an isotropic random vector X is contained in spherical shell{

x ∈ Rn ;
√
n− 3

√
CP (X) ≤ |x| ≤

√
n+ 3

√
CP (X)

}
,

whose width has the order of magnitude of the square root of the Poincaré constant.

(ii) Gaussian approximation principle (Sudakov [44], Diaconis-Freedman [16]): When most
of the mass of the isotropic random vector X is contained in a thin spherical shell, we have
approximately Gaussian marginals.

(some picture here)

The following theorem is the current state of the art on Gaussian approximation under Poincaré
inequality. We write σn−1 for the uniform probability measure on the unit sphere Sn−1.

Theorem 3 (Bobkov, Chistyakov, Götze [6, Proposition 17.5.1]). Let X be an isotropic random
vector in Rn. Then there exists a subset Θ ⊆ Sn−1 with σn−1(Θ) ≥ 9/10 such that any θ ∈ Θ,

sup
t∈R

∣∣∣∣P(X · θ ≤ t) − 1√
2π

∫ t

−∞
e−s

2/2ds

∣∣∣∣ ≤ C log n

n
· CP (X)2,

where C > 0 is a universal constant.

It is currently known that CP (X) ≤ C · log n for an isotropic, log-concave random vector
X in Rn, see [33]. Consequently Theorem 3 yields good error estimates in the Central Limit
Theorem for Convex sets.

If all we know about the Poincaré constant is the diameter bound, then even in the case of
the cube we would be off by a factor of n, and we would not obtain any non-trivial bound for
the Central Limit Theorem for Convex sets. Thus in high dimensions it is necessary to refine the
diameter bound, as suggested in the KLS conjecture.
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What techniques can we use to this end, techniques that go beyond change of variables,
Fubini theorem, and the Cauchy-Schwartz inequality used above? High-dimensional convex
geometry is a playground for various geometric and analytic ideas that transcend the field of
convexity. Any list of approaches that have proven useful to convexity must include convex
localization, optimal transport, curvature and the Bochner formula, semigroup tools, geometric
measure theory, stochastic localization and complex analysis. In these lectures we explore only
some of these directions.

1.2 1D log-concave distributions
Before going on to study methods for high dimensions, let us briefly discuss the one-dimensional
case. What do log-concave densities look like in one dimension? They all look like this:

(some picture here)

Proposition 4 (“How to think on 1D log-concave random variables”). Let X ∈ R be a log-
concave random variable with density ρ which is isotropic. Then for any x ∈ R,

c′1|x|≤c′′ ≤ ρ(x) ≤ Ce−c|x|

where c′, c′′, c, C > 0 are universal constants.

Can you prove this proposition by yourself? How would you use log-concavity? A hint for
the upper bound, is that if ρ(b) < ρ(a)/2 for some a < b, then ρ decays exponentially and in fact
ρ(x) ≤ ρ(b)2−x/(b−a) for all x > b. As for the lower bound, it’s enough to show that ρ(x) > c′

for some x > c′′ and for some x < −c′′.

Corollary 5 (“reverse Hölder inequalities”). For any isotropic, log-concave, real-valued random
variable X and any p > −1,

c ·min{p+ 1, 1} ≤ ∥X∥p = (E|X|p)1/p ≤ C(|p|+ 1), (6)

where c, C > 0 are universal constants.

The case p = 0 in (6) is interpreted by continuity, i.e.,

∥X∥0 = exp(E log |X|).

This is not a norm, yet a nice feature is its multiplicativity: for any random variables X and Y ,
possibly dependent,

∥XY ∥0 = ∥X∥0∥Y ∥0.
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Proof of Corollary 5. Begin with the inequality on the right-hand side. By the monotonicity of
p 7→ ∥X∥p, it is enough to look at p > 0. In this case,

∥X∥pp =
∫ ∞

−∞
|t|pρ(t)dt ≤ C

∫ ∞

−∞
|t|pe−c|t|dt = 2C

cp+1
Γ(p+ 1) ≤ (C̃p)p.

where we used the fact that for integer p, we have Γ(p + 1) = p! ≤ pp. For the lower bound, by
monotonicity it suffices to look at p < 0. Setting q = −p ∈ (0, 1) we have

E
1

|X|q
≤ C

∫ ∞

−∞

1

|t|q
e−c|t|dt ≤ C ′

1− q

and hence

∥X∥p =
(
E

1

|X|q

)−1/q

≥ (C ′(1− q))
1/q ≥ C̃(1− q).

We proceed to discuss the isoperimetric profile of a log-concave distribution in one dimen-
sion. Bobkov [5] shows that for a probability density ρ on the real line,

ρ is log-concave ⇐⇒ ρ ◦ Φ−1 : [0, 1] → (0,∞) is concave (7)

where Φ(x) =
∫ x
−∞ ρ(t)dt and Φ−1(y) = inf{x ∈ R ; Φ(x) ≥ y}. Once stated, (7) is not difficult

to prove. It follows from (7) that the function

I(x) = min
{
ρ ◦ Φ−1, ρ ◦ (1− Φ)−1

}
is concave. Write µ for the measure whose density is ρ, and note that

I(x) = min{ρ(∂H) ; H is a ray with µ(H) = x}

Since the boundary ∂H is a singleton as H is a ray, in this case we abbreviate ρ(∂H) = ρ(a)
if ∂H = {a}. The following Proposition by Bobkov implies that the concave function I is the
isoperimetric profile of the probability density ρ.

We prefer to discuss isoperimetry through ε-neighborhoods. For ε > 0 and a subset A ⊆ R
we write Aε = {x ∈ R ; infy∈A |x−y| < ε} for its ε-neighborhood. We remark that analogously
to (7), the log-concavity of ρ implies that the function x 7→ Φ(Φ−1(x) + ε). This shows that the
function

Iε(x) = min{µ(Hε) ; H is a ray with µ(H) = x}

is a concave function of x ∈ [0, 1].

Proposition 6 (Bobkov [5]). Let µ be a log-concave probability measure on R with density ρ.
Fix 0 < p < 1, ε > 0. Then among all Borel subsets A ⊆ R with µ(A) = p, the infimum of
µ(Aε) is attained for a half line.
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Sketch of Proof. It suffices to show that half lines are better than finite unions of intervals. How
can we deal with a subset A that is a finite union of intervals? Using the following claim. For
a ∈ R with µ([a,∞)) > p consider the unique interval J(a) = (a, b) such that µ(J(a)) = p.
The claim is that the function

a 7→ µ(J(a)ε)

is unimodal, thanks to log-concavity (i.e., the function is increasing and then decreasing). Again,
once stated this is not too difficult to prove. Given this claim, one may fix all intervals in A but
one, and then move the remaining one around and expand and shrink it so as to preserve the total
µ-measure. It follows that gluing this interval to one of the sides cannot increase the µ-measure
of the ε-neighborhood.

Corollary 7. Let µ be an isotropic, log-concave probability measure on R and let ε, p ∈ (0, 1).
Then for any Borel set S ⊆ R with µ(S) = p,

µ(Sε \ S) ≥ c · ε ·min{p, 1− p}

where c > 0 is a universal constant.

Exercise: Fill in the details in the proofs of Proposition 6 and Corollary 7.

2 Optimal Transport theory with the Monge cost
Let µ1 and µ2 be two measures in Rn, say compactly-supported and absolutely continuous, with
the same total mass, i.e., µ1(Rn) = µ2(Rn). We would like to push-forward the measure µ1 to
the measure µ2 in the most efficient way, that minimizes the average distance that points have to
travel. That is, we look at the optimization problem

inf
S∗(µ)=ν

∫
Rn

|Sx− x|dµ1(x).

This is the problem of Optimal Transport with the Monge cost or the L1 cost, considered by
Monge in 1781. See Cayley’s review of Monge’s work [12] from 1882. Here is a heuristics from
Monge’s paper that explains why this problem induces a partition into segments.

Monge heuristics: For the optimal transport map T , the segments (x, T (x)) (x ∈ Supp(µ1))
do not intersect, unless they overlap.

Explanation. Suppose that the segments (x, Tx) and (y, Ty) intersect at a point z, and apply the
Triangle Inequality.

(some picture here)
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This is related to the following elementary riddle: given 50 red points and 50 blue points
in the plane, in general position, find a matching so that the corresponding segments do not
intersect.

Since the above argument relies only on the triangle inequality, you would expect that the op-
timal transport problem would induce a partition into geodesics also for Riemannian manifolds,
or Finslerian manifolds, or measure metric spaces of some type – basically wherever the triangle
inequality holds true (under some regularity assumptions).

2.1 Linear programming relaxation and the dual problem
In Monge’s problem we minimize over all maps S that push-forward µ1 to µ2. There is a relax-
ation of this problem, that looks at all possible couplings, or transport plans, of the two distribu-
tions. That is, instead of mapping a point x to a single point Tx, we are allowed to spread the
mass across a region. Thus we look at all measures γ on Rn × Rn with

(π1)∗γ = µ1 and (π2)∗γ = µ2.

where π1(x, y) = x and π2(x, y) = y. Such a measure is called a coupling of µ and ν. In other
words, we now look at transport plans rather than transport maps. The advantage is that the space
of all couplings is a convex set. The relaxed optimal transport problem involves minimizing the
average distance that points travel, namely we look at

inf
(π1)∗γ=µ,(π2)∗γ=ν

∫
Rn×Rn

|x− y|dγ(x, y).

Hence we minimize a linear function on a convex set, this is Linear Programming or Functional
Analysis (see e.g. Kantorovich and Akilov [25, Section VIII.4]).

Theorem 8. (The dual problem) Let µ1, µ2 be two absolutely-continuous measures in Rn with
the same total mass. Assume that∫

Rn
|x|dµ1(x) <∞ and

∫
Rn

|x|dµ2(x) <∞.

Denote µ = µ2 − µ1. Then the following quantities are equal:

1. The minimum over all couplings γ of µ1 and µ2 of the integral∫
Rn×Rn

|x− y|dγ(x, y).

2. The maximum over all 1-Lipschitz functions u : Rn → R of∫
Rn
udµ
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3. The minimum over all maps T with T∗µ1 = µ2 of∫
Rn

|x− Tx|dµ1(x).

Proof sketch. We refer to Ambrosio [2] for full details. For the easy direction of the linear
programming duality, pick a 1-Lipschitz map u and a coupling γ. For any points x, y ∈ Rn,

u(y)− u(x) ≤ |x− y|.

Integrating with respect to γ, we get∫
Rn
udµ =

∫
Rn×Rn

[u(y)− u(x)]dγ(x, y) ≤
∫
Rn×Rn

|x− y|dγ(x, y). (8)

Hence we need to find u and γ so that equality is attained in (8). The argument goes roughly
as follows. A compactness argument shows that the infimum over all couplings is attained.
Indeed, by Alaoglu’s theorem, the collection of all couplings is compact in the w∗-topology
(integration against continuous functions on Rn whose limit at infinity exists). The functional
γ 7→

∫
Rn×Rn |x − y|dγ(x, y) is lower semi-continuous in w∗-topology, hence its minimum is

attained.

Similarly to the Monge heuristics, the optimality implies that the support of γ must be cycli-
cally monotone: If (xi, yi) ∈ Supp(γ) ⊆ Rn × Rn for i = 1, . . . , N then for any permutation
σ ∈ SN ,

N∑
i=1

|xi − yi| ≤
N∑
i=1

|xi − yσ(i)|. (9)

Indeed, otherwise one may pick small balls around xi and yi and rearrange them to contradict
optimality. Similarly to Rockafellar’s theorem from convex geometry, condition (9) implies that
there exists a 1-Lipschitz function u : Rn → R with

(x, y) ∈ Supp(γ) =⇒ u(y)− u(x) = |y − x|. (10)

Indeed, fix (x0, y0) ∈ Supp(γ) and define u(x) as the supremum over all lower bounds with
u(x0) = 0,

u(x) = sup
N,(x1,y1),...,(xN ,yN )∈Supp(γ)

{|x0 − y0| − |y0 − x1|+ |x1 − y1| − |y1 − x2|+ ...− |yN − x|}

(some picture here)
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It follows from (9) that u(x0) = 0. The function u is a 1-Lipschitz function as a supremum
of 1-Lipschitz functions. It follows from the definition of u that (10) holds true. Hence we found
u and γ so that equality is attained in (8). The proof that γ can also be replaced by a transport
map is due to Evans and Gangbo [19]. This relies on analysis of the structure of u that will be
described next.

Remark 9. The minimizers γ or T are not at all unique. It is actually the 1-Lipschitz function
u which is essentially determined. More precisely, the gradient ∇u is determined µ-almost
everywhere.

We move on to discuss the structure of 1-Lipschitz functions. Observe that when a 1-
Lipschitz function u satisfies |u(x) − u(y)| = |x − y|, for some points x, y ∈ Rn, it necessarily
grows in speed one along the segment from x to y. A maximal open segment I on which u grows
with speed one, i.e., |u(x)− u(y)| = |x− y| for all x, y ∈ I , is called a transport ray. Theorem
8 tells us that optimal transport only happens only along transport rays, we only rearrange mass
along transport rays.

It is illuminating to draw the transport rays of the function u(x) = x1 in connection with
Fubini’s theorem ∫

R2

φ =

∫ ∞

−∞

(∫ ∞

−∞
φ(x1, x2)dx1

)
dx2,

and of the function u(x) = |x| on R2 ∼= C in connection with integration in polar coordinates:∫
R2

φ =

∫ 2π

0

(∫ ∞

0

φ(reiθ)rdr

)
dθ.

Note that the Jacobian factor on the needle is log-concave in both examples.

(some picture here)

The next step is to understand the disintegration of measure or conditional probabilities in-
duced by the partition into transport rays. Let u be a maximizer as above, with

µ = µ2 − µ1,

and with the two measures satisfying the requirements of Theorem 8. As it turns out, it is
guaranteed that transport rays of positive length form a partition of the entire support of the
measure µ, up to a set of measure zero. Write

f =
dµ

dλ
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where λ is the Lebesgue measure on Rn, or better: We may work with any log-concave reference
measure λ in Rn, not just the Lebesgue measure. The assumption that µ1(Rn) = µ2(Rn) is
equivalent to the requirement that ∫

Rn
fdλ = 0.

The following theorem requires careful regularity analysis, and in addition to Evans and Gangbo
[19] it builds upon works by Caffarelli, Feldman and McCann [11] as well as [29]. It is analogous
to integration in polar coordinates, yet with respect to a general 1-Lipschitz guiding function,
rather than just u(x) = |x|. In the following theorem a line segment could also mean a singleton,
a ray or a line.

Theorem 10. Under the above assumptions, there is a collection Ω of line segments that form
a partition of Rn, a family of measures {λI}I∈Ω, and a measure ν on the space of segments Ω,
such that

1. For any I ∈ Ω the measure λI is supported on the line segment I. If I is of non-zero
length, then it is a transport ray of the 1-Lipschitz function u.

2. Disintegration of measure

λ =

∫
Ω

λIdν(I).

3. Mass balance condition: for ν-almost any I ∈ Ω,∫
I
fdλI = 0.

4. For ν-almost any I ∈ Ω, the measure λI has a C∞-smooth, positive density ρ on the
segment I which is log-concave.
(In fact, in the case where λ is the Lebesgue measure, it is a polynomial of degree n − 1
with real roots, that does not vanish in the support of λI).

Remark 11. This theorem may be generalized to any Riemannian manifold with non-negative
Ricci curvature. We replace the line segment I by a unit-speed geodesic γ = γI , and set κ(t) =
Ricci(γ̇(t), γ̇(t)), n = dim(M). Denote by ρ = ρI the density of µI with respect to arclength
on the geodesic γ = γI . Then, (

ρ
1

n−1

)′′
+

κ

n− 1
· ρ

1
n−1 ≤ 0.

The Riemannian version may be used to prove isoperimetric inequalities under lower bounds on
the Ricci curvature, as well as Poincaré inequalities, log-Sobolev inequalities, Brunn-Minkowski
inequalities etc.

Some ideas from the proof of Theorem 10. The proof of Theorem 10 does not use sophisticated
results from Geometric Measure Theory, but it consists of several steps. Essentially,
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• Show that a 1-Lipschitz u is always differentiable in the relative interior of a transport ray.

• The next step is to show that ∇u is a locally-Lipschitz function on a set which is only
slightly smaller than the union of all transport rays, and that the restriction of u to this set
may be extended to a C1,1-function on Rn.

• This is just enough regularity in order to allow change of variables in an integral, which
yields the disintegration.

• By differentiating the Jacobian one sees that the logarithmic derivative of the needle den-
sity is the mean curvature of the level set of u, and the inverse principal curvatures grow
linearly along the needle. This yields log-concavity along each needle.

• The mass balance condition follows from the fact that γ is a coupling between µ1 and µ2,
and that transport happens only along transport rays (thanks to S. Szarek for this remark).
Alternatively, one can use a perturbative argument based on the maximality of the integral∫
ufdλ.

As an application of this theorem, let us prove the reverse Cheeger inequality of Buser [10]
and Ledoux [36], and in fact a refinement due to E. Milman [41]. In Joseph’s lectures you can
see another proof, using semi-group methods, of the following:

Proposition 12. Let µ be a log-concave probability measure on Rn and R > 0. Assume that for
any 1-Lipschitz function u : Rn → R there exists α ∈ R with∫

Rn
|u(x)− α|dµ(x) ≤ R. (11)

(this is a weaker condition than requiring CP (µ) ≤ R2). Then for any measurable set S ⊆ Rn

and 0 < ε < R,
µ(Sε \ S) ≥ c · ε

R
· µ(S) · (1− µ(S)), (12)

where c > 0 is a universal constant, and where Sε is the ε-neighborhood of S.

Proof. Denote t = µ(S) ∈ [0, 1] and set f(x) = 1S(x)− t for x ∈ Rn. Then
∫
fdµ = 0. Let u

be a 1-Lipschitz function maximizing ∫
Rn
ufdµ.

After adding a constant to u, we may assume that∫
Rn

|u|dµ ≤ R.

By Theorem 10, we obtain a needle decomposition: measures {µI}I∈Ω on Rn, and a measure ν
on the space Ω of transport rays which yield a disintegration of measure. We may normalize and

15



assume that all of these measures are probability measures (i.e., replace µI and ν by µ̃I and ν̃
where µ̃I = µI/µI(Rn) and dν̃/ν(I) = µI(Rn)). Hence,∫

Ω

(∫
I
|u|dµI

)
dν(I) =

∫
Rn

|u|dµ ≤ R.

Denote

B =

{
I ∈ Ω ;

∫
I
|u|dµI ≤ 2R

}
.

By the Markov-Chebyshev inequality,

ν(B) ≥ 1/2. (13)

For ν-almost all intervals I ∈ Ω we know that
∫
I fdµI = 0, hence

µI(S) = t · µI(Rn) = t.

We would like to prove that for any I ∈ B and any 0 < ε < R,

µI(Sε \ S) ≥ c · ε
R

· t(1− t), (14)

for a universal constant c > 0. Once (14) is proven, the bound (12) follows by integrating (14)
with respect to ν and using (13), since

µ(Sε \ S) ≥
∫
B

µI(Sε \ S)dν(I) ≥ ν(B) · c · ε
R

· t(1− t) ≥ c

2
· ε
R

· t(1− t).

What remains to be proven is a one-dimensional statement about log-concave measures: If
η = µI is a log-concave probability measure on R with

∫
R |t|dη(t) ≤ R, then (14) holds true.

This follows from Corollary 7 and a scaling argument.

The same proof applies for any complete Riemannian manifold with non-negative Rieman-
nian curvature. In fact, completeness in unneeded, the weaker geodesic-convexity assumption
suffices here. There are quite a few other applications for this theorem, which helps reduce
the task of proving an n-dimensional inequality to the task of proving a 1-dimensional inequal-
ity (“localization”). In a simply-connected space of constant sectional curvature, most of these
applications – like reverse Hölder inequalities for polynomials – may also be proven using a
localization method based on hyperplane bisections that go back to Payne and Weinberger [42],
Gromov and Milman [22] and Kannan, Lovász and Simonovotis [24]. Proposition 12 seems to
be an exception, our proof requires the 1-Lipschitz guiding function.

Exercise: (“reverse Hölder inequalities for polynomials”) Let X be a log-concave random
vector in Rn, and let f : Rn → R be a polynomial of degree at most d. Then for any 0 < p ≤ q,

∥f(X)∥q ≤ Cq,d · ∥f(X)∥p,
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for some constant Cq,d depending only on q and d.

The solution uses needle decomposition. As a hint, let us prove it in one dimension, following
Bobkov [7]. We may assume that f is a monic polynomial in one real variable, hence

f(X) =
d∏
i=1

(X − zi)

for some z1, . . . , zd ∈ C. Consequently, by Hölder inequality and by Corollary 5,

∥f(X)∥q =

∥∥∥∥∥∏
i=1

(X − zi)

∥∥∥∥∥
dq

≤
d∏
i=1

∥X−zi∥dq ≤
d∏
i=1

Cd(q+1)∥X−zi∥0 = (Cd(q+1))d∥f(X)∥0.

2.2 Isoperimetry and the Poincaré inequality
The Cheeger inequality [13] states that for any absolutely-continuous probability measure on Rn

satisfying sone mild regularity assumptions,

CP (µ) ≤ 4ψ2
µ (15)

where ψµ is the isoperimetric constant of the probability measure µ, defined via

1

ψµ
= inf

A⊆Rn

{ ∫
∂A
ρ

min{µ(A), 1− µ(A)}

}
where ρ is the density of µ and where the infimum runs over all open sets A ⊆ Rn with smooth
boundary satisfying 0 < µ(A) < 1. Inequality (15) is proven by the co-area formula and the
Cauchy-Schwartz inequality, see Joseph’s lectures.

Proposition 12 thus implies that the Poincaré inequality and the isoperimetric inequality are
equivalent in the log-concave case, up to a universal constant. De Ponti and Mondino [15] used
the technique from Ledoux [36] in order to find the optimal value of the universal constant, and
showed that

1

π
ψ2
µ ≤ CP (µ) ≤ 4ψ2

µ.

Proposition 12 moreover implies that in the log-concave case, there exists a 1-Lipschitz function
f such that

ψ2
µ ≤ C · V arµ(f).

The Cheeger inequality thus leads to the following corollary of Proposition 12:

Corollary 13 (E. Milman [41]). Let µ be a log-concave probability measure on Rn. Then there
exists a 1-Lipschitz function f : Rn → R such that

c · CP (µ) ≤ V arµ(f) ≤ CP (µ) (16)

where c > 0 is a universal constant.
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3 Bochner identities and curvature
In this lecture we discuss a technique that originated in Riemannian Geometry and connects the
Poincaré inequality and Curvature. It started with the works of Bochner in the 1940s and also
Lichnerowicz in the 1950s. The approach fit well with convex bodies and log-concave measures
in high dimension. In a nutshell, the idea is to make local computations involving something like
curvature, as well as integrations by parts, and then dualize and obtain Poincaré-type inequalities.
This may sound pretty vague, let us explain what we mean.

Suppose that µ is an absolutely-continuous log-concave probability measure in Rn. Then µ is
supported in an open, convex set K ⊆ Rn and it has a positive, log-concave density ρ = e−ψ in
K. We will measure distances using the Euclidean distances in Rn, but we will measure volumes
using the measure µ. We thus look at the weighted Riemannian manifold or the metric-measure
space

(K, | · |, µ).

Thus the Dirichlet energy of a smooth function f : Rn → R is

∥f∥2
Ḣ1(µ)

=

∫
K

|∇f |2dµ.

Indeed, we measure the length of the gradient with respect to the Euclidean metric, while we
integrate with respect to the measure µ. As was already defined in Joseph’s lectures, the Laplace-
type operator associated with this measure-metric space is defined, initially for u ∈ C∞

c (K), via

Lu = Lµu = ∆u−∇ψ · ∇u = eψdiv(e−ψ∇u).

This reason for this definition is that for any smooth functions u, v : Rn → R, with one of them
compactly-supported in K, ∫

Rn
(Lu)vdµ = −

∫
Rn
[∇u · ∇v]e−ψ.

and in particular

⟨−Lu, u⟩L2(µ) =

∫
Rn

|∇u|2dµ.

Thus L is a symmetric operator in L2(µ), defined initially for u ∈ C∞
c (K). It can have more than

one self-adjoint extension, for example corresponding to the Dirichlet or Neumann boundary
conditions when K is bounded. When discussing the Bochner technique, it is customary and
possible to find ways to circumvent spectral theory of the operator L. Still, spectral theory helps
us understand and form intuition, and we will at least quote the relevant spectral theory.

It will be convenient to make an (inessential) regularity assumption on µ, so as to avoid all
boundary terms in all integrations by parts. We say that µ is a regular, log-concave measure in Rn

if its density, denoted by e−ψ, is smooth and positive in Rn and the following two requirements
hold:
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(i) Log-concavity amounts to ψ being convex, so ∇2ψ ≥ 0 everywhere in Rn. We require a
bit more, that there exists ε > 0 such that for all x ∈ Rn,

ε · Id ≤ ∇2ψ(x) ≤ 1

ε
· Id. (17)

(ii) The function ψ, as well as each of its partial derivatives, grows at most polynomially at
infinity.

Exercise (regularization process): Begin with an arbitrary log-concave measure µ on Rn,
convolve it by a tiny Gaussian, and then multiply its density by exp(−ε|x|2) for small ε > 0.
Show that the resulting measure is regular, log-concave, with approximately the same covariance
matrix, and that the Poincaré constant cannot jump down by much under this regularization
process.

From now on, we assume that our probability measure µ is regular, log-concave measure.
It turns out that in this case, the operator L, initially defined on C∞

c (Rn), is essentially self-
adjoint, positive semi-definite operator in L2(µ) with a discrete spectrum. Its eigenfunctions
1 ≡ φ0, φ1, . . . constitute an orthonormal basis, and the eigenvalues of −L are

0 = λ0(L) < λ1(L) =
1

CP (µ)
≤ λ2(L) ≤ . . .

with the eigenfunction corresponding to the trivial eigenvalue 0 being the constant function. The
eigenfunctions are smooth functions in Rn that do not grow too fast at infinity: the function

φje
−ψ/2

decays exponentially at infinity. Also (∂αφj)e
−ψ/2 decays exponentially at infinity for any par-

tial derivative α. This follows from known results on exponential decay of eigenfunctions of
Schrödinger operators. The eigenvalues are given by min-max of the Rayleigh quotients,

λk(L) = inf
f⊥φ0,...,φk−1

∫
Rn |∇f |

2dµ∫
Rn f

2dµ

where the infimum runs over all (say) locally-Lipschitz functions f ∈ L2(µ). Since φ0 ≡ Const,
we indeed see that the first eigenfunction φ1 saturates the Poincaré inequality for µ. For proofs
of these spectral theoretic facts, see references in [33].

Let us return to Geometry. In Riemannian geometry, the Ricci curvature appears when we
commute the Laplacian and the gradient. Analogously, here we have the easily-verified commu-
tation relation

∇(Lu) = L(∇u)− (∇2ψ)(∇u),

where L(∇u) = (L(∂1u), . . . , L(∂nu)). Hence the matrix ∇2ψ corresponds to a curvature term,
analogous to the Ricci curvature.
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Proposition 14 (Integrated Bochner’s formula). For any u ∈ C∞
c (Rn),∫

Rn
(Lu)2 dµ =

∫
Rn

(
∇2ψ

)
∇u · ∇u dµ+

∫
Rn

∥∇2u∥2HSdµ,

where ∥∇2u∥2HS =
∑n

i=1 |∇∂iu|2.

Proof. Integration by parts gives∫
Rn
(Lu)2 dµ = −

∫
Rn

∇(Lu) · ∇u dµ = −
∫
Rn
L(∇u) · ∇u dµ+

∫
Rn

[
(∇2ψ)∇u · ∇u

]
dµ

=
n∑
i=1

∫
Rn

|∇∂iu|2 dµ+

∫
Rn

(
∇2ψ

)
∇u · ∇u dµ.

The assumption that u is compactly-supported was used in order to discard the boundary
terms when integrating by parts. In fact, it suffices to know that u is µ-tempered. We say that u
is µ-tempered if it is a smooth function, and (∂αu)e−ψ/2 decays exponentially at infinity for any
partial derivative ∂αu. Any eigenfunction of L is µ-tempered. if f is µ-tempered, then so is Lf .

The following inequality from [33] is analogous to some investigations of Lichnerowicz [39].
It is concerned with distributions that are more log-concave than a Gaussian distribution, in the
sense that their logarithmic Hessian is uniformly bounded by that of the Gaussian.

Theorem 15 (improved log-concave Lichnerowicz inequality). Let t > 0 and assume that
∇2ψ(x) ≥ t for all x ∈ Rn. Then,

CP (µ) ≤
√

∥Cov(µ)∥op ·
1

t
.

Equality in Theorem 15 is attained when µ is a Gaussian measure. Write γs for the law of
distribution of a Gaussian random vector of mean zero and variance s · Id in Rn. Then γs satisfies
the assumptions of Theorem 15 for t = 1/s while CP (γs) = ∥Cov(γs)∥op = s.

Proof of Theorem 15. Denote f = φ1, the first eigenfunction, normalized so that ∥f∥L2(µ) = 1.
Set λ = 1/CP (µ). By the Bochner formula and the Poincaré inequality for ∂if (i = 1, . . . , n),

λ2 =

∫
Rn
(Lf)2dµ =

∫
Rn
[(∇2ψ)∇f · ∇f ]dµ+

∫
Rn

∥∇2f∥2HSdµ

≥ t

∫
Rn

|∇f |2dµ+ λ

[∫
Rn

|∇f |2dµ−
∣∣∣∣∫

Rn
∇fdµ

∣∣∣∣2
]

= (t+ λ) · λ− λ

∣∣∣∣∫
Rn

∇fdµ
∣∣∣∣2 . (18)
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Therefore the first eigenfunction has a “preferred direction”, i.e.,∣∣∣∣∫
Rn

∇fdµ
∣∣∣∣2 ≥ t. (19)

We remark that in the general case, under log-concavity assumptions it is known that
∫
Rn ∇fdµ ̸=

0, see [28], and this leads to a bound on the dimension of the first eigenspace. The lower bound
(19) is a quantitative version, relying on the assumption of a uniform lower bound on the log-
concavity. Using that the ith coordinate of ∇f is ∇f · ∇xi and integrating by parts we have∫

Rn
∇fdµ = −

∫
Rn
(Lf)xdµ = λ

∫
Rn
fxdµ

Since
∫
fdµ = 0, by Cauchy-Schwartz, for some θ ∈ Sn−1,∣∣∣∣∫

Rn
∇fdµ

∣∣∣∣ = ∫
Rn
⟨∇f, θ⟩dµ = λ

∫
Rn
f(x)⟨x, θ⟩dµ(x) ≤ λ∥f∥L2(µ)·

√
Cov(µ)θ · θ ≤ λ∥Cov(µ)∥op.

This expression is at least t, and the theorem follows.

Since ∥Cov(µ)∥op ≤ CP (µ), we deduce from Theorem 15 that

CP (µ) ≤
1

t
. (20)

Inequality (20) is sometimes referred to as the log-concave Lichnerowicz inequality. Therefore
the bound in Theorem 15 is a geometric average of the Lichnerowicz bound and the conjectural
KLS bound.

The Bochner identity has quite a few additional applications in the study of log-concave
measures, beyond the improved log-concave Lichnerowicz inequality. Especially if one intro-
duces the semigroup (etL)t≥0 associated with the operator L (see e.g. Ledoux [35]), as we see
in Joseph’s lectures. Yet even simple integrations by parts and duality arguments based on the
Bochner identity lead to non-trivial conclusions. One example is the Brascamp-Lieb inequality
[9] from the 1970s:

Theorem 16 (Brascamp-Lieb). For any C1-smooth f ∈ L2(µ),

V arµ(f) ≤
∫
Rn

(
∇2ψ

)−1∇f · ∇f dµ(x),

where V arµ(f) =
∫
Rn(f − E)2 dµ(x), and E =

∫
Rn fdµ.

Proof. We will only prove this inequality for regular, log-concave measures, though it holds true
under weaker regularity assumptions. The space of all µ-tempered functions is denoted by Fµ.
It is clearly a dense subspace of L2(µ) and in fact its image under L is dense in

φ⊥
0 =

{
g ∈ L2(µ) ;

∫
Rn
gdµ = 0

}
.
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Indeed, the image contains all finite linear combinations of all eigenfunctions φ1, φ2, . . . (without
φ0) which is dense in H . Assume

∫
f dµ = 0, ε > 0 and pick u ∈ Fµ such that

∥Lu− f∥L2(µ) < ε.

Then,

V arµ(f) = ∥f∥2L2(µ) = ∥Lu− f∥2L2(µ) + 2

∫
fLu dµ−

∫
(Lu)2 dµ

≤ ε2 − 2

∫
∇f · ∇u dµ−

∫
(∇2ψ)∇u · ∇u dµ

≤ ε2 +

∫
(∇2ψ)−1∇f · ∇f dµ,

where we have used the fact that∫
(Lu)2 dµ ≥

∫
(∇2ψ)∇u · ∇u dµ,

which follows from Bochner’s formula and

−2x · y − Ax · x ≤ A−1y · y ⇐⇒ |
√
Ax+

√
A−1y|2 ≥ 0.

The desired inequality follows by letting ε tend to zero.

Remark. The Brascamp-Lieb inequality is an infinitesimal version of the Prékopa-Leindler
inequality. Suppose that f0, f1 : Rn → [0,∞) are integrable, log-concave functions and

ft(x) = sup
x=(1−t)y+yz

f0(y)
1−tf1(z)

t.

The Prékopa-Leindler inequality implies that log
∫
Rn ft is concave in t. The second derivative in t

is non-negative, and this actually amounts to the Brascamp-Lieb inequality. Thus the Brascamp-
Lieb inequality is yet another incarnation of the Brunn-Minkowski theory.

We say that a function ψ on the orthant Rn
+ is p-convex if ψ(x1/p1 , . . . , x

1/p
n ) is a convex

function of (x1, . . . , xn) ∈ Rn
+.

Corollary 17. Let µ be a probability measure in the orthant Rn
+, set e−ψ = dµ/dx and assume

that ψ is p-convex for p = 1/2. Then for any C1-smooth function f ∈ L2(µ),

V arµ(f) ≤ 4

∫
Rn

n∑
i=1

x2i |∂if |2 dµ(x).

For general p > 1, replace the coefficient 4 by p2/(p− 1).
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Proof. Change variables and use the Brascamp-Lieb inequality. Denote dµ
dx

= e−ψ. Then for

π(x1, · · · , xn) = (x21, · · · , x2n),

the function ψ(π(x)) is convex. Set

φ(x) = ψ(π(x))−
n∑
i=1

log(2xi).

Then π−1 pushes-forward µ to the measure with density e−φ. Moreover,

∇2φ(x) ≥ ∇2

(
−

n∑
i=1

log(2xi)

)
=


1
x21

0 · · · 0

0 1
x22

· · · 0
...

... . . . ...
0 0 · · · 1

x2n

 > 0,

and therefore

(
∇2φ(x)

)−1 ≤


x21 0 · · · 0
0 x22 · · · 0
...

... . . . ...
0 0 · · · x2n

 .

Set g(x) = f(π(x)). By the Brascamp-Lieb inequality,

V are−φ(g) ≤
∫
Rn+

[(
∇2φ

)−1∇g · ∇g
]
e−φ(x) dx ≤

∫
Rn+

n∑
i=1

x2i |∂ig(x)|2e−φ(x) dx.

The corollary follows since
V are−φ(g) = V are−ψ(f).

and since when y = π(x) = (x21, · · · , x2n) we have

xi∂ig(x) = 2yi∂if(y).

Exercise. if ψ : Rn
+ → R is convex and increasing in all of the coordinate directions, then ψ

is p-convex for p = 1/2, i.e., ψ(x21, . . . , x
2
n) is convex in the orthant.

A function ψ : Rn → R is invariant under coordinate reflections (a.k.a unconditional) if

ψ(x1, . . . , xn) = ψ(|x1|, . . . , |xn|) for all x ∈ Rn.

If ψ is moreover convex, then ψ|Rn+ is increasing in all coordinate directions. The following thin
shell bound from [28] is optimal.
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Corollary 18. Suppose that X is a random vector that is log-concave, isotropic and uncondi-
tional in Rn. Then,

V ar(|X|) ≤ C.

Proof.

V ar(|X|) ≤ E(|X| −
√
n)2 ≤ 1

n
E(|X|2 − n)2 =

1

n
V ar(|X|2)

≤ 4

n

n∑
i=1

EX2
i (2Xi)

2 =
16

n

n∑
i=1

EX4
i ≤ C

n

n∑
i=1

(EX2
i )

2 ≤ C

where we used reverse Hölder inequalities in the last passage.

We remark that as of May 2024, the state of affairs is that the KLS conjecture is still open al-
ready in the particular case of unconditional convex bodies. A logarithmic bound for the Poincaré
constant in this case is known for years, see [28], and it is subsumed by recent bounds for the
general case.

4 Gaussian Localization
Yesterday we discussed localization of a log-concave measure into needles, one-dimensional
segments. We proceed by discussing Gaussian localization, decomposing the given measure into
a mixture of measures, each of which involves multiplying the given measure by a Gaussian. The
Gaussians bring with them a wealth of connections and elegant formulae, as we see below. The
method was invented by Ronen Eldan [17] and it is coined Eldan’s Stochastic Localization. We
present a rather degenerate case of Eldan’s method, which does not require stochastic processes.

Let Z be a standard Gaussian random vector in Rn, of mean zero and covariance Id. Recall
that for s > 0 write γs for the density of

√
s · Z. Let X be a log-concave random vector in Rn

independent of Z, with density ρ. For s ≥ 0 consider the random vector

Ys = X +
√
sZ

whose density is ρ ∗ γs.
One could think of (Ys) as a process parameterized by s, perhaps as a Browniam motion

starting at the initial distribution of X . This point of view, with the time reversal t = 1/s,
is emphasized in Joseph’s lectures. In the present lecture do not consider a stochastic process
parameterized by s, and view s > 0 as a parameter whose value will be fixed later on. One of the
simplest examples of Gaussian localization of the probability density ρ is given by the following:

Proposition 19. For s > 0, y ∈ Rn consider the probability density

ρs,y(x) =
ρ(x)γs(x− y)

ρ ∗ γs(y)
,
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which we view as a localized “Gaussian needle” or “Gaussian piece” relative to ρ. Then the
original density ρ is a certain average of these Gaussian needles:

ρ = Eρs,Ys .

One says that this is a disintegration of ρ into the localized Gaussian pieces (ρs,y)s∈Rn .

Proof. The joint density of (X, Ys) in Rn × Rn is

(x, y) 7→ ρ(x)γs(y − x).

The family of densities ρs,y give us the conditional distribution of X with respect to Ys. That is,
for any test function f(x, y),∫

Rn
f(x, y)ρ(x)γs(y − x)dxdy =

∫
Rn

[∫
Rn
f(x, y)ρs,y(x)dx

]
ρ ∗ γs(y)dy

In particular, if the function f(x, y) depends only on x, we get∫
Rn
fρ =

∫
Rn

[∫
Rn
fρs,y

]
ρ ∗ γs(y)dy = E

∫
Rn
fρs,Ys .

From the proof of Proposition 19 we see that the densities ρs,y give us the conditional distri-
bution of X with respect to Ys. The conditional expectation operator is denoted by

Qsf(y) =

∫
Rn
fρs,y,

whenever the integral converges. Thus

Qsf(Ys) = E [f(X)|Ys] .

Assume that the original density ρ is log-concave. Then each of the elements ρs,y in the
decomposition is more log-concave than the Gaussian γs. We have thus expressed our log-
concave density as a mixture of measures that are uniformly log-concave. This decomposition is
determined by the choice of the parameter s > 0.

The critical value of s turns out to be s ∼ CP (X). Roughly speaking, for much smaller
values of s, we decompose into highly localized measures, maybe even resembling δ measures.
For much larger values of s the decomposition is trivial for another reason: the localized pieces
resemble the original measure. Abbreviate

ρs = ρs,Ys ,
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a random probability density. Recall that Eρs = ρ by Proposition 19. As usual, for a function f
on Rn we write

V arρs(f) =

∫
Rn
f 2ρs −

(∫
Rn
fρs

)2

,

provided that the integrals converge. Similarly, we also write V arρ(f) = V arf(X). Then by
the law of total variance,

V arf(X) = EV ar(f(X)|Ys) + V ar(E(f(X)|Ys)) = EV arρs(f) + V ar(Qsf(Ys))

When s ≳ CP (X), it is the first summand that is dominant:

Lemma 20. For any s > 0 and a function f on Rn with Ef 2(X) <∞,

EV arρs(f) ≤ V arρ(f) ≤
(
2 +

CP (X)

s

)
EV arρs(f).

Proof. We need to show that V arQsf(Ys) is not much larger than EV arρs(f). To this end, we
will use the Poincaré inequality for the random vector Ys. By the subadditivity property of the
Poincaré constant,

CP (Ys) = CP (X +
√
sZ) ≤ CP (X) + CP (

√
sZ) = CP (X) + s.

Hence
V arQsf(Ys) ≤ (CP (X) + s) · E|∇Qsf(Ys)|2.

Recall that

Qsf(y) =

∫
Rn
ρs,y(x)f(x)dx =

∫
Rn

ρ(x)γs(x− y)

ρ ∗ γs(y)
f(x)dx.

Differentiating a Gaussian is easy, we have ∇γs(x) = −γ(s) · x/s. It follows that

∇Qsf(y) =

∫
Rn

x− as
s

ρs,y(x)f(x)dx,

where as = as,y =
∫
Rn xρs,y(x)dx is the barycenter of the local measure ρs,y. WriteAs = As,y =

Cov(ρs,y). By the Cauchy-Schwartz inequality, for θ ∈ Sn−1,

∇Qsf(y) · θ =
∫
Rn

(x− as) · θ
s

ρs,y(x)f(x)dx ≤ 1

s

√∫
Rn

|(x− as) · θ|2 ps,y(x)dx
√
V arρs,y(f)

≤ 1

s

√
∥As∥op ·

√
V arρs,y(f).

Then by taking the supremum over θ ∈ Sn−1,

V arQsf(Ys) ≤
CP (X) + s

s2
· E∥As∥op · V arρs(f).
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However, the random probability density ρs is always more log-concave than the Gaussian γs,
and hence As ≤ s. Consequently,

V arQsf(Ys) ≤
CP (X) + s

s
· EV arρs(f).

Since V arρ(f) is the sum of the two expressions V arQsf(Ys) and V arρs(f), the proposition is
proven.

To summarize, for s ≳ CP (µ), the local measure ρs is typically close enough to the original
measure, so the variance of any fixed function with respect to ρ is roughly the averaged variance
with respect to ρs.

Remark. By differentiating with respect to s, one may improve upon Proposition 20 in two
respects. First, it turns out that log-concavity is actually not needed in Proposition 20. It is proven
in Klartag and Ordentlich [34] that for any random vectorX and a function f with Ef 2(X) <∞,

V arρ(f) ≤
(
1 +

CP (X)

s

)
EV arρs(f). (21)

This is a better bound than that of Lemma 20.

Corollary 21. For any s > 0, setting α = s/CP (X),

CP (X) ≤ C

(
1 +

1

α

)
· ECP (ρs),

where C > 0 is a universal constant.

Proof. Let f : Rn → R be a 1-Lipschitz function with

V arµ(f) ≥ c · CP (X),

whose existence in guaranteed by Corollary 13 due to E. Milman. By Proposition 20 and the
Poincaré inequality,

V arµ(f) ≤
(
2 +

1

A

)
EV arρs(f) ≤

(
2 +

1

A

)
ECP (ρs) ·

∫
Rn

|∇f |2ρs ≤
(
2 +

1

A

)
ECP (ρs).

Thus, in order to bound the Poincaré constant ofX , we may apply Gaussian localization with
s ≳ CP (µ) and try to bound the Poincaré constant of ρs. An advantage of ρs over ρ is that ρs
is more log-concave than the Gaussian γs. Hence, by the improved log-concave Lichnerowicz
inequality, which is Theorem 15 above,

CP (ρs) ≤
√
s · ∥As∥op

where we recall that As = Cov(ρs). Therefore, Corollary 21 leads to another corollary:
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Corollary 22. For any s > 0,

CP (X) ≤ C

(
1 +

CP (X)

s

)
·
√

E∥As∥op · s.

What do we know about E∥As∥op? Assume from now on thatX is log-concave and isotropic,
so for large s > 0 we might expect As to be roughly Cov(X) = Id. However, the operator norm
involves a supremum, and this complicates matters. The evolution of the operator norm of the
covariance matrix is analyzed in great detail in Joseph’s lectures using stochastic processes and
computations involving 3-tensors. He proves the following:

Theorem 23 (Eldan [17], Lee-Vempala [37], Chen [14], Lehec [38]). Define

s0 = min{s > 0 ; ∀r > s, E∥Ar∥op ≤ 5}.

Then,
s0 ≤ C log2 n (22)

where C > 0 is a universal constant. This bound utilizes the improved Lichnerowicz inequality,
proven only recently. A slightly older bound that suffices here (e.g. [32, 38]) is

s0 ≤ C log n · supCP (µ)

where the supremum runs over all isotropic, log-concave probability measures µ on Rn.

Moreover, s0 ≥ c log n in some examples, say when 1+X1, 1+X2, . . . , 1+Xn are indepen-
dent, identically distributed standard Exponential random variables.

My guess is that stochastic processes and pathwise analysis of are not essential for the proof
of Theorem 23, and that an analytic proof is possible to find. There are other applications of
stochastic localization which seem to rely heavily on pathwise analysis (e.g., the complex waist
inequalities in [30]). By using Theorem 23 and Corollary 22 with s = C log2 n we thus arrive at

Corollary 24 (“best known bound for KLS”). For any isotropic, log-concave random vector X
in Rn,

CP (X) ≤ C log n (23)

where C > 0 is a universal constant.

Proof. We have

CP (X) ≤ C

(
1 +

CP (X)

log2 n

)
·
√

log2 n,

which implies (23).
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5 Bourgain’s slicing problem
Consider a centrally-symmetric convex body K ⊆ Rn (i.e. K = −K). The maximal function
operator associated with K, defined for f : Rn → R via

MKf(x) = sup
r>0

∫
K

f(x+ ry)
dy

V oln(K)
.

Bourgain [8] proved that ∥MK∥L2(Rn)→L2(Rn) ≤ C for a universal constant C > 0. This led him
to study on another question, seemingly innocent:

Question 25. Let n ≥ 2 and suppose that K ⊆ Rn is a convex body of volume one. Does there
exist a hyperplane H ⊆ Rn such that

V oln−1(K ∩H) > c (24)

for a universal constant c > 0?

This question is still not completely answered, and in the last four decades it emerged as an
“engine” for the development of the research direction discussed in these lectures. It is shown in
[33] that the bound (24) holds true if we replace the universal constant c on the right-hand side
by c/

√
log n. This is the currently best known result in the general case.

Theorem 26 (Hensley [23], Fradelizi [20]). LetK ⊆ Rn be a convex body whose barycenter lies
at the origin. Let X be a random vector distributed uniformly in K, and assume that Cov(X) is
a scalar matrix. Then for any θ1, θ2 ∈ Sn−1,

V oln−1(K ∩ θ⊥1 ) ≤ C · V oln−1(K ∩ θ⊥2 )

where C > 0 is a universal constant. In fact, C ≤
√
6.

Proof. Let θ ∈ Sn−1 and denote

σ =
√

E(X · θ)2 =
√
Cov(X)θ · θ,

which is independent of θ. Write

ρθ(t) =
V oln−1(K ∩ (tθ + θ⊥))

V oln(K)
,

the density of the random variableX ·θ. By the Brunn-Minkowski inequality, ρθ is a log-concave
probability density. The log-concave random variable X · θ/σ has mean zero and variance one,
and its density is x 7→ σρθ(xσ). According to Proposition 4 above, for any x ∈ R,

c′1{|x|≤c′′} ≤ σρθ(xσ) ≤ Ce−c|x|

In particular, c ≤ ρθ(0) ≤ C, for some universal constants c, C > 0.
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From this proof we may obtain a few more conclusions. First, that among all hyperplane
sections parallel to a given hyperplane, the hyperplane section through the barycenter has the
largest volume, up to a multiplicative universal constant. Second, that when K ⊆ Rn is a
centered convex body of volume one, for any θ ∈ Sn−1,

V oln−1(K ∩ θ⊥) ·
√
E(X · θ)2 ∼ 1.

Here θ⊥ = {x ∈ Rn ; x · θ = 0} and we abbreviate A ∼ B if c · A ≤ B ≤ C · A for universal
constants c, C > 0. This leads to the following conclusion:

Corollary 27. Let K ⊆ Rn be a convex body of volume one and let X be a random vector
distributed uniformly on K. Then,

sup
H
V oln−1(K ∩H) ∼ 1√

∥Cov(X)∥op
,

where the supremum runs over all hyperplanes H ⊆ Rn.

We thus see that Bourgain’s slicing problem can be formulated as a question on the relation
between the covariance of a convex body and its volume. Note that the logarithm of the volume
of a convex body is the differential entropy of a random vector X that is distributed uniformly
over the convex body. In general, when the random vector X has density ρ in Rn, its differential
entropy is

Ent(X) = −
∫
Rn
ρ log ρ.

Definition 28. For a convex body K ⊆ Rn we define its isotropic constant to be

LK =

(
detCov(K)

V oln(K)2

) 1
2n

where Cov(K) is the covariance matrix of the uniform probability distribution on K. More
generally, the isotropic constant of an absolutely-continuous, log-concave random vector X in
Rn is

LX =

(
detCov(X)

e2Ent(X)

) 1
2n

. (25)

The isotropic constant of a convex body K ⊆ Rn of volume one governs the volumes of its
hyperplane sections. From Corollary 27 we see that when V oln(K) = 1, there always exists a
hyperplane section H ⊆ Rn with

V oln−1(K ∩H) ≥ c/LK .

Moreover, if we additionally assume that Cov(K) is a scalar matrix, then for any hyperplane
H ⊆ Rn through the barycenter of K,

V oln−1(K ∩H) ∼ 1

LK
.
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The slicing problem thus asks whether LK is universally bounded from above.

Remark on the definition of the isotropic constant in the log-concave case. Some variants
of this definition exist, sometimes one replaces Ent(X) by − log sup ρ or by − log ρ(EX) or by
2 logEρ−1/2(X), where ρ is the density of X . These variants differ at most by a multiplicative
universal constant, because of the following lemma:

Lemma 29. Denoting ψ = − log ρ, we have

ψ(EX) ≤ Ent(X) ≤ inf ψ + n

and
Ee

ψ(X)
2 ≤ e

inf ψ
2

+(ln 2)n.

Proof. We may assume that ρ is continuous in Rn in order to neglect boundary terms in the
integration by parts below. Let y ∈ Rn. Then by Jensen’s inequality and by the fact that any
convex function lies above its tangent at X ,

ψ(EX) ≤ Eψ(X) = Ent(X) = Eψ(X) ≤ E [ψ(y)−∇ψ(X) · (y −X)] = ψ(y) + n.

Additionally,

Ee
ψ(X)

2 = e
ψ(y)
2

∫
Rn
e−

ψ(x)+ψ(y)
2 dx ≤ e

ψ(y)
2

∫
Rn
e−ψ(

x+y
2 )dx = 2ne

ψ(y)
2

∫
e−ψ = 2ne

ψ(y)
2 .

The lemma follows by taking the infimum over all y ∈ Rn in these two inequalities

It what follows we work with the definition (25). While here we are interested only in the
log-concave case, the definition makes sense for any absolutely-continuous random vector X
with finite second moments in Rn. The isotropic constant measures the difference between two
ways to measure the “size” of a random vector: its entropy and its covariance. Here are some
basic properties of the isotropic constant:

1. It is an affine invariant, LT (X) = LX for any invertible linear-affine map T : Rn → Rn.

2. If X1, X2 ∈ Rn are independent log-concave random vectors, then for X = (X1, X2) ∈
R2n ∼= Rn × Rn,

LX =
√
LX1LX2 .

3. For any dimension n and an absolutely-continuous random vector X with finite second
moments in Rn,

LX ≥ 1√
2πe

,
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with equality when X is Gaussian. Indeed, it is well-known that among all random vectors
with a fixed covariance in Rn, the differential entropy is maximal for the Gaussian distri-
bution. The proof is short. Suppose that X is a random variable of mean zero, variance
one and density ρ. Then for γ(x) = (2π)−1/2 exp(−x2/2) the standard Gaussian density,∫

R
ρ log

γ

ρ
≤
∫
R
f

(
γ

ρ
− 1

)
= 0

so

Ent(X) = −
∫
ρ log ρ ≤ −

∫
ρ log γ = −

∫ ∞

−∞
ρ(x) log

e−|x|2/2
√
2π

dx = log
√
2πe.

Exercise. Explain why it is not a coincidence that this universal constant
√
2πe is “the

same number” from the asymptotics V oln(
√
nBn)1/n ≈ 1/

√
2πe.

4. Some examples:

L[0,1]n =
1√
12
, L∆n =

(n!)1/n

(n+ 1)(n+1)/(2n)
√
n+ 2

≈ 1

e
.

where ∆n is a regular simplex in Rn.

There are quite a few equivalent formulations and conditional statements, relating the isotropic
constant to classical conjectures and results:

• If the isotropic constant is maximized for the cube among all centrally-symmetric con-
vex set, then the Minkowski lattice conjecture follows, see Magazinov [40] and references
therein. The Minkowski lattice conjecture suggests that if L ⊆ Rn is a lattice of determi-
nant one, then each of its translates intersects the set{

x ∈ Rn ;
n∏
i=1

|xi| ≤
1

2n

}
.

This was proven in two dimensions by Minkowski in 1908.

• If the isotropic constant is maximized for the simplex among all convex bodies, then the
Mahler conjecture follows in the non-symmetric case. This conjecture suggests that among
all convex bodies K ⊆ Rn, the volume product

V oln(K) · V oln(K◦)

is minimized when K is a centered simplex [31]. This was proven in two dimensions by
Mahler in 1908. Here

K◦ = {x ∈ Rn ; ∀y ∈ K, x · y ≤ 1}
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is the dual body. Recall that (K◦)◦ = K when K is a closed, convex set containing the
origin. The Bourgain-Milman inequality resolves this conjecture up to a factor that is only
exponential in the dimension. It states that for any convex body K ⊆ Rn containing the
origin,

V oln(K) · V oln(K◦) ≥ (c/n)n,

for a universal constant c > 0.

• Suppose that K ⊆ Rn is a convex body. Is there an ellipsoid E ⊆ Rn with V oln(E) =
V onn(K) such that

V oln(K ∩ CE) ≥ 1

2
· V oln(K)

where C > 0 is a universal constant? This is an equivalent formulation of the slicing
problem.

Exercise. Prove the equivalence using reverse Hölder inequalities for quadratic polynomi-
als.

For any convex body K ⊆ Rn, Milman’s ellipsoid theorem provides an ellipsoid E ⊆ Rn

with
V oln(K ∩ CE) ≥ cn · V oln(K).

This suffices for developing the Milman ellipsoid theory, which contains the quotient of
subspace theorem and reverse Brunn-Minkowski and the Bourgain-Milman inequality. See
Pisier [43] and references therein. The slicing problem is a conjectural strengthening of
Milman’s ellipsoids.

We move on to discuss the
√
log-bound for the isotropic constant, and the relation to the

Poincaré constant and the thin shell constants. We define

σn = sup
X

√
V ar(|X|2)/n

where the supremum ranges over all isotropic, log-concave random vectors X in Rn. By reverse
Hölder inequalities for polynomials we may show that V ar(|X|2)/n ∼ V ar(|X|), and hence
σn is roughly the maximal width of the thin spherical shell that captures most of the mass of an
isotropic, log-concave random vector.

(some picture here)

From Corollary 24 we know that,

σn ≤ sup
X

√
CP (X) · 4E|X|2/n ≤ sup

X
2
√
CP (X) ≤ C

√
log n.

Hence it remains to prove:
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Theorem 30 (Eldan, K. ’10). For any convex body K ⊆ Rn,

LK ≤ Cσn.

(In fact, it is shown in [18] that LX ≤ Cσn for any log-concave random vector X in Rn, but
for simplicity we confine ourself here for the convex body case. The slicing problem for convex
bodies and for log-concave measures are known to be equivalent, as shown by Ball [3, 26].

While yesterday we studied Gaussian convolution, the proof of Theorem 30 utilizes the
closely related Laplace transform. Let us fix an isotropic, log-concave random vector X with
density ρ in Rn. Its logarithmic Laplace transform is

Λ(y) = ΛX(y) = logEeX·y.

Since a log-concave random vector has exponential moments, the logarithmic Laplace transform
is finite near the origin. In fact, it is smooth in the open convex set Ω = {Λ < ∞}. For y ∈ Ω
we write Xy for a random vector with density

ρy(x) =
ρ(x)ex·y

eΛ(y)
.

It is again a log-concave random vector, not necessarily isotropic, and we think of it as a tilted
version of the random vector X . We comment that it is possible to view tilts using projective
transformations, this leads to conditional statement that the strong slicing conjecture implies the
Mahler conjecture, see [31].

Lemma 31. For any y ∈ Ω,

∇Λ(y) = EXy, ∇2Λ(y) = Cov(Xy), ∇3Λ(y) = E(Xy − ay)
⊗3,

where ay = EXy.

Lemma 31 is proven by direct computation; the logarithmic Laplace transform is the cumu-
lant generating function. We see from Lemma 31 that Λ is convex, even strongly-convex as
its Hessian is positive definite. In particular the gradient ∇Λ : Ω → Rn is a one-to-one map.
Consider the “tilted determinant” function

F (y) = log det∇2Λ(y) = log det∇2Cov(Xy).

It measures how the determinant of the covariance matrix changes when we tilt the given distri-
bution. Occasionally we may view F as a function that is defined only up to an additive constant.
Write [F ] for the equivalence class of F under the equivalence relation “F is equivalent to G if
and only if F −G is a constant function”.

Lemma 32. The following bound holds pointwise in all of Ω:

(∇2Λ)−1∇F · ∇F ≤ nσ2
n. (26)
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Proof. Let us prove this bound first for y = 0 using the isotropicity of X . Recalling how to
differentiate a determinant, we see that for any unit vector v ∈ Sn−1,

∂vF (0) = Trace
[
(∇2Λ)−1(0) · ∂v∇2Λ(0)

]
= E(X·v)|X|2 ≤

√
E(X · v)2 · V ar(|X|2) ≤

√
nσn.

By considering the supremum over all v ∈ Sn−1, we obtain the desired bound at y = 0.

In order to obtain the bound for any y ∈ Ω we may either make a computation, or alterna-
tively, think invariantly without computing anything, as we now explain.

Define a Riemannian metric on Ω via the Hessian of the log-Laplace transform Λ. We look
at the Hessian metric (Ω, g), where the scalar product of two tangent vectors u, v ∈ TxRn ∼= Rn

is
gx(u, v) = ∇2Λ(x)u · v.

The main observation is that the expression on the left-hand side of (26) is the squared Rieman-
nian length of the Riemannian gradient of the function F : Ω → R. We say that

MX = (Ω, g, [F ])

is the “Riemannian package” associated with X . This means that (Ω, g) is a Riemannian man-
ifold and that F is a function on Ω modulo an additive constant. An isomorphism between
two Riemannian packages is a bijective map which is a Riemannian isometry and transforms
correctly the function modulo the additive constant.

What happens to the Riemannian package associated withX when we do various operations?

• When we translate X , the Riemannian metric stays the same, as well as the function F .
We get the same Riemannian package.

• Tilting X and switching to Xy yields an isomorphism of the two Riemannian packages
by translation by y: We translate Ω, g and [F ] by the vector y ∈ Ω. Any translation
corresponds to a tilt and vice versa.

• Applying an invertible linear transformation to X induces an isomorphism of the Rieman-
nian packages. We apply a linear transformation and push forward Ω, g and [F ]. (See also
the paragraph before the next lemma).

By the first and last items, we proved (26) at the point y = 0 for any log-concave random vector
(not necessarily centered or isotropic). By the middle item, we proved (26) also at all other points
of Ω.

It makes sense to say that we think of X as a random vector defined on an abstract affine
space, rather than on Rn, and observe that the Riemannian manifold (Ω, g) is well-defined, as
well as the function F : Ω → R modulo additive constants. What can we say about balls in this
Riemannian manifold?
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Lemma 33. Assume thatX is a centered, log-concave random vector in Rn. Then for any r > 0,

1

2
· {Λ ≤ r} ⊆ Bg(0,

√
r).

Proof. Let y ∈ Ω satisfy Λ(2y) ≤ r. We need to find a curve from 0 to y whose Riemannian
length is at most r. Let us try a line segment:

Lengthg([0, y]) =

∫ 1

0

√
∇2Λ(ty)y · ydt =

∫ 1

0

√
d2

dt2
Λ(ty)dt

≤

√∫ 2

0

(2− t)
d2

dt2
Λ(ty)dt ·

∫ 1

0

1

2− t
dt

=
√

log 2 ·
√

Λ(2y)− [Λ(0) +∇Λ(0) · (2y)] =
√

log 2 ·
√

Λ(2y) ≤
√
r.

Let X be an isotropic random vector in Rn, distributed uniformly in a convex body K ⊆ Rn.
We need two estimates for the proof of Theorem 30:

(i) First, we need to show that for r = n/σ2
n,

V oln(K) ≥ e−n · V oln(Bg(0,
√
r)),

the Euclidean volume of the Riemannian ball. This is related to mass transport in a simple
case.

(ii) Second, we need to show that

V oln({Λ ≤ r})1/n ≥ c
r

n
LK .

This is related to the Bourgain-Milman inequality.

Proof of Theorem 30. Since X is isotropic and log-concave, by (i), (ii) and Lemma 33,

LK = V oln(K)−1/n ≤ c · V oln(Bg(0,
√
r))−1/n ≤ c · V oln({Λ ≤ r})−1/n ≤ C

n

rLK
= C

σ2
n

LK
,

and LK ≤ Cσn.
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Proof of estimate (i): The function F vanishes at the origin, and by Lemma 32 it is a Riemannian
Lipschitz function with Lipschitz constant at most

√
nσn. Hence,

|F | ≤ n in Bg(0,
√
r).

Consequently, for any y ∈ Bg(0,
√
r),

e−n ≤ det∇2Λ(y) ≤ en.

We will use the fact that ∇Λ(y) = EXy ∈ K and that y 7→ ∇Λ(y) is one-to-one. Changing
variables, we obtain

V oln(K) ≥
∫
∇Λ(Bg(0,

√
r))

1dx
“x=∇Λ(y)′′

=

∫
Bg(0,

√
r)

det∇2Λ(y) ≥ e−n · V oln(Bg(0,
√
r)).

Proof of estimate (ii): For any y ∈ rK◦,

Λ(y) = logEey·X ≤ log(er) = r.

Therefore,
{Λ ≤ r} ⊇ rK◦.

By the Bourgain-Milman inequality,

V oln({Λ ≤ r})1/n ≥ V oln(rK
◦)1/n ≥ c

r

n
V oln(K)−1/n = c

r

n
LK .

We remark that the Bourgain-Milman inequality has several proofs, and in particular it may
be proven using more delicate analysis of the log-Laplace transform as shown by Giannopoulos,
Paouris and Vrisiou [21].
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Recherches Mathématiques. Dunod, Paris, 1958.

[40] A. Magazinov. A proof of a conjecture by Haviv, Lyubashevsky and Regev on the second
moment of a lattice Voronoi cell. Adv. Geom., 20(1):117–120, 2020.

[41] E. Milman. On the role of convexity in isoperimetry, spectral gap and concentration. Invent.
Math., 177(1):1–43, 2009.

[42] L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for convex domains.
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