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Lecture 2: Convex localization through hyperplane bisections

Minerva mini-course on Convexity in High dimensions by Bo’az Klartag

In each lecture in this mini-course, except for the first introductory lecture, we explain one
technique in convex geometry. We will not always reach the most advanced applications of the
techniques, but we will learn the basic ideas, with the hope that students will understand how the
method is applied in other situations as well.

Today we discuss a convexity technique whose precursor is Payne and Weinberger ’60, going
back to Gromov and Milman ’87 and to Kannan, Lovász and Simonovits ’93. Last week we
mentioned two geometric inequalities from the 19th-century. The first is:

Brunn-Minkowski inequality: For any Borel sets A,B ⊆ Rn and 0 < λ < 1,

|(1− λ)A+ λB| ≥ |A|1−λ|B|λ

where here | · | is n-dimensional volume, and (1−λ)A+λB = {(1−λ)x+λy ; x ∈ A, y ∈ B}.
Among closed sets of positive volume, equality holds if and only if A and B are convex and are
translates of one another.

There are quite a few proofs of the Brunn-Minkowski inequality: Either by Steiner sym-
metrization, or by approximating the sets by finite union of boxes and induction on the number
of boxes, or by other methods. We will not prove the Brunn-Minkowski inequality now, but in
fact most of the techniques that we will study are strong enough to prove this inequality.

Corollary 1. LetK ⊆ Rn be a convex body, E ⊆ Rn a subspace, X a random vector distributed
uniformly in K. Then ProjE(X) is log-concave.

Thus, even if we are only interested in uniform measures on convex sets, log-concave mea-
sures are probably going to show up. We recall that a density f is log-concave if for all x, y ∈ Rn

and 0 < λ < 1,
f((1− λ)x+ λy) ≥ f(x)1−λf(y)λ.

Proof. Write fE for the density of ProjE(X), i.e.,

fE(x) = |K ∩ (x+ E⊥)|.

By convexity, for any x, y ∈ E,

K ∩ (E⊥ + x) +K ∩ (E⊥ + y)

2
⊆ K ∩

(
E⊥ +

x+ y

2

)
From the Brunn-Minkowski inequality we thus get that

√
fE(x)fE(y) ≤ fE((x+ y)/2).
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Moreover, and somewhat conversely to the corollary, any log-concave probability distribution
is approximately a marginal distribution of a uniform distribution on a convex body in high
dimension. Log-concavity is a rather stable property:

Proposition 2. (Prékopa-Leindler, which is a functional version of the Brunn-Minkowski in-
equality). If X is a log-concave random vector in Rn and E ⊆ Rn is a subspace, then also
ProjE(X) is log-concave.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The second 19th-century inequality that we mentioned last week was the Poincaré inequality.

Poincaré inequality (with the Payne-Weinberger constant) Let K ⊆ Rn be convex, µ a
log-concave probability measure on K. Then for any smooth function f : K → R with

∫
fdµ =

0, ∫
K

f 2dµ ≤ Diam2(K)

π2

∫
K

|∇f |2dµ.

There is equality in one dimension for f(x) = cosx in the interval [0, π]. In n-dimensions,
for an almost-equality consider an elongated, thin cylinder, which is nearly a one-dimensional
convex set.

This inequality has several proofs, for example it may be proven by using the Bochner for-
mula (see Yong and Zhong ’84 or the unified approach in Bakry and Qian ’00). We will prove this
inequality by convex localization, a technique which reduces certain n-dimensional problems to
1-dimensional ones.

The proof relies on hyperplane bisections. Let K,µ and f be as in the statement of the
Poincaré inequality.

Little topological lemma. Fix an (n− 2)-dimensional affine subspace E0 ⊆ Rn. Then there
exists a hyperplane H ⊆ Rn containing E0 such that∫

K∩H+

fdµ =

∫
K∩H−

fdµ = 0

where H± are the two half-spaces determined by H .

Proof. For a unit vector θ ∈ E⊥
0
∼= R2 consider the hyperplane

H(θ) = E0 + Rθ.

The map

θ 7→
∫
K∩H(θ)+

fdµ−
∫
K∩H(θ)−

fdµ

is an odd continuous map, and therefore it has to vanish somewhere. (Later on we will replace
this proof by a Borsuk-Ulam type argument.)
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Thus we reduced the task of proving a single inequality on the given convex body K, to the
task of proving the two inequalities∫

K∩H±
f 2dµ ≤ Diam2(K ∩H±)

π2

∫
K∩H±

|∇f |2dµ

on two smaller sets.

Repeat bisecting recursively. After N steps, obtain a partition of K (up to measure zero) into
convex sets K1, . . . , K2N with

∫
Ki
fdµ = 0 for all i. Let us show that we can arrange matters

so that the pieces of the partition are almost 1-dimensional, and we obtain a decomposition into
needles.

Definition 3. A convex set P ⊆ Rn is a δ-needle, for δ > 0, if for some line ℓ ⊆ Rn,

P ⊆ ℓ+ δ ·Bn.

We assume that Diam(K) <∞ (otherwise, there is nothing to prove).

Proposition 4. Let δ > 0. Then there exist N ≥ 1 and a partition of K as above such that Ki is
a δ-needle for all i.

Proof sketch. Pick a dense sequence in the space of affine (n− 2)-dimensional subspaces in Rn,

E1, E2, . . . ⊆ Rn.

At the ith-step, bisect with respect to a hyperplane containing Ei. For sufficiently large N , this
works.

Proof of P-W. We may assume that f and |∇f | are uniformly continuous. Fix ε > 0, choose
δ > 0 by uniform continuity, and apply the proposition. It suffices to prove that for all i,∫

Ki

f 2dµ ≤ (1 + ε)
Diam2(Ki)

π2

∫
Ki

|∇f |2dµ.

Since Ki ⊆ ℓi + δ ·Bn, we may project to the line ℓi. The projection of 1Ki
µ is log-concave, by

Prékopa-Leindler. Hence it suffices to prove that for any interval I ⊆ R, a log-concave measure
ν on I abd a smooth function g on the interval,∫

I

gdν = 0 =⇒
∫
I

g2dν ≤ Length2(I)

π2

∫
I

(g′)2dν.

By scaling we may assume that I = [0, π]. Such inequalities are studied in the Sturm-Liouville
theory in ordinary differential equations. This part of the argument is not immediately related
to convex localization. By standard functional analysis, the inequality that we need to prove
amounts to a spectral gap for the operator

Lg = eψ(e−ψg′)′ = g′′ − ψ′g′
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with Neumann boundary conditions where dν
dx

= e−ψ so that ψ : [0, π] → R is convex. The
operator L is self-adjoint with discrete spectrum in L2(ν) with its domain being all g such that
g, g′ are absolutely-continuous with Lg square integrable and

g′(0) = g′(π) = 0.

We know that the first eigenvalue of −L equals zero, and we need to prove that the second eigen-
value is at least one. There is a nice conjugacy transform on the subspace of smooth functions
orthogonal to constants (it is an isometry from Ḣ1(ν) to L2([0, π])). Setting

Tu = e−ψ/2u′

we have ATu = TLu where A is a Schrödinger operator

Aw = e−ψ/2
(
eψ(e−ψ/2w)′

)′
= w′′ −

(
ψ′′

2
+

(ψ′)2

4

)
w.

The operator A is self-adjoint in L2([0, π]) with Dirichlet boundary conditions. Since ψ′′ ≥ 0,
the operator −A is at least, in the operator sense, the operator −w′′ with Dirichlet boundary
conditions. The spectrum of the latter operator is

1, 4, 9, 16, . . .

Hence −A ≥ Id and the spectral gap of L is at least one, as any eigenvalue of L (except zero) is
also an eigenvalue of A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The next application of Convex Localization that we would like to present is Gromov’s Gaus-
sian waist inequality. It is more complicated that the Payne-Weinberger proof, but its main is
rather intuitive. Write γn for the standard Gaussian measure in Rn, with density

(2π)−n/2e−|x|2/2.

Theorem 5 (Gromov ’02). Let 1 ≤ k ≤ n and let f : Rn → Rk be a continuous function. Then
there exists t ∈ Rk such that the fiber L = f−1(t) satisfies

γn(L+ rBn) ≥ γn(Rn−k + rBn) for all r > 0. (1)

There is equality when f is linear. The case k = 1 follows from the Gaussian isoperimetric
inequality, with t being the median of f . Unlike the case k = 1 where most of the mass is in
large fibers, the case k ≥ 2 is a bit like finding a “needle in a haystack”. It could happen that
most of the mass belong to small fibers (Alpert-Guth ’14).
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We may that µ is “more log-concave than the Gaussian” if dµ = e−ψdx and

∇2ψ ≥ Id,

in the case where ψ is smooth. When ψ is not smooth, we require that ψ(x)− |x|2/2 is convex,
where the function ψ is in fact allowed to attain the value +∞. We may replace γn by such µ on
the left-hand side of (1), this is the version that we will prove. This is a theorem about convexity,
not about the symmetries and structure of the Gaussian measure.

Suppose that µ is more log-concave than the standard Gaussian. Then first, the restriction of
µ to any open convex set is still more log-concave than the standard Gaussian. Second, the same
applies for the orthogonal projection of µ to any subspace, as follows from the Prékopa-Leindler
inequality.

There is also a spherical version of the waist inequality (Gromov ’02), with a similar proof.
There are also versions the cube (K. ’17) and for the Euclidean ball (Akopyan and Karasev ’17),
as well as less precise versions for general convex bodies (K. ’17).

We proceed with a proof of Theorem 5 following K ’17. Unlike the case of Payne-Weinberger,
here the only proof that I know uses convex localization.

The main property of log-concave measures that we use is the following

Lemma 6. Let ν be a probability measure on Rk that is more log-concave than the standard
Gaussian measure. Then there exists x0 ∈ Rk, referred to here as Center(ν) such that

ν(x0 + rBk) ≥ γk(rB
k) for all r > 0.

Proof. Suppose that dν/dx = e−ψ with ψ smooth, thus ∇2ψ ≥ Id. We pick x0 = argminψ,
which is uniquely determined, and assume that x0 = 0. Then ∇ψ(0) = 0 and for all x ∈ Rn,

∂rψ(x) ≥ |x|.

Thus on each ray emanating from the origin, the function e−ψ decays faster than e−|x|2/2 and in
fact e−ψ(x)/e−|x|2/2 is decreasing along any ray emanating from the boundary. For any θ ∈ Sn−1,
let α = α(θ) be such that ∫ ∞

0

[αe−ψ(tθ) − e−t
2/2]tk−1dt = 0. (2)

Then the integrand is non-negative up to some t0 ≥ 0, and afterwards it is non-positive. There-
fore, if we integrate in (2) from 0 to r, we get a unimodal function of r ∈ [0,∞) that vanishes at
zero and infinity. Hence it is non-negative. This means that∫ r

0

e−ψ(tθ)tk−1dt ≥ α−1

∫ r

0

e−t
2/2tk−1dt = γk(rB

k) ·
∫ ∞

0

e−ψ(tθ)tk−1dt.

We now integrate over θ ∈ Sk−1 and use polar coordinates in Rk to conclude the lemma.
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It may be arranged so that the center of ν varies continuously with ν in the weak∗ topology
(perhaps after allowing a little slack of small ε > 0, we are not entirely accurate here about
the definition of the center, it needs to be regularized, see K. 17 for precise definition). Given a
continuous function f : Rn → Rk and an open convex set K ⊆ Rn we define

I(K) = f(C̃enter(µ|K)) ∈ Rk,

where C̃enter is a certain regularized variant of Center. Fix δ > 0. Our goal is to create a
partition up to measure zero

RN = K1 ∪ . . . ∪K2N

for some number N ≥ 1 and convex pieces K1, . . . , KN ⊆ Rn, such that two properties hold:

(i) I(K1) = . . . = I(K2N ). This would follow from a variant of the Borsuk-Ulam theorem,
using nothing but the continuity of I.

(ii) Each Ki is a (k,R, δ)-pancake. A convex set P ⊆ Rn is a (R, k, δ)-pancake if there exists
an affine k-dimensional subspace E ⊆ Rn such that

P ∩RBn ⊆ E + δ ·Bn.

Here R > 0 is thought of as very large and δ > 0 is very small.

Assuming these two properties for now, we can proceed as follows:

Sketch of proof of Theorem 5. We define the center point slightly differently, so that the follow-
ing holds for all of our pancakes: Set

νi = ProjEi
(µ|Ki

),

the push-forward of the restriction of µ to Ki to the subspace Ei with Ki ∩RBn ⊆ Ei + δ ·Bn.
Then νi is more log-concave than the standard Gaussian. Now, for x0 = C̃enter(µ|Ki

),

µ((x0 + rBk) ∩Ki) ≥ νi(Center(νi) + rBk) · (1 + ε(δ))

for some small error ε depending on δ, uniformly in r in some interval that approximates (0,∞).

Set t = f(C̃enter(µ|Ki
) ∈ Rk, which is the same for any i. Thus the fiber L = f−1(t) passes

through the centers of all convex pieces of the partition. Therefore

µ((L+ rBk) ∩Ki) ≥ νi(Center(νi) + rBk) · (1 + ε(δ)) ≥ νi(Ei) · γk(rBk) · (1 + ε(δ)).

Hence by summing over i and we obtain

µ(L+ rBk) =
2N∑
i=1

µ((L+ rBk)∩Ki) ≥
2N∑
i=1

µ(Ki) ·γk(rBk)+ ε(δ) = γn(Rn−k+ rBk)+ ε(δ),

and the theorem follows by letting δ tend to zero.
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How can we prove the two properties above? Let 1 ≤ k ≤ n,N ≥ 1 and let E1, . . . , EN ⊆
RN be any fixed (N − k − 1)-dimensional affine subspaces.

We apply hyperplane bisection recursively N steps, and at the ith-step we will bisect with
respect to hyperplanes containing Ei. The space of all such oriented hyperplanes is an k-
dimensional sphere. Thus we have freedom to solve k equations with the choice of each hy-
perplane.

Theorem 7 (Borsuk-Ulam type). We can choose such hyperplanes such that the partition of K
into K1, . . . , K2N that we obtain satisfies I(K1) = I(K2) = . . . = I(K2N ).

Only the continuity of I is relevant for this theorem. Note that for N = 1 this is exactly the
Borsuk-Ulam theorem. There are a few ways to prove Theorem 7. One possibility is to adapt
the homotopy proof of Borsuk-Ulam, replacing the ±-symmetry by the group of symmetries of
the complete binary tree, which also acts on the space of partitions of K obtained by convex
localization. Another possibility is to use the axioms of Stiefel-Whitney classes, and show that
any section of a suitable vector bundle has to vanish. Why do we obtain pancakes?

Proposition 8. Let 0 ≤ k ≤ n − 1 and R ≥ 1, 0 < δ < 1. Then there exist N ≥ 1 and
(n − k − 1)-dimensional affine subspaces E1, . . . , EN ⊆ Rn with the following property: If Hi

is a hyperplane containing Ei, then for any choice of signs

H±
1 ∩ . . . ∩H±

N

is an (R, k, δ)-pancake. Here H+ and H− are the two half-spaces whose boundary is H .

This is proven analogously to Proposition 4, by selecting any dense sequence E1, E2, . . . in
the space of affine (n− k − 1)-dimensional subspaces in Rn, and picking a sufficiently large N .

We conclude this lecture by mentioning one more application of convex localization, proven
by Bourgain ’91, with subsequent improvements by Bobkov ’00, Carbery and Wright ’01, Nazarov,
Sodin and Volberg ’03 and Fradelizi ’09.

Theorem 9. (reverse Hölder inequality for polynomials) Let X be a log-concave random vector
in Rn and let f : Rn → R be a polynomial whose degree is at most d. Then for 0 ≤ p ≤ q,

∥f(X)∥p ≤ ∥f(X)∥q ≤ C∥f(X)∥p
where C = Cp,q,d is independent of X or n. One can prove Cp,q,d ≤ Cd[(q + 1)/(p+ 1)]d.

For d = 1 this was proven by Berwald ’47 using the Brunn-Minkowski inequality. This
statement reduces to one dimension (convex localization where f has the same Lp-norm on all
pieces). In one dimension, a log-concave distribution has sub-exponential tail, hence the theorem
holds true for d = 1. In general, we may multiply f by a constant so that f(x) =

∏d
i=1(x− zi).

By Hölder inequality and the case d = 1,∥∥∥∥∥
d∏
i=1

(X − zi)

∥∥∥∥∥
q

≤
d∏
i=1

∥X − zi∥qd ≤ Cqd

n∏
i=1

∥X − zi∥0 = Cqd∥f(X)∥0,

as ∥fg∥0 = ∥f∥0 · ∥g∥0.
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