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Long lines in subsets of large measure in high
dimension

Dor Elboim and Bo’az Klartag

Abstract

We show that for any set A C [0, 1]" with Vol(A) > 1/2 there exists a line ¢ such that
the one-dimensional Lebesgue measure of £ N A is at least Q(n'/*). The exponent 1/4 is
tight. More generally, for a probability measure p on R™ and 0 < a < 1 define

L(p,a):= inf sup|fNA
(k. ) A?H(A):afline‘ |
where | - | stands for the one-dimensional Lebesgue measure. We study the asymptotic

behavior of L(u, a) when i is a product measure and when  is the uniform measure on the
¢, ball. We observe a rather unified behavior in a large class of product measures. On the
other hand, for £, balls with 1 < p < oo we find that there are phase transitions of different

types.

1 Introduction

One of the simplest high-dimensional features of the geometry of R", for large n, is the fact
that rather long segments fit inside the n-dimensional unit cube. In fact, both the unit cube
and the Euclidean ball of volume one contain segments of length ¢y/n, for a universal constant
¢ > 0. More generally, let X' C R" be a convex body of volume one. The classical isodiametric
inequality states that /' necessarily contains a segment of length

<\/7Tz +o)) - Vi

with the Euclidean ball being the extremal case. Can one avoid these long segments by restricting
to a subset of K of volume 1/2? In order to exclude trivial answers involving removing a dense
set of small measure, we slightly modify this question and formulate it precisely as follows: Does
there exist a subset A C K of volume 1/2 such that for any line ¢ in R",

AN <C (1)

for a universal constant C' > 0? Here, |A N /| is the one-dimensional length measure of the
intersection of A with the line /. We may answer this question in the affirmative in the example
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where K is a Euclidean ball of volume one centered at the origin. In this case, the thin spherical
shell

A:K\(l—%)[( 2)

has a volume of 1 — (1 — 1/n)* =& 1 — 1/e > 1/2. An elementary argument based on the
curvature of the sphere shows that this subset A does not contain any long segment, and that (1))
holds true with a universal constant C' > 0. The answer is nearly affirmative, up to logarithmic
factors, also in the case of /,-balls for 1 < p < 2. That is, when

n 1/p
K =Bl = {xER” : <Z|:ci\p) gnp,n} 3)

i=1

where k,, = (1 +n/p)/"/(20'(1 + 1/p)) is chosen so that K has volume one. The situa-
tion changes when one considers the case where p & (1, 2], as we explain below. For a Borel
probability measure © on R" and a parameter 0 < a < 1 we define

L(p,a) := inf sup [{NA
() Aip(A)=a g lirg | |
where the infimum runs over all Borel subsets A C R™ with y(A) > a, and the supremum
runs over all lines ¢ C R™. We write A\ for the uniform probability measure on a convex body
K C R and abbreviate L(K,a) = L(Ag,a). The definition (3) of B; makes sense for all
1 < p < o0, and by continuity BZ := {x € R™ : Vi, |z;| < 1/2} is a unit cube.

Theorem 1.1. Letn > 1 and 1 < p < oo. Then,

(®(n1/4) p:17oo
2-p
L(B!,1/2) = O, ((logn) 2P> l<p<2
\ GP(nZﬁé) 2<p<oo

Here, ©O(X) stands for a quantity Y with cX <Y < CX for universal constants ¢,C > 0. By
©,(X) we mean that the constants c, C are not universal, but allowed to depend on p solely.

Remark 1.2. The constant 1/2 in the theorem can be replaced by any other fixed a € (0, 1).
However, the estimates will not be uniform as ¢ — 0 or a — 1.

A somewhat peculiar feature of Theorem|l.1lis the exponent

p—2
4dp 4 2

in the case 2 < p < oo, which interpolates continuously between the values 0 and 1/4 attained
at the endpoints p = 2, co. There is a discontinuity at p = 1, where the exponent jumps to 1/4.
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Figure 1: The exponent (p) appears in black. Theorem [ 1Istates that L(B?,1/2) = ©(n'®).
The exponent §(p) in blue. Theorem [[Tstates that for 1 < p < 2, L(B2,1/2) = ©((logn)°®).

For p = 1, 00, an extremal set can be easily described, it suffices to consider the intrsection of
B;‘ with a Euclidean spherical shell,

A=B'n{zeR" : r < |zlls <r (1+C/vn)} 4)
for a certain value of r = ©(y/n), where |z, = > i, |2;|")"/?. For p in the range (1, 00), the

Euclidean-norm considerations are less prominent in our construction of an extremal set A.

We move on to a detailed analysis of the case of the unit cube in R™ with varying a € (0, 1).
In fact, our results hold not just for the uniform measure on the unit cube, but also for general
product measures p in R”, satisfying the following conditions:

(i) The measure y is absolutely-continuous with density []}"_, p;(z;), where the function p; :
R — [0,00) is smooth in the interval (—1/2,1/2), and in this interval the derivatives
(log p)*) for k = 0, ..., 4 are bounded in absolute value by C.

(ii) Sub-Gaussian tail: [*°_exp(ct?)p;(t)dt < C for all 4, for some constants ¢, C' > 0.

For example, the standard Gaussian measure in R”, whose density is (27)~"/2 exp(—||z||2/2),
satisfies (1) and (i1), as well as the uniform measure on the unit cube B,.

Theorem 1.3. Let n > 1,0 < a < 1 and let i be a probability measure on R" satisfying
conditions (i) and (ii). Then,
O (a-n'/) e <a<1/2
L(p,a) =
O (n'/*-|log(l —a)|V*) 1/2<a<1—e™"
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Here, the implies constants in the O(..) notation depend solely on the constants from conditions

(i) and (ii).

Thus, unless a is exponentially close to zero or to one, we observe universality in the class of
product measures. We can determine the value of L(j, a) up to a constant factor, no matter what
the precise details of the distribution p; are, as long as the tails are sub-Gaussian and the density
is somewhat regular near the origin. We suspect that the range min{a, 1 —a} < e~ corresponds
to the “large deviations” regime where the specifics of p; should matter.

It is possible to view Theorem [L.1l and Theorem [L.3]in the context of the Radon transform.
Write G for the collection of all lines in R". For a Borel measurable function f : R® — R we
define

RF(6) = /g I3

When f is, say, compactly-supported, the Radon transform Rf is a well-defined bounded func-
tion on G. Consider the case where f = 1,4, for a measurable subset A C R". Theorem [I.1] and
Theorem tell us that sup Rf is large, provided that A has a substantial intersection with an
¢,-ball, or that A has a non-neglible mass with respect to a certain product measure .

It is also possible to view our results in the context of the lower-dimensional Busemann Petty
problem, which is the case where A = K and where the line (or more generally and better, the
subspace) is forced to pass through the origin. See Koldobsky [14, Section 5.5] and references
therein for information about the lower-dimensional Busemann Petty problem.

In the discrete setting analogous questions have been studied, especially in the field of inci-
dence geometry. In the discrete world, lines with large Lebesgue measure are replaced by lines
having large number of points (large number of incidences on the line). For instance, see [17,
Theorem 3] for a bound of the number of ¢-rich lines (these are lines that contains at least ¢
points) in large subsets of points of a block design.

Another discrete result that shares similarities with the problems considered in this paper, is
the density Hales-Jewett theorem. This theorem states that in a sufficiently high dimension any
subset of positive density contains a combinatorial line. The theorem was proved by Furstenberg
and Katznelson [9, 10]. See also [[16] for an elementary proof. The exact statement is the
following. For any d € N and ¢ > 0 there exists ny = ng(d, ) such that for all n > ng

any subset A C {1,...,d}" with |A| > ed" contains a combinatorial line. A combinatorial line
is a set ¢ of size d of the form

(= {(Elal + (1 _El)ja"-vgnan_l_ (1 _gn)]) : ] S {177d}} (5)
where ay,...,a, € {1,...,d} and where 1, ...,¢e, € {0,1} are not all 1. In other words, in a

combinatorial line some coordinates (not all) are fixed, and some change linearly from 1 to d.

The exponent 1/4 observed in the case of the cube and the cross-polytope in Theorem [L.1lis
somewhat of a natural barrier for this problem. We say that a convex body KX C R" of volume
one is in isotropic position if its barycenter by = || , Tdx is at the origin and its covariance matrix

Cov(p) = / (x ® x)dz € R™"
K
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is a scalar matrix. Here, * ® = (2;x;); j=1,.» € R™*". For example, the convex body Bg isin
isotropic position for all p and n.

Proposition 1.4. Let n > 2 and let K C R" be a convex body of volume one in isotropic position.
Then,
L()\K7 1/2) < n1/4+o(1)’

where o(1) stands for a function of n that tends to zero as n tends to infinity.

In order to prove Proposition[I.4] we use a construction similar to (4 above, and consider the
intersection of /K with a thin Euclidean spherical shell,

A=Kn{zeR" :r < ||zfo <r (14 Cn /2P0 (6)

for a certain value of » = O(y/n). Indeed, it follows from the recent breakthrough by Chen [4]
combined with Eldan and Klartag [8] that the set A captures at least 1/2 of the mass of K. Yet
the subset A cannot intersect any line in a set whose length measure is above n'/4*°(1) as we see
from the proof of Corollary [3.7|below.

Remark 1.5. We remark in passing that for any convex body K C R" of volume one, we have
L(\k,1/2) > ¢, (7)

for a universal constant ¢ > 0. Our proof of (7)) uses convex geometric tools such as localization
and needle decomposition, and will be discussed elsewhere.

In a vague sense that we were not able to make precise, we feel that the exponent 1/4 corre-
sponds to the case of a “generic” convex body in isotropic position. Are there natural probability
measures 4 on R™ for which L(p, 1/2) is much larger than n'/4? Such measures had better be
unrelated to convexity and without a product structure of the type considered above.

Proposition 1.6. Let X, Y be independent, standard Gaussian random vectors in R". Let U be
a random variable, independent of X and Y, that is distributed uniformly in the interval [0, 1].
Write 1 for the probability measure on R"™ that is the law of the random vector

X +UY.

Then
L(p,1/2) = ©(V/n).

Unless stated otherwise, throughout this text we use the letters ¢, C, C etc. to denote positive
universal constants, whose value may change from one line to the next.



1.1 Main ideas in the proofs

We think of our main technique as a “Mermin-Wagner type argument in a random direction”, or
alternatively, as an approximate needle decomposition into segments that are as long as possible.
In order to explain this technique we sketch the proof of Theorem in the special case where
a =1/2 and pu = 7, is the standard Gaussian measure in R".

Suppose that A C R” satisfies 7,,(A) > 1/2. We would like to prove that there exists a line
¢ C R™ with
AN > ent/? (8)

where | - | stands for the one-dimensional Lebesgue measure. Let Z, W be independent standard
Gaussian random vectors in R". It is well-known (e.g., [18, Chapter 2]) that

P (|W] > +/n/2) > 0.9. 9)

Furthermore we claim that there exists ¢; > 0 such that for any r < ¢;n~'/4,

drv(Z,Z +1W) < 0.1 (10)

where dpy (X,Y) = supp |P(X € B) —P(Y € B)| is the total variation distance between X
and Y. A neat proof of (IQ) using Pinsker’s inequality can be found in [6]. It follows from (1Q)
and the fact that P(Z € A) = ~,(A) > 1/2 that

P(Z+rW € A) > 04.

Since the last inequality holds for any » < ¢;n~'/%, it holds when replacing  with a random
variable U distributed uniformly in the interval [0, c;n /4] that is independent of Z and WW. We
obtain using (9)) that

P(Z+UW € A, [W|>+/n/2) >0.3. (11)

It follows that there are realizations z, w € R™ with |w| > /n /2 such that
P(z 4+ Uw € A) > 0.3. (12)

Finally, note that the last probability is exactly the normalized one-dimensional Lebesgue mea-
sure of the intersection of A with the line segment [z, z + ¢;n~"4w]. This line segment is of
length c;n~'/4|w| > en'/*, completing the proof of (8).

We may now explain the proof of Proposition[L.6l By the definition of y, we have z, w € R™
with |w| > 4/n/2 such that holds, where now U is uniformly distributed in the interval
[0, 1]. This proves the lower bound for L(x,1/2). The upper bound follows by considering the
set A which is a Euclidean ball of radius 5+/n centered at the origin in R".

What we see from the above is that in order to obtain lower bounds for L(, a) it is useful to
“push” the measure x in a random direction. Equation (I0) shows that in the Gaussian case one
can push the measure to a distance of order n'/* without changing it by much in total variation.
In the mathematical physics literature, this technique of pushing a measure was introduced in
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[15] and is usually referred to as a Mermin-Wagner type argument. In the convexity literature
[7, 11, 12, [13] it is quite common to decompose a measure on an n-dimensional space into one-
dimensional needles, as in the approximate decomposition into uniform measures on segments
discussed above.

Consider next the case of the uniform measure on the unit cube [0, 1]”. Let X = (X;,...,X,,)
be a uniform point in the cube and note that the coordinates X; are i.i.d. uniform random variables
in [0, 1]. In order to prove Theorem in this case, the first attempt would be to use the same
perturbation as in the Gaussian case. That is, to perturb each coordinate by Y; := X; +n~ /%7,
where 7, ..., Z, are i.i.d. normal random variables. However, it is easy to see that such a per-
turbation will push the random point outside of the unit cube with high probability and the total
variation distance dry (X, Y’) will tend to 1. To overcome this issue we only perturb coordinates
which are not too close to 0 or 1. More precisely, we use a perturbation of the form

Y= Xi 4+ n0(X5)Z; (13)

where ¢ is a smooth bump function supported on [1/3,2/3]. We show that for a suitable choice
of ¢, the perturbation in satisfies dry (X,Y) < 0.1. This strategy can be used to obtain
lower bounds on L(u,a) for general product measures p as long as a does not tend to 0 or 1.
When a is small, this strategy fails as the set A can be concentrated around the center of the cube
where the density of Y = (Y7,...,Y},) can be very small. To obtain tight bounds in this case,
instead of perturbing the original measure, we first tilt the measure slightly toward the center of
the cube and then perturb it randomly. See Section [2.1| for more details.

In Section[3] we study the case of ¢, balls. The idea here is to perturb the coordinates as much
as possible without changing the £, norm by much. It turns out that when p > 2 it is better to only
perturb coordinates which are close to zero, of order n~ Y@+ while for 1 < p < 2 one should
only perturb large coordinates of order logl/ P'n. Another difference between the two regimes is
that when p > 2 we perturb each coordinate independently like in but for 1 < p < 2sucha
perturbation will change the p norm by too much. In order to handle this issue we perturb pairs
of consecutive coordinates at a time. For each pair, we perturb the first coordinate of the pair
randomly and then use the other coordinate of the pair to “correct” the p norm.

1.2 Extensions and open problems

There are a few natural extensions of the results in this paper. Perhaps some of those can solved
using the methods developed in our proofs. One such extension is to estimate L(B],1/2) uni-
formly in p. For example, as p tends to 1, at what rate does the behavior change from logarithmic
to n'/4? It would also be interesting to understand the asymptotic behavior of L(B},a)asa— 0
or a — 1 like in Theorem [L.3]

Another question, is what can be said when the lines in our main theorems are replaced by
higher dimensional planes or by other low degree polynomial curves. Perhaps the most interest-
ing problem which we were not able to solve is to understand L(K, 1/2) for a general convex
body K. For example, is there a simple geometric parameter of /K that explains the asymptotic
behavior of L(K,1/2)?
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2 Product measures

In this section we prove Theorem [1.3l We start with the proof of the lower bound for small a.

2.1 Lower bound for general product measures and ¢ < a < 1/2

Let 1 be a measure satisfying requirement (i) from Section 1. The constants hidden in the O(...)
notation in this proof may depend on C' from requirement (i). Let n > 2 and fix real numbers
R, r with |R|,|r| < 1.

Fix a C*-smooth, non-negative bump function ¢ on the real line, supported in (—1/3,1/3)
with ¢(0) = 1/100 and |¢’| < 1. For concreteness, say that (t) = (1 — 9¢?)° /100 for || < 1/3
and ¢(t) vanishes for [t| > 1/3. Define

2 "
gi = 2L (14)
Pi
which is C?-smooth in the real line and supported in (—1/2,1/2) thanks to requirement (i). Let
X1, ..., X, be independent random variables, where the density of X is
pi(t) = ki ge P90 pi (). (15)

Here, )
kiR = ( / e_Rzgi(t)pi(t)dt> =1+ O(RY, (16)

5, €
0, 1]

since [ g;p; = 0, with the implied constant in the O(R*) depending on C' from (i). Let dy, . . .,
{—1,1} be independent symmetric Bernoulli variables, independent of the X;’s. Let U € |
be a uniform random variable, independent of all of the previous random variables. Denote

Yi = X; + rUsp(X0).
Proposition 2.1. The density f = fr, of the random vector Y = (Y1,...,Y,,) satisfies

—C(R*n+r*n r2/6—R?).3 ™ g; -
Fly) = Ot (A0 S0 T (),
i=1

where C' > 0 depends solely on the constant from requirement (i).
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In order to prove Proposition 2.1l we denote
Y, = X; + roip(X5).

Observe that the two maps ¢t — ¢ + rp(t) are monotone increasing in R as » < 1. We may
therefore apply the change of variables formula, and conclude that the density of the random
variable Y; equals

oy By L pia) pi(2)

where z; < t < x5 are determined by z1 + r¢(x1) =t = x5 — rp(xs). We emphasize that f;(t)
as defined in depends also on the parameters r and R. Its Taylor approximation with respect
to these two parameters, which is uniform in ¢, is given in the following lemma.

Lemma 2.2. Foranyt €e Randi=1,...,n,
filt) =exp [(r?/2 = R?) - g:(t) + O (r* + RY)] - pi(2),
where the implicit constant in O(r* + R*) depends only on C from requirement (i) of Section 1.
Proof. Since |r| < 1, the equation z; + rp(x1) = ¢ implies
vy =t —rp(t) + 12 (t)p(t) + O(|r]?)

and similarly
wy =t +ro(t) + 7 (1)) + O(Ir]?).

Thus, from (13)), (16) and (17)),
11— R%gi(t) + R?rgl(t)p(t) + O(R* + R*r?)
/!

W)= 5 =g - ot rop P
L1 Rl - gl s O R
2 T o) - gD 1 Oy P
Next,
P 1 rplogp) +r7(0g )+ L ROIE oy g

where ¢, p and their derivatives are evaluated at ¢. The expression for p;(x2)/p;(t) is similar to
the right-hand side of (I8)), the only difference is that the coefficient of rp(log p;)" is +1 and not
—1. Consequently,

fi(t)
pi(t)

2 (log pi)" + [(log p;)']?
2

= 1= R +1% "o+ (¢) + 2(log pi) G + ¢ +O(R" + |r[)

=1- R+ (‘25’) +O(R + |r]). (19)
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The function f;(t)/p;(t) is an even function of r and of R, hence the Taylor expansion in 7 and
R contains only even powers of 7 and R. Thus one might expect to improve O(R* + |r|?) to
O(R* + r*) in (19). Indeed, since ¢ and log p; have bounded C*-norm, the odd terms in the
Taylor expansion vanish as the function is even, and the error in the Taylor approximation is
O(R" + r%), uniformly in ¢. To summarize, for any ¢ € R,

fit) _ AN 4, 4
pi(t)_1+<2 R)g,(t)+O(R+ ).

Since sup |g;| < C'and |r|, |R| < 1, the lemma follows. !

Proof of Proposition[2.1] From the definition of f, we have f(y) = Ey [[1, fi(r’UT) (yi). Thus,
by Lemmal[2.2]

f(y) = Ey exp [O (r*n+ R'n) + (U*?/2 - R*) - > gi(yi)] : H i (y;)- (20)

i=1
From Jensen’s inequality,

n

'Hﬂi(yi)~

i=1

fly) > o—C(rin+Rin) Cexp |Ey (U2r2/2 _ Rz) igz(yz) +0 (7“4 + R4)

i=1

Since EU? = 1/3, the conclusion of the proposition follows. O

Proposition 2.3. Let n > 2 and let 11 be a probability measure on R" satisfying requirement (i)
from Section 1. Then there exists ¢ > 0, depending solely on the constants from (i), such that if
e " < a<1/2then,

L(p,a) > é-nt* - a.

Proof. Set r = n~'/4/(2C)'/* with C' from Proposition We will consider a mixture of
two distributions. Write YY) for a random vector with density f) := f,, it has the law of
the random vector Y with the parameter R = 0. Let Y® be a random vector with density
f® := f,,. It has the law of the random vector Y with the parameter R = n~"/*/(2C)"/*. By
Proposition

> L
€ =1
while
) = L 6_%2%%;@ ﬁpz(yz>
(&

i=1



Consequently,

FO@W) + fO(y)

1
> — - sz(y,) forall y € R"™. (21)

Let A C R" satisfy u(A) > a > e™". According to either for i = 1 or for i = 2,

/ f(i) > i . a. (22)
A 2e

Let R =0incase: = 1 and R = r in case ¢ = 2. Let X be distributed as above with the
parameter R, i.e., X1,..., X, are independent with density given in (I3]). Denote

Zi = 0;p(X5).
Then the random vector Y = (Y7, ...,Y,) defined via Y; = X; 4+ rUd;p(X;) satisfies
Y=X+rUZ

We claim that for some c;, co > 0 depending on the constants from condition (i),

1
P(|Z]? > &n) > 1 — 30 e " (23)
Indeed, the random variable Z; is a bounded, symmetric random variable with EZ? > c. Hence
follows from the Bernstein inequality (e.g. [18, Theorem 2.8.4]), where for small n, in-
equality (30) follows directly from requirement (i) and the definitions. Inequality (22)) means
that

P(X +1UZ € A) > 2i -a. (24)
€

Since a > e~", from (23) and (24) we deduce that there exist x, z € R™ with |z| > ¢;y/n such
that

Pz +rUz € A) > ca.

This means that A
|AN [z, z + rz]| _— 25)

rlz]

Since |z| > c1/n and r > én~'/4, the segment in (2Z3) is of length at least én'/*, completing the
proof. O

2.2 Lowerboundfor1/2<a<1-—e¢e™"

We continue with the notation and assumptions of Section We use the parameter value
R = 0, while r will be determined soon. In particular X3, ..., X, are independent random
variables, where p; is the law of X, and

Y, = X; +rUdip(X;).
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From (20) we know that the density f of Y satisfies

- U2 & d
fly) < e Eyexp [ 2T : ;91(%)] gpz(yz)> (26)

with C depending on the constant from requirement (i). Denote W; = g;(X;), where g; is defined
in (I4). The random variables W7, ..., W, are independent, mean zero random variables. From
requirement (i) and from (14)), we see that for all 4,

‘WZ‘ <’

for some C” depending solely on the parameter from requirement (i). Therefore > " | W;//n is
a sub-Gaussian random variable, in the terminology of [[18, Section 2.5]. That is,

(e

for ¢, C' > 0 depending on parameter from requirement (i).

> t) < Cexp(—ét?) (t €R)

Lemma 24. Let A C R" withe :=P(X € A) < 1/2. Then forany 0 < s < +/|loge|,

W Mo el
n

where C,Cy > 0 depend solely on the constant from (i).

Proof. The left-hand side of equals

00 n ] 0o 5 1 2
/ P (X € A, exp (sM) > t) dt < / min {5,Cexp <—6 og2 t) } dt
0 Vn 0 S

A ~ [ log? ¢t
< g-evVllogel L & exp (—é g2 ) dt
eés\/\logs\ S

o0

— ¢ eUsVilosel o C’s/ exp (sr — ér?) dr < Cie - eC2sV/Ilos el
Cy/|loge|

provided that we choose C large enough. O

Proposition 2.5. Let n > 1 and let i be a probability measure on R" satisfying condition (i)
from Section 1. Then there exists ¢ > 0 depending solely on the constant from (i), such that if
1/2<a<1—e"thenfore =1—q,

Lp, a) > én**|loge|"*.
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Proof. Let A C R" satisfy u(A) = 1 — . Applying Lemma [2.4] for the complement of A we

obtain
Ey / exp | —— - ;gi(yi) Hﬂi(yi)dy = El{xga) exp 5 NG

< ClEE . eCQﬁU27‘2‘ /|log gl < 015 . eC'z\/ﬁr?1 /|log el < \/E (28)

VAU S W,

provided that r = cn=/*|log e|'/* for a small enough constant ¢ (depending solely on the param-
eter from requirement (i)). We select ¢ small enough so that ¢*C' < 1 /4 where C' is the constant
from (26). From (26)) and (28)) we conclude that

P(Y ¢ A) < 2" < 2.7 V4 = 34 < 9/10. (29)
However, Y = X + rUZ, where as above Z; = 6;0(X;) and by (23)),
P(|Z| > év/n) > 19/20. (30)
Consequently, from (29) and (30)) there exist y, z € R™ with |z| > ¢;4/n such that
P(x+rUz € A) > 1/20.

Hence at least a 0.05-fraction of the points in the segment [z, 4 7z] belong to A, and the length
of this segment is at least cn'/4| log |'/%. O

2.3 Upper bounds for0 <a <1 —¢e™"

Let 1 be a probability measure on R" satisfying condition (i) and (ii) from Section 1. The
constants ¢, C' in this section depend solely on those from conditions (i) and (ii). Let X =
(X1,...,X,) be arandom vector with law . It follows from condition (i) that

B :=EX?>c for all i.

On the other hand, condition (ii) states that X; is sub-Gaussian, and hence Xf — FE; is sub-
exponential, in the terminology of [[18), Section 2.8]. Denote

E = VE|IX[* € (ev/n,CV/n). €2

From Bernstein’s inequality [18, Theorem 2.8.1], for ¢t > 0,

2 2
p([XP-E
vn

Since || X| — E| < || X]? — E?|/E < C||X|? — E?|/+/n, we conclude from (32) that

> t) < ée—émin{tQ,t\/ﬁ} (32)

P(E—t<|X|<E+t)>1—Ce tmnit®tv/n} (33)
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Lemma 2.6. Forany 1/2 < a <1 — e ™ we have L(p,a) < C - n'/* - |log(1 — a)|"/*.

Proof. Define ¢ = 1 — a and set

A:{xeR" : E—C\/\logd§|x\§E+é\/|loge\}

so that i(A) > 1 — ¢ thanks to (33). We need to show that |A N ¢| is at most Cn'/*|log £|*/* for
any line /. Indeed, it follows from that for any = € A,

E? —Cy/n-|loge| < |z|* < E*+ Cy/n - |loge|.

In particular, if /(t) = = + ty with x,y € R™ and |y| = 1, the set of ¢ € R for which ¢(t) € Ais
contained in the set of ¢ € R for which ¢2 belongs to an interval of length at most 2C'\/n - | log el
This set is of Lebesgue measure at most C'n'/4| log £|'/4, completing the proof. See the proof of
Corollary below for one more argument. O

Lemma [2.6] proves the upper bound in Theorem [L.3]in the range 1/2 < a < 1 —e™™. An
upper bound for the range a € [0, 1/2] will be obtained from the upper bound in the case a = 1/2
and the following super-additivity property:

Lemma 2.7. Let i be an absolutely continuous measure in R". Then, for any a,b € (0, 1) with
a+b < 1we have
L(p,a+b) = L(p, a) + L, b).

Let L(A) := sup, |AN¢| and note that L(y, A) = inf,(4)>, L(A). For the proof of the lemma
we need the following claims.

Claim 2.8. The function a — L(u, a) is monotone and continuous in (0, 1).

Proof. The monotonicity of L(u,a) is clear. Observe that L(A \ B(z,e)) > L(A) — 2¢. Let
e > 0and a € (0,1). Then there is § > 0 such that for each set A C R™ with p(A) > a/2
there is z € R™ with (A N B(x,e)) > 6. By considering a near contender for the infimum of
L(ft,a + 6/2) and removing from it a ball of radius ¢ we obtain

L(p,a—6/2) > L(p,a+9/2) — 2e.

This proves the continuity at a. O

Claim 2.9. Forany 0 < X\ < 1 and € > 0 there is a set B C [0, 1|" with Vol(B) = X such that
for any line { we have |¢ N B| < A[¢N[0,1]"| + e

14



Sketch of Proof. Forr € [04/n] denote Q, = Q@ NrS™! and observe that the sets Q, are disjoint
and are subsets of spheres. We subdivide [0, \/n| into sufficiently small intervals, pick roughly
A-fraction of these small intervals that are roughly uniformly distributed in [0, v/n], and define B
to be the union of the corresponding subsets of spheres. One may prove that for any line whose
intersection with () has length at least £, we have the desired property: its intersection with the
subsets of spheres consisting of B is roughly of length A\ times the total intersection with the
cube. Note that the volume of B obtained in this way is not exactly A. To make the volume
exactly A\ we add or subtract a small ball in the same way as in the proof of Claim [2.8] O

We can now prove Lemma

Proof of Lemma2.7] Since any set A C R” contains a compact K with u(A \ K) < e, we
conclude from Claim [2.8] that

L(p, a) u&(n)f:aL(K)
where the infimum runs over all compacts KX C R™ with u(K) = a. Next, write K for the
d-neighborhood of the compact K, and observe that L(K;s) — L(K) as 6 — 07. We say that
A C R” is elementary if it is a finite unions of cubes, each of the form @ = [[_,[a;, ;). For
any compact K and 6 > 0 we may find an elementary set contained in K5 and containining K.
It follows that

L(p,a) = inf L(A) (34)

m(A)=a

where the infimum runs over all elementary sets A C R” with u(A) = a.

Next, let a,b € (0,1) satisfy a + b < 1 and denote A = a/(a + b). Lete > 0 and let A
be an elementary set with p(A) = a + b such that L(A) < L(u,a + b) + €. It follows from
Claim 2.9/ that there is a set B C A with Vol(B) = AVol(A) = a such that for any line ¢ we have
|0 N B| < Al¢N A| + e. In particular we have L(B) < AL(A) + . We obtain that

L(p,a) < L(B) < AL(A) + € < AL(p, a + b) + 2e. (35)
Similarly we have that L(u, b) < (1 — A)L(p, a + b) + 2¢ and therefore
L(p, a) 4 L(j,b) < L(p, a + b) + 4e. (36)

This finishes the proof of the lemma. O

From Lemma 2.6 and the super-additivity we immediately obtain:
Corollary 2.10. For any 0 < a < 1/2 we have L(p1,a) < Cn'/* - a.

The proof of Theorem[I.3lis now complete, as the lower bounds follow from Proposition[2.3]
and Proposition while the upper bounds follow from Lemma[2.6]and Corollary

Remark 2.11. The sub-Gaussian assumption in condition (ii) is not really used in the proof of
Corollary and it may be replaced by weaker conditions such as [°_*p;(¢)dt < C.
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3 The case of /, balls

In this section we prove Theorem Throughout this section none of the estimates will be
uniform in p. Thus, the constants C ¢ as well as the O and © notations are allowed to depend
on p. In the proof we will use the following result from [3]. Recall the definition of B} given in

(3) and note that by Stirling’s approximation #,,,, := I'(1 +n/p)*™/(2I'(1 + 1/p)) is of order
O(nl/?).

Theorem 3.1. Letp > Oandn > 1. Let g4, . . ., g, be i.i.d. random variables with density

1w
21+ 1/p)

and let Z be an independent exp(1) random variable. Then, the random vector

telR

K
X =(X1,...,X,) = P (g1, ga) (37)
(Zizl |gilP + Z) &

is uniformly distributed in B)).

The following claims quantify the fact that the coordinates of a uniform point in B} are
roughly independent and behave like a constant multiple of the random variables g; given in
Theorem [3.1] To state the claim we let

- 1/p —1/p 1
KpnD e ogn
X, :=a,g wh o Dol T (1 0(—)), 38
a,g; Wwhere a i ST+ 1/p) + - (38)

where the last equality follows from the definition of «,,,, after equation (3) and from Stirling’s
formula. In the claims we let X be the uniform point in B} given by (7). By symmetry, it
suffices to consider the first two coordinates X; and X5 in the claims below. The first claim is
Corollary 1 in [2].

Claim 3.2. We have that Cov (X12, X22) <0.
Claim 3.3. We have that E[(X, — X,)?] < C/n

Claim 3.4. Let ¢ be a compactly supported differentiable function such that ©' is a Lipschitz
function. Then, there exist a constant C' > 0 depending on  such that for all n > 1 and
1 < R < \/n we have

1.
B[¢(RX,) - p(RX)] < ©
2. o
Cov(p(RX1), p(RX)) < -

The proofs of Claim [3.4] and Claim [3.3] are slightly technical and we postpone the proofs to
Appendix [Al
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3.1 Upper bounds

The next corollary follows from Theorem 5 in [2].
Corollary 3.5. Letn > 1, p € [1,00] and let X be a uniform sample from B;. Then,
Var(]|X|]3) < Cn.
Proof. By Claim[3.2] we have
Var (|| X|2) = Var (ZX;) <3 Var (X?) < Cn
i=1 i=1

as claimed. O

Remark 3.6. In fact a more careful analysis shows that when p # 2,
pL(5/p)T(1/p) = (0 + HTB/p)*
pl(1/p)?

We can now prove the following corollary that gives the right upper bound in the case that p
is 1 or oo.

Var (|| X[3) = (14 o(1))

Corollary 3.7. For all p € [1, 0] we have L(B2,1/2) < Cn'/*.
Proof. By Corollary and Chebyshev’s inequality, there exists Cjy > 0 such that
P(|IX[2 — E[XP)| = Covin) < 1/2
and therefore the set
A={z e Bl :||z]> — E[|X|}]| < Cov/n}

has volume at least 1/2. We claim the any line ¢ satisfies [¢ N A| = O(n'/*). To this end, note
that a line can intersect A in at most two intervals. We claim that each of these intervals has
length of at most O(n'/*). Indeed, let 2 and = + y be the endpoints of one of these intervals and

consider the function
n

F(t) = o+ ty? = 3 (i + )

i=1
For all 0 < ¢ < 1 we have that z + ty € A and therefore f(t) = E[|X|*] + O(y/n). Thus

3 D0 = F(1)+ 1(0) ~ 20(1/2) < Gy

and therefore the length of this interval is |y| < C,n'/4. O
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The proof of the following corollary is similar to the proof of Corollary but it uses an ¢,
spherical shell instead of an /5 spherical shell.

2—p

Corollary 3.8. Forall 1 < p < 2 we have that L(B},1/2) < C(logn) 2 .

Proof. Define the sets
A={ze Bl |lz|b>k:, —Co} and B:={Vi<n, |z| < Cylog""n}.

where Cy > 0 is a sufficiently large constant that will be chosen later. We start by proving that
Vol(AN B) > 1/2. We have

Vol({z € R" : [|z]|k < kb, — Co}) = (1 — :—0) < 1/4,

p,n

where the last inequality holds as long as Cj, is sufficiently large since &, , = ®p(nl/ P). It follows
that Vol(A4) > 3/4.

We turn to bound the volume of 5. Let X be the uniform point in B given in Theorem 3.1l
By Bernstein’s inequality and the fact that the random variables |g;|? from Theorem have
exponential tails, we have that

P(cln S i |g2|p S C’ln) 2 1—Ce ", (39)
i=1

for some c1, C; > 0. Moreover, the density of g; is proportional to e~ 11" and therefore IP’(| gi| >
21og!/? n) < Cn~2. Thus, by and Theorem [3.1] as long as Cj, is sufficiently large we have
that P(|X;| > Cylog'/?n) < Cn~2. It follows from a union bound that Vol(B) > 1 — C'/n and
therefore Vol(AN B) > 1/2.

We turn to show that for any line ¢, we have that |¢ N AN B| = O((log n)zg_z’p) The set A is
the difference of two convex sets and therefore the intersection ¢ N A is the union of at most two
intervals. As in the proof of Corollary it suffices to bound the length of the intersection of
each of these intervals with B. Let x and = 4 y be two points inside one of these intervals such

that z € B. It suffices to show that |y| = O((log n) QQ_PP) To this end, define the functions

filt) = (i + byl and  f(1) = [z + eyl =Y fi(t)
i=1
Since the interval [z, z + y] is contained in A we have that

4Cy > f(0) + f(1) = 2f(1/2) = Zfz )+ fi(1) = 2£;(1/2). (40)
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Next, we have that

1/2 1
£:(0) + f(1)—2£i(1/2) = / s17(s)ds + / 1= feds

1y ) s ) b2 (4D
23 / p(p — 1)y; (i + sy:)"~*ds > ey (max(|y, [2:]))
1/4

> cmin (|yl?, |#:[*2y?) > cmin (jui]?, (logn) 7 ?),
where the first equality holds for any function and the last inequality follows as z € B. We claim
—2 p—2
that min (|y;?, (log n)pTyf) > c(logn) 7 y2. Indeed, if this minimum is |y;|? then by and
(@Q) we have that |y;| < C and therefore |y;|? > cy? > c(log n)p_fyf Thus, we get the bound
p—2
fi(0) + £:(1) = 2£i(1/2) > c(logn) 7 y;.

Substituting this bound into (40) we get that

- 2-p
> => 52 < C(logn) 7 .
i=1
This finishes the proof of the corollary. O
In the last two corollaries we saw that the Euclidean spherical shell and the /,, spherical shell
can be used to obtain upper bounds on L(B}',1/2). The main idea of the proof of the following

lemma is to consider a set which looks like a Euclidean shell for coordinates close to 0 and like
an ¢, shell for larger coordinates.

Lemma 3.9. Forall 2 < p < oo we have that L(B]},1/2) < Cnire,

Proof. Define the convex function

Ppttr? 4 (1— B % || <n e
h(r) :=

Il r| > n”

Next, let £ := nE[h(X;)] and consider the set
A= {x € B ‘Zh(wi) —E‘ < CO},
i=1

where () is a sufficiently large constant that will be determined later. We start by proving that
Vol(A) > 1/2. To this end, let g(r) = h(r) — |r|P and define the sets

Al = {LIZ‘EB;LZ “|LIZ‘HZ—E1‘ SCO/2}
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and

Ay = {x € B, : ‘zn:g(xl) — FE,
i=1

< 00/2}7

where E; := nE[|X;[P] and E, := nE[g(X;)]. It suffices to lower bound the volumes of A; and
A, since Ay N Ay C A. By the same arguments as in the proof of Corollary [3.8 we have that
Vol(A;) > 3/4 as long as () is sufficiently large.
In order to lower bound the volume of As we estimate the variance of > g(X;). To this end,
let
o(t) == 1{|t| < 1}- (t2+1 —t?), teR

and note that ¢ is differentiable and ¢’ is Lipschitz. For all » € R we have that
g(r) = n_ﬁ(p(nfarlfr)
and therefore, by the second part of Claim 3.4l we have that

Var(ég(XQ) = oA Var<i¢(nT1+1Xi)>

1=

:n_% ZVar( n2p+1 )+n BT ZCOV( n2p+1 ) w(nTlﬂXj» < C.
i=1

i#j

Thus, as long as Cj is sufficiently large, we have by Chebyshev’s inequality Vol(Ay) > 3/4 and
therefore Vol(A) > 1/2.

We turn to show that [/ N A| < Cnie for any line /. This part of the proof is identical to the
corresponding part in the proof of Corollary [3.8] and therefore some of the details are omitted.
Let z,y € R"™ such that the line segment from x to x + y is contained in A. It suffices to show

that |y| < Cn¥¥2. We have that h” (r) > cn” % for all except for two points where 4’ is not
differentiable and therefore the function f(¢) := > " | h(x; + ty;) satisfies

O 2 f(0) +1(1) =2f(1/2) Z en 551 32

This finishes the proof of the lemma. O

3.2 Lower bound when 2 < p < oo

The main result in this section is the following proposition.

Proposition 3.10. Forall 2 < p < 0o we have that L(B],1/2) = Q, (nfp;f?)
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The main idea of the proof is to use a perturbation that changes only coordinates close to 0.
Recall that X is uniform random variable in B). Let ¢) be a smooth non-negative bump function
supported on [1, 2]. We think of ¢ as a fixed function and allow the constants C' and ¢ to depend
on . Let R,r > 0 and let ¢(x) := r¢(Rx). Finally, let §; be i.i.d. symmetric {—1, 1} Bernoulli
random variables. Define the random vector Y := (Y7, ...,Y,,) where

Yi = Xi + o(Xi)d;. (42)

The main idea of the proof of Proposition is the following proposition that shows that the
perturbation of X given in does not change the distribution of X by much.

Proposition 3.11. Forall 2 < p < oo there exists a small constant € > 0 such that the following
holds. Let n > 1 sufficiently large depending on ¢ and let 1 < R < /n, r < 1 such that

nR3r* <& R¥TL >, (43)
Finally, let Y be the random variable defined by @2)). Then,
dTV(Xv Y) < 1/4

Using Proposition[3.11] we can easily prove Proposition [3.10]

Proof of Proposition 3100 Let n > 1 sufficiently large and R := n'/(P*1)_ Let X be a uniform
point in B) and define the random variable W = (W1, ..., W,,) where W; := ¢(RX;)d;.

We start by showing that [W|* = > ¢ (RX;)? is typically large. Recall the definition of
X; in (38). We clearly have that

E[¢(RX,)?] > ¢/R, E[¢(RX))'] <C/R
and therefore, by the first part of Claim[3.4/ we have
E[¢(RX;)?] > ¢/R, E[¢Y(RX;)'] <C/R.
It follows that E[|[IW|?] > c¢n/R and moreover, using the second part of Claim [3.4] we have

Cn

Var(|W?) < ZEM(RXZ-)‘*} +) " Cov(y(RX;)* ¢(RX;)?) < =

i#]
Thus, by Chebyshev’s inequality there exists some ¢; > 0 such that
P(|W| > e1v/n/R) > 0.99, (44)

as long as n is sufficiently large. Next, fix € > 0 such that Proposition hold and let 7 :=
e2R~3/*n=1/4, Observe that, by Proposition3.11] for any r < 7, we have

dTv(X,X+TW) < 1/4
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It follows that for all A C By with Vol(A) > 1/2 we have that
P(X +rW e A)>1/4. (45)

Since (43) holds for all < ry it also holds when replacing r with a random variable U ~ U|0, 7]
that is independent of X and W. Thus, by (44) there are some realizations z € B; and w € R"

with |w| > ¢;14/n/ R such that
P(z+Uw e A) > 1/5.

The last probability is exactly the normalized Lebesgue measure of the intersection of A with the
line segment [z, x + row]. Thus, letting ¢ be the line containing = and = + row we obtain

0N Al > [row] /5 > eroy/n/R > ecn/ R = copvee

as needed. O

The rest of this section is devoted to the proof of Proposition Throughout the proof
we assume that ¢ is sufficiently small and n sufficiently large depending on €. We start with the
following lemma that gives a closed form expression to the density of Y.

Lemma 3.12. The density of the random vector Y = (Y1, ..., Y,,) defined in (42) is given by

fly) = E[]l{ﬂ.% d) € B,C‘} : H (1 + 80/(931')@)_1}7 y €R", (46)

i=1

where ©(y,0) = (x1,...,2,) and x; = x;(y;,9;) is the random variable defined to be the
solution of the equation y; = x; + ¢(x;)J;.

Proof. Assuming that rR < 1/2 (which follows from and R < y/n), and z € {—1,1} the
map ¢t — t + ¢(t)z is a diffeomorphism and it has the Jacobian 1 + ¢'(t)z > 0. Thus, by the
change of variables formula, the density at y conditioning on 6 = (1, ..., d,) is given by

n - ’ -1
FOy) = 1{aly.0) € By} - [T (1 + &' (@)a) ™.
=1
It follows that the unconditional density is given by
n - / -1
f() =E[t{a(y.0) € B} - [T (1 +¢/@)8) "],
=1

This finishes the proof of the lemma. O
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In order to estimate the density given in Lemma [3.12] we restrict our attention to a subset of
B} of almost full measure. To this end, fory € R™ let I(y) := {i: 1 < Ry; <2} andfort € R
let g(t) := ¢ (t)p(t) + (). Consider the set A = A; N Ay N Az where

A= {y e B iR </l —<h Avi={u: 10| < -]

~ Re
Az = {y: ‘ig(yz) <e }

Proposition 3.11] follows immediately from the following two lemmas.

and

Lemma 3.13. We have that Vol(A) > 1 — Ce.
Lemma 3.14. For all y € A we have that | f(y) — 1| < Ce.

Proof of Proposition[3.111 By Lemma [3.14] we have ‘IP)(Y € A) -P(X € A)‘ < (¢ and by
Lemma [3.13] we have P(X ¢ A) < Ce. It follows that P(Y ¢ A) < Ce and therefore, using
Lemma 3.14] once again we obtain

i (X.Y) =5 [ 17) =1y € Bay
< %/ £(y) — 1|dy + P(X ¢ A) + P(Y ¢ A) < Ce.
A

This finishes the proof of the proposition as long as ¢ is sufficiently small. O

It remains to prove Lemma and Lemma[3.14

Proof of Lemma The first part of this proof is similar to the proof of Corollary 3.8 Let X
be the uniform point in B} given by (37). Then,

P
Kpn

e n/p
IP’(||X||Z§/€£’”—5): (1——) >1-Ce

and therefore Vol(A;) > 1 — Ce.

We turn to bound the volume of Ay. To this end we claim that P(RX; € [1,2]) < C/R.
Indeed, using the notation of Theorem there exist some constant Cyy such that P(|.X;| >
Colgi|) < Ce ", Thus,

P(RX, € [1,2)) < Ce™" + B(|gi| < 2Co/R) < C/R,
where the last inequality follows as the density of g; is bounded. Thus, by linearity of expectation

E[I(X)] < Cn/R. Finally, by Markov’s inequality we have that P(1(X) > n/(Re)) < Ce and
therefore Vol(Ay) > 1 — Ce.
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Lastly, we bound the volume of As. Recall the definition of X; in (38)) and note that the
density of X is given by e"t‘p/“g/@anf(l + 1/p)) where a,, satisfies 1/6 < a,, < 1. Using
integration by parts twice and the fact that g = (©?/2)” we obtain

‘ < C‘/ // —c:cp/andx‘ < C‘/ )e—xp/aﬁxp—ldx
< C/ ©*(x)xP2dx < CRYPr? < Ce?/n,
0

where in the fourth inequality we used that ¢(x) < r for all x and that ¢ supported on [1/R, 2/ R]
and in the last inequality we used @3). We now let h := ¢""¢) + (¢')? and note that g(x) =
R?r2h(Rx). By the first part of Claim [3.4 with the function h we have

‘E[ig(xi)} <CRY 4 i E[g(X)]] < Ce. 47)

Next, using the second part of Claim 3.4l we obtain
Var( 3 g(XZ-)> = RY*Y Var(h(RX,)) + R* Y Cov(h(RX,), h(RX,)) i
i=1 i=1 i (48)
< CnR** < Ce2.
Finally, by @7)), 48]) and Chebyshev’s inequality

and therefore vol(A3) > 1 — Ce. !

We turn to prove Lemma[3.14l To this end we need the following claims.
Claim 3.15. For all y € A we have that P(x(y,6) & By) < exp (—ce*R™2r72).
Claim 3.16. We have that
E[(1+ gp’(:)sl)él)_l} =1+g(y)+O(R"") and E[(1+ ¢’(x1)51)_2} =1+ O(R*r?).
Using these claims we can easily prove Lemma[3.14]

Proof of Lemma[3.14 Lety € A and recall that I = I(y) := {i < n:1 < Ry; < 2} satisfies
|I| < n/(Re). Note that ©'(x;) = 0 forany ¢ ¢ I and therefore the product in (46)) can be written
as a product over i € I. Thus, by Lemma[3.12]and Cauchy-Schwarz inequality

‘f HE (14 ¢ (2:)5) ‘_ []1{56% ¢ B} H1+<P (0)6)” 1]
< \/E”(l“(y,é) ¢ Br) H \/E[(1 + @' (2:)6:) ] (49)

<exp(—cc'R*r?+ ClI|IR*?) <exp(— 'R+ Ce™'nRr?),
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where in the second inequality we used Claim 3.15]and the second part of Claim[3.16l The right
hand side of (49) is at most e~“* < 1 — C for sufficiently large n by (3)).
Moreover, using the first part of Claim we have

HE[(l + ‘P/(xi)@)_l} = H (1 + g(yi) + O(R4r4))

el i€l

. (50)
— exp (Z glys) + O(\I|R4r4)> = exp (O(c + £ 'R ")) = 1+ 0(e),

where in the third equality we used that y € A, N A3 and in the last equality we used (@3). The
lemma follows from (49) and (5Q) as long as n is sufficiently large. m|

We turn to prove Claim amd Claim

Proof of Claim[3.13 Lety € A and recall that z = z(y, ) is defined by x = (x4, ..., x,) where
x; is the solution to the equation y; = x; + ¢(x;)J; . Define the random variable

S —Zy Yi)
el

Using a second order Taylor expansion we have almost surely

||I||£:Z|Q7Z|p+z yz ;)

i¢l el
= il + > [ = pyt (s + O ()]
i¢l el (51)
=lylls —p Y (97 o(w)di + O(R*71%)]
el

=lyll; + O(IS| + [1|R*""r?)
=lyllp + OS]+ e nR7r?) = |lyll; + O(IS| + &%),

where in the third equality we used that |p(z;) — ¢(y;)| < CRr?, in the fifth inequality we
used that y € A, and in the last inequality we used (43). We turn to bound the sum S with
high probability. The terms in this sum are almost surely bounded by C'R'~Pr and therefore by
Azuma’s inequality (see for example [[1, Theorem 7.4.2]) we have that

—ce3

P(‘S‘ > 53/2) < exp (W

where in the last inequality we used (43)). Substituting the last estimate into (51)) we get that
P(x ¢ By) = P([zll7 > x2,) < P(Ila]lp > Ilylls + ) < exp (- ce'R272).

where the last inequality holds for a sufficiently small €. This finishes the proof of the claim[3.13
O
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Proof of Claim[3.16 Recall that p(y) = ri(Ry) where ¢ is a fixed bump function and therefore
©'(y) = O(Rr), ¢"(y) = O(R?*r) and ¢ (y) = O(R3r). We have that

1 =1y — o(x1)0 (52)

and therefore 1 = y; + O(r). Substituting this estimate into the right hand side of (52]) we get
that z; = y; — ¢(y1)01 + O(Rr?). Substituting the last estimate once again into the right hand
side of (32)) we get

z1 =y — opy) + ¢ (1)) + O(R*r?).
Using the Taylor expansion of the function ¢ around y; we obtain

@' (x1) = &' (1) — 019" (1) (1) + " ()" (1) e(y1) + %SOW(?/l)SO(yl)Z + O(R*Y).

Thus, using the fourth order Taylor expansion of the function 1/(1 + w) we obtain

E[(l + w/(ml)&)_l} =1- E[(p/(xl)51] + E[(p/(xl)ﬂ — E[(p/(xl)351] + O(R*%)
= ¢"(y)ey) + ¢'(11)* + O(R'r") = g(y1) + O(R'r")

This finishes the proof of the first part of the claim. The second part follows using the same
arguments. O

3.3 Lower bound when 1 < p < 2
In this section we prove the following proposition.
Proposition 3.17. Forall 1 < p < 2 we have that L(B?,1/2) = Q,((log n)z;pp)

The proof is similar to the case p > 2 but with one additional ingredient. In this case,
perturbing each coordinate independently will push the random point outside of B with high
probability. To overcome this issue we perturb each pair of coordinates independently. Let
1 : R? — R be a fixed, non-negative, smooth, two dimensional, bump function supported on
[1, 2]2 Let Rl, Ry > 1,0<r<1 and let QO(I’l, ZL’Q) = T@D(Rl(l'l — RQ), Rl(ZL’Q — Rg)) Finally,
let

h(xlyxZ) = So(xla 1'2) ' (xi_pa _l.;_P). (53)
Consider the random variable Y = (Y7 ...,Y},) given by
(Yaio1, Yai) o= (Xaim1, Xo) + 6ih (X1, Xo), i < |n/2], (54)

where ; are i.i.d. symmetric {—1, 1} Bernoulli random variables and if n is odd we let Y,, = X,,.

Proposition 3.18. Forany 1 < p < 2 there exists € > 0 such that the following holds. Let n > 1
sufficiently large and let Ry, Ry, v > 0 such that

1< Ry <log"?n, Ry=logn, nR{>PR;Pe Ml <2 1op2 <1, (55)
where a,, is given in (38). Then, the random variable Y given in (34) satisfies
dTV(X7 Y) < 1/4
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We turn to prove Proposition 3.171 In the proof and throughout this section we use the
notation O to hide a poly-logarithmic factor of the form log” n where, as usual, we allow the
constant C' to depend on p. In order to simplify the arguments we also assume throughout the
section that n is even. The proof for odd n is identical.

Proof of Proposition3.10 Letn > 1 sufficiently large and even, R, := logn and Ry = ¢, log/?
where ¢; := 0.01. Let X be a uniform point in B and define the random variable 1V :=
(W1, ..., W,) where for any i < [n/2]| we let

(sz’—l, sz’) = ?/)(Rl(Xm—l - Rz), Rz(Xzz R2)) (X27, pl> X21i_p)5i~
We turn to show that || is typically large. We have that |W|? = 2"/ 2 €(Xagi_1, Xo;) where
f(l’l, 1'2) = Q/)(Rl(l’l — RQ), RQ(ZL’Q - RQ))2(I’2Z P + 1'2 2p).

Define the random variable N := Zn/ 2 £ (X 2i-1, X 2;). The function ¢ is supported on [Rg +
1/Ry, Ry + 2/Ry)? where the density of the pair (X, X5) is at least ce=2//9n = ¢p=2/an | It
follows that E[¢(X1, X2)] > cRy*Rsn~%1/% and therefore E[N] > cnRy*R; ™ #n~ %1/,
Note that 1/6 < a,, < 1 and therefore E[N] > n3/4. Next, since X; are independent we have
Var(N) = O(n). Thus, by Chebyshev’s inequality, there exists some ¢, > 0 such that

n/2
P 6(Kaior, Ka) 2 conR? By =>4 ) = 0,99, (56)

=1

as long as n is sufficiently large. In order to bound |V | it suffices to replace the random variables

X'i with X in~the last estimate. To this end, note that the function £ and its ~partial derivatives are
bounded by O(1) and therefore by Claim B3l we have E|£(X;, X2) — £(X1, X2)| = O(n™'/2).
Thus, by (36) there exists ¢z > 0 such that

P(IW) > coy/iR; Y P-4/

= P(( 3 €(Xoir, Xa) > GnRTEE 0 4% > 0.99.
i=1
The rest of the proof is almost identical to the proof of Proposition 3.10l and some of the

details are omitted. We let 1 := 5R1Rp /2 e} /ah =172 and note that, by the choice of ¢; and the
definition of a,, in (38)), we have that rjn? < 1. By Proposition 3.18] for all A C B and for

all 0 < r < ro we have P(X + rW € A) > 1/4. Thus, by (1), there exist z,w € R" with
lw| > csv/nRy Ry Pn~1/% such that for U ~ U[0, 7] we have that P(z + Uw € A) > 1/5. It
follows that the line ¢ containing = and = + w satisfies

0N Al > [row] /5 > c.RYP2 > c.(logn) &

This finishes the proof of the proposition. O
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As in the proof of Proposition 3.11], we start by computing the density of Y. To this end,
given y € R", for each i < n/2, let z5;_; and z»; be the random variables defined as the unique
solutions to the equation

(Y2i—1, Y2i) = (T2i—1, Ta;) + 0ih(x9—1, T2;).

When r» < n~2/° it is clear that the differential of the map (zg;_1,T9) > (Toi_1,T9) +
dih(x9;_1,x9;) is invertible and that the map is a diffeomorphism. We let z = z(y,0) =
(x1,...,,) and let J (w1, ws, z) be the Jacobian determinant of the map (wy, wy) — (wy, wy) +
zh(wy,ws) at the point (wq,wy). The following lemma follows from the change of variables
formula in the same way as Lemma[3.12

Lemma 3.19. The density of the random variable Y = (Y1, ...,Y,) defined in @2) is given by

n/2
fly) = E[]l{m(y,é) < BZ} H J($2i—17$22‘,5i)_1]7 y € R"™.

i=1

As in the proof of Proposition[3.11] in order to estimate the density given in Lemma[3.19] we
restrict our attention to a set of almost full measure. To this end, define the function

10%h? 9?(hyihy)

Lo ) 16703
202 T Ty 0y

(Y1, 92) + 58—1;5(3/1’%)’ (y1,92) € R? (58)

9(y1,92) =

and the set A := A; N Ay where

n/2
Av={ye Byl < st Avi={v: |2 gl )
i=1

Se}.

Proposition clearly follows from the following two lemmas.
Lemma 3.20. We have that Vol(A) > 1 — Ce.
Lemma 3.21. Forany y € A we have that |f(y) — 1| < Ce.

We start by proving Lemma [3.20.

Proof of Lemma We have that Vol(A4;) > 1 — Ce by the same arguments as in the proof of
Lemma[3.13] -
We turn to bound the volume of A,. To this end, we bound E[g(X 1 Xg)}. Note that the

density of X; at y; is given by A,, exp(—(|y;|?)/ar) for some sequence ¢ < A,, < C'and therefore

E[g(X1,X2)] = Ai/ 9(yn, yo)e VIR Ay, dy, = A2 (L + L+ 1)

R2

28



where [;, I and I3 are the tree integrals corresponding to the first, second and third terms in the
right hand side of (38). Using integration by parts twice we obtain

1 82h2 (4P 2P /aP 0h2 pyp_l (P 2P)/aP
h=51, 8@/%1 (y1,y2)e” e/ dy, dy, = - ayi (1, 32) 23% IR dydy,
2 2p—2 p—2
o 2 P Yy p<p — 1)y1 — (P +yb)/ah
= /]R2 h1(ylay2)< 2027 - 2l >e 1Hv2)/an gy, dyys.
Similarly we have that
2 2p—2 p—2
p PP — 1 (P aP
Iy :/ h§<y1’y2)< y22p _ ( p)y2 >e WE+y5)/ " dyy dys
R2 2a; 2an

and

2 p—1
p (4P o
12:/ (hlhg)(y17y2)(y;+p2)e WE+U)/aE ) .
R2 n

Adding these contributions we obtain

‘E[Q(XMXZ)H <C|lh+ L+ < C/ ((hl(yl,yz)yf_l + hg(yl,yg)y§_1)2+

RZ
+ B2 (g1, y2)yh 2+ B3y, yz)y§_2> e~ WiHvD)/an gy, dy, (59)

=C | Py, 1) (4" +yy e VT R dy dy, < CRy*r?Rye >R/ < O fn,
R2
where in the equality we substituted the definition of 4 in (33)) and in the last inequality we used
the assumption in (33). Note the important cancellation of the first term in the integral. This
cancellation is related to the fact that the perturbation given in (34)) typically does not push the
random point outside the ball.

Next, let N := Z"ﬁ 9(Xai_1, X»;) and note that by (39) we have that [E[N]| < C'e>. More-

)

over, using that X; are independent and (53)) we obtain Var(N) < nE [g(X'l, X2)2] = O(nrt) =
O(n=3/5). Thus, by Chebyshev’s inequality, there exists C; > 0 such that

n/2

P(‘ Z Q(Xzi—l, Xzz')
i=1

< Cls2> >1—e,

as long as n is sufficiently large. In order to bound the volume of A, it suffices to replace X,
with X; in the last estimate. To this end note that g and its partial derivatives are bounded by
O(r?) and therefore by Claim 3.3 we have E|g(X;, X») — g(X1,Xo)| = O(r*n~Y2). Thus,
there exists Cy > 0 such that

n/2

P(‘ Z Q(X2i—17 X2i>

=1

< 0252) >1— 2.
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It follows that Vol(Ay) > 1 — 2¢ for a sufficiently small ¢ and a sufficiently large n depending
one. O

We turn to prove Lemma[3.21l To this end we need the following claim.

Claim 3.22. We have that

E[J(x1,22,8) 7] = 1+ g(y1, ) + O().

Proof. We have that

oh oh oh oh
J(l’l,l’g,él) = < —|—518 1(1’1,1’2)) <1+618 2(1’1,1’2)) — 8 1(1’1,1’2)8 2(1’1,1’2)
X2 X2 X1
Ohy Oho Ohy Oho Ohy Oho
= 16 (G (@) + 52 (o) ) + 5 (o, ) 2 (1, 02) = (o, ) 5 2 (0, 0)

Next, we replace the random points x1, xo with the deterministic points y;,y>. Note that the
terms in the brackets are of order O(r) while the other terms are of order O(r?). We have that
Y = x; + O(r) and therefore, in the terms outside the brackets, x1, x5 can be replaced by v, y-
without changing the overall expression by more than O(r?’). For the terms inside the brackets
we use the expansion

($17$2) = (y17y2) - 51h(y17y2) + O(T2)-
We obtain that

ah 82}1, 82h
oo 0) =140 <8 T (1, 32) - 6187%1(y1’y2)h1(yl>92) - 518 181 o (Y1, y2)h2(y1, y2)
ah azh 82}7,
+ a—l’z(yl’ y2) - 51 8.1'28;1 (y17 y2)h1 (yh y2) 51 8 22 (yl, y2>h2(y17 y2)>
ohy Ohs ohy Ohs

+ a—(y17y2)a—x2(ylay2) - 0—9:2<y1’y2)8 (Y1, 92) + O( )
Ohy  Ohs 9%hy 9%h, 0%h, 9%hy
51(0931 8x2) - 0r? M= nan T Gndn D2
Ohy Ohy  Ohi Ohy  ~, 4
+ 81’1 81’2 83)2 83)1 + O(T )

ha
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Thus, using a second order Taylor expansion of 1/(1 + z) we obtain
Bl )] (G 52 G e
B G B 00
e () e
¢+ Sl a0 S )
10%h?  10*h3  Phihy -~ )

This finishes the proof of the claim. O

Proof of Lemma[3.21]. First, we claim that for all y € A we have that x = z(y,0) € B} with
probability one. Using a second order Taylor expansion we obtain

n n/2
ylly = Z yil” = Z }952z‘—1 + 5ih1(932i—1>372i)‘p + }9321' + 5ih2(932i—1>172i)‘p
i=1 i=1
n/2
= Z <|1L"2i—1|p + pab by (waim1, 220) 0 + p(p — 1)ab 2 by (w21, 22:)°
i=1
+ |z4]? +p$§,~_1h2(3§2i—17 T9i)0; + p(p — 1)$§,~_2h2(3§2i—17 $2i)2 + O(T3)>
n/2
= ||| |Z +O0(nr’) +p(p — 1) Z $§;21h1(:62i_1, 9i)? + $§;2h2($2i—17 ;).
i=1

where in the last equality we used the definition of A in (33)). This cancellation of the linear term
in the expansion is the reason we perturbed pairs of coordinates instead of individual coordinates.
Thus, using that y € A; we obtain

2|l < [lyll5 + O(nr®) < w2

p?n’

where the last inequality holds for sufficiently large n as r°n2 < 1. It follows that z € B} Thus,
for y € A we have

n/2 n/2
fly) = HE[J(lQi—la 95, 0;) '] = exp (O(m’g) + Zg(ym—l, y2i)> =1+0(e),
=1 =1
where in the second equality we used Claim [3.22]and that r°n? < 1. O
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3.4 Lower bound when p = 1

Consider the simplex A" := B} N {z € R" : Vi, x; > 0} and let x,, be the uniform measure on
A", It suffices to prove the following lemma

Lemma 3.23. We have that L(jt,,1/2) = Q(n'/*).

It follows from the lemma that L(B?,1/2) = Q(n'/*). Indeed, let A C BT with Vol(A) >
1/2. There exist a quadrant Q). := {x € R™ : Vi, g;z; > 0} of the space such that Vol(Q. N
A) > 27! Without loss of generality suppose that this is the first quadrant (the quadrant
corresponding to all coordinates are positive or e = (1,...,1)). We have that u,,(Q. N A) > 1/2
and therefore by Lemma [3.23] there exists a line £ so that [¢ N A| > [N Q N A| > cen'/4. This
shows that L(B7,1/2) = Q(n'/*).

For the proof of Lemma we need the following claim. To state the claim we let
g := (91,--.,9n) be an i.i.d. sequence of exp(1l) random variables and let d;,...,d, be and
i.i.d sequence of symmetric {—1, 1} Bernoulli random variables independent of g. We also let
1 be a smooth, non-negative bump function supported on [1,2] . For r > 0 define the random

variable f = f) := (f1,..., f) Where f; := g; + r¢(g;)d;.

Claim 3.24. There exists ¢ > 0 depending only on 1 such that for all r < en~'/* we have
dTV(f7 g) S 1/4

The proof of Claim [3.24]is left as an exercise to the reader. The proof is a minor modification
of the claims in Section 2.1l and Section Note that in these sections assumption (ii) from
Theorem [L.3]is not required.

Proof of Lemma3.23] Let g1,...,gn, Z be an i.i.d. sequence of exp(1) random variables. It
follows from Theorem [3.1] that the vector X := (X, ..., X,,) defined by

PO . LA
2 (Z + ijl 93’)
is uniformly distributed in A”. Fix ¢ > 0 such that Claim[3.24holds and let r < en~'/%. Let f)

be the random variable from Claim [3.24 and suppose that the variables §; in the definition of f()
are independent of g1, . .., g, and Z. Define the random variable Y = Y") = (Y{,...,Y,,) by

()" fi
Y, = - )
2(Z + ijl fa’)

By Claim we have that dry (X, Y ™) < 1/4 and therefore for any subset A C A" with
tn(A) > 1/2 we have that

P(Y" e A) > 1/4 (60)
To simplify the notations we define the random variables
. (n')l/" ? . (n')l/" Y (2 3 K3 P (3
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and W := (Wy,...,W,). We have that X; = ¢;/P and a straightforward computation shows

that

Y, — gi +1r(9:)0;

%, T P N T
PrrQ P P+rQ (¢(gz)52 Pgl> =Xitp gV 6D

Next, since (60) holds for any r < en~'/4, it holds when replacing r with U ~ U0, en~/4]
independent of all other random variables. Thus, rewriting (60) using (61)) we obtain

U

P(X+ W eA)>1/4
T PrUQ > 1
By the central limit theorem, Stirling’s formula and the fact that 5 < 2e < 6 we have that
P(5<P<6)>099 P(|Q <Cin %) >0.99 P(|W|>civ/n) >0.97

for some C1,¢; > 0 and n sufficiently large. Thus, there are x,w € R™ with |w| > ¢;4/n and
p,q € Rwith5 < p < 6 and |¢| < C1n~'/? such that

P(a:+ UUqw € A) > 1/5.

p+

It is straightforward to check that the ratio between the densities of the random variables
U/(p+ Uq) and U/p tends to 1 as n tends to infinity and therefore for sufficiently large n we
have

P(z + (U/p)w € A) > 1/6.

It follows that the line ¢ containing x and x + w satisfies
10N A > en Y4 w|/(6p) > cont/*

as needed. O

A Proof of Claim 3.4

Proof of Claim[3.4] First, note that by a straightforward calculation with the density of g, we
have that

Ellgel’) =1/p and  Var(|gi|") = 1/p. (62)

Thus, the random variable

Nie oS (el - ) 3

k=3 p

is roughly normally distributed with variance of order 1/n. In particular we have that E[N] = 0
and E[N?™] < C,,/n™ for all m € N. In the definition of N we do not sum over k = 1,2 in
order to make it independent of ¢g; and g,. By (62)), (63) and Theorem 3.1 we have that X is well
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approximated by X;. We claim that the following, more accurate approximation of X, holds.
We have . 3 .
Xl = Xl —XlN—l—XlHl, (64)

where H; is some random variables with E[H{"] < C,,/n™ for all m > 1. Intuitively, (64)
says that X, can be written as X, plus a random variable with 0 expectation of order n~'/2 plus
a random variable of order n~!. The approximation in (64) follows from Theorem and a
second order Taylor expansion of the function (1 + x)~'/?. Indeed, by (37) we have

~ P 1 — —1/p
X, = X (1 PypiZ P_1q )
1 i\ L+ n + n;(ﬂgk\ )
~ 1 —-1/p ~ -~ -
=X, (1 + pN + E(p|gl|p + plg2|’ + pZ — 2)) =X, - XN+ X\ H

where we define H; in such a way that the last equality holds. The fact that E[H"] < C,,,/n™
follows from E[N?™] < C,,/n™.

Next, let o be a differentiable function supported on [—Cj, Cy] such that ¢’ is Lipschitz. For
all x, z € R we have that

¢(Rz) = o(RT) + RY'(RT)(x — &) + O(1{min(|z|, |7[) < Co/R} - R*(x — T)*).
Substituting (64) into the last estimate we obtain
p(RX1) = p(RX1) — R/ (RX1)XiN + O (L4, (X1 Hi|R + R*(X1N + XlHl)z))

where A; := { min(|X;],|X;|) < Co/R}. Define the event B, := {|X;| < 2C;/R} and note
that

P(A\ B) < P(1X3] > 2X4]) < P(pZ +) (plgel” = 1) > n) < Ce™™,
k=1

where the last inequality is by Bernstein’s inequality and the fact that |g;|” has exponential tails.
We have

(RX1) = (RX)) — RY(RX1)XiN + O(1p, (Hi + (N + H1)?) + Las,M1) (65
= o(RX;) — R¢/(RX,) XN + O (1, Fr + 15, M)

where M, and F are some random variables with E[M7"] < C,,, and E[F}"] < C,,n~" for all
m € N. Thus, using that NV is independent of X;, E[N]| = 0 and Cauchy-Schwarz inequality we
obtain

E[o(RX1)] = E[p(RX1)] +O(n ™).

This finishes the proof of the first part of the claim. )
We turn to prove the second part. We clearly have that E[p(RX)] < C/R and therefore

E[o(RX1)]? = E[o(RX))]* + O(n'R7Y). (66)
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Moreover, by the same arguments as in (63) we can write
o(RX3) = SO(RXz) - RSO/(RX2)X2N + O(]lBQFz + ]lAz\BQMZ) (67)

where M, and F; are some random variables with E[M]"] < C,,, and E[F}"] < C,,,/n™.
We now expand the 16 terms in the product of the right hand sides of (63) and (67)) to obtain

E[o(RX1)p(RX,)] = E[p(RX))]E[p(RX,)] + O(n'R7Y). (63)
Since X 1 X2 and N are independent we have
E[‘P(RX1)<P(RX2)} = E[@(RXQ}E[@(RXQ} and E[RSO/(RXQXlN‘P(RXﬂ} =0.

Next, by Cauchy-Schwarz we have

1/2

15, Fip(RX,)] < C(E[F?] - P(B, N By))"* < C/(nR)

Laps Mip(RX,)] < C(B[M?] - P(A \ By))? < Cemen

15, FiR¢/(RX,) X,N| < C(E[F2N?| - P(B, N By))"? < C/(nR)
1aps, My RY' (RX,) X,N| < C(E[M2N?)-P(A; \ B))"? < C/(nR).

E
E
E

[
[
[
E|

The other terms in the product are either clearly small by Cauchy-Schwarz or symmetric to
one of the above terms. This finishes the proof of (68). The second part of the claim follows

from (66) and (68). Indeed, Cov(¢(RX1), p(RX>)) = E[p(RX:1)p(RX5)] — IE[@(JR’XI)}2 =
O(n™'R71). O

The proof of Claim 3.3/ follows from (64) above.
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