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Lecture 3: Optimal Transport with the Monge Cost

Minerva mini-course on Convexity in High dimensions by Bo’az Klartag

Last week we discussed convex localization which is based on hyperplane bisections. The
basic property was that if we bisect a convex body in Rn using hyperplane, we obtain two convex
pieces. We can repeat this procedure in the sphere Sn or in the hyperbolic plane Hn, because if
we consider a convex set in one of these constant-curvature spaces, and bisect it with respect to a
hyperplane, then we obtain two convex pieces. The proof of the Gaussian waist inequality from
last week can be adapted to yield the waist of the sphere theorem:

Theorem 1 (Gromov ’02). Let 1 ≤ k ≤ n and let f : Sn → Rk be a continuous function. Then
there exists t ∈ Rk such that the fiber L = f−1(t) satisfies

σn(L+ r) ≥ γn(Sn−k + r) for all r > 0.

where σ is the surface area measure on Sn and L+ r is the r-neighborhood of L.

The convex localization process begins with a convex body K ⊆ Rn, we bisect again and
again, and after N steps we obtain a partition of K into 2N convex bodies K1, . . . , K2N which
are approximate 1-dimensional needles or approximate `-dimensional pancakes. There is much
freedom in constructing the partition, and one uses these degrees of freedom in order to impose
conditions such as

I(K1) = . . . = I(K2N )

where I : {convex bodies} → R` is a continuous functional of our choice.

Let us have another look at the convex localization process in a particular case, the additive
one-dimensional case of convex localization, where the topological part of the argument is much
easier, and the recursive nature of the process is evident. Given a convex body K ⊆ Rn, a log-
concave measure µ on K, and a function f : K → R of integral zero, and we recursively obtain
a partition of K into 2` convex bodies K1, . . . , K2` which are approximate needles with∫

Ki

fdµ = 0 for i = 1, . . . , 2`.

This is a sequence of more and more refined partitions. Is there a limiting object whenN tends to
infinity? Yes. There is a little bit of measure-theory involved (see Alesker ’98), but it is possible
to take the limit N →∞ and obtain the following:

Limit Object (Needle Decomposition):

1. A partition {Kω}ω∈Ω of K into segments (a.k.a “needles”. Some of them may be single-
tons, or full lines, or rays).
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2. A measurable partition induces disintegration of measure or conditional probabilities.
These are measures {µω}ω∈Ω on K, and ν on Ω, with

µ =

∫
Ω

µωdν(ω)

3. ν-almost every µω is supported on Kω with
∫
Kω

fdµω = 0.

4. ν-almost every µω is log-concave (by Brunn-Minkowski or Prékopa-Leindler).

We recall that while in general it is impossible to condition a probability measure on a single
zero-measure set, it is typically possible to condition with respect to a partition into zero-measure
sets. Here are some examples for such needle decomposition. The first example is when K =
[0, 1]2 ⊆ R2 and f(x, y) = f(x) with

∫
K
f = 0. Here there is a partition into segments parallel

to the x-axis, and the needles µω are Lebesgue measures,

dµω(x) = dx.

The second example is where K = B(0, 1) ⊆ R2 is the unit disc and f(x, y) = f(
√
x2 + y2)

with
∫
K
f = 0. Here the partition is into radii, and the needles µω satisfy

dµω(r) = rdr

by polar coordinates. This is a log-concave function in the interval [0, 1], of course. In general,
needle decomposition may be viewed as a generalization of polar coordinates. This story has a
close connection to Optimal Transport with the Monge cost.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A review of Optimal Transport theory with the Monge cost

Let µ1 and µ2 be two measures in Rn, say compactly-supported and absolutely continuous,
with the same total mass. We would like to push-forward the measure µ1 to the measure µ2 in
the most efficient way, that minimizes the average distance that points have to travel. That is, we
look at the optimization problem

inf
S∗(µ)=ν

∫
Rn

|Sx− x|dµ1(x).

This is the problem of Optimal Transport with the Monge cost or the L1 cost, considered by
Monge in 1781. Here is a heuristics from Monge’s paper that explains why this problem induces
a partition into segments.

Monge heuristics: For the optimal transport map T , the segments (x, T (x)) (x ∈ Supp(µ1))
do not intersect, unless they overlap.
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Explanation. Suppose that the segments (x, Tx) and (y, Ty) intersect at a point z, and apply the
Triangle Inequality.

This is related to the following elementary riddle: given 50 red points and 50 blue points
in the plane, in general position, find a matching so that the corresponding segments do not
intersect.

Since the above argument relies only on the triangle inequality, you would expect that the Op-
timal Transport problem would induce a partition into geodesics also for Riemannian manifolds,
or Finslerian manifolds, or measure metric spaces of some type – basically wherever the triangle
inequality holds true (under some regularity assumptions). This is in contrast to the hyperplane
bisection method, that applies only in highly symmetric spaces such as Rn, Sn or Hn.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Linear programming relaxation and the dual problem (Kantorovich 1940s)

In Monge’s problem we minimize over all maps S that push-forward µ1 to µ2. There is a
relaxation of this problem, that looks at all possible couplings, or transport plans, of the two
distributions. That is, instead of mapping a point x to a single point Tx, we are allowed to spread
the mass across a region. We look at all probability measures γ on Rn × Rn with

(π1)∗γ = µ1 and (π2)∗γ = µ2.

where π1(x, y) = x and π2(x, y) = y. Such a probability measure is called a coupling of µ and
ν. In other words, we now look at transport plans rather than transport maps. The nice thing
is that the space of all couplings is a convex set. The relaxed problem invovles minimizing the
average distance that points travel, namely we look at

inf
(π1)∗γ=µ,(π2)∗γ=ν

∫
Rn×Rn

|x− y|dγ(x, y).

Hence we minimize a linear function on a convex set, this is Linear Programming or Functional
Analysis.

Theorem 2. (The dual problem) Let µ1, µ2 be two absolutely-continuous probability measures
in Rn (or better, in some geodesically-convex Riemannian manifold M ). Assume that for some
x0 ∈ Rn, ∫

Rn

d(x, x0)dµ1(x) <∞ and
∫
Rn

d(x, x0)dµ2(x) <∞.

Denote µ = µ1 − µ2. Then the following quantities are equal:

1. The minimum over all couplings γ of µ1 and µ2 of the integral∫
Rn×Rn

d(x, y)dγ(x, y).
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2. The maximum over all 1-Lipschitz functions u : Rn → R of∫
Rn

udµ

3. The minimum over all maps T with T∗µ1 = µ2 of∫
Rn

d(x, Tx)dµ1(x).

Proof sketch. We refer to Ambrosio’s lecture notes on Optimal Transport Problems ’03 for full
details. For the easy direction of the linear programming duality, pick a 1-Lipschitz map u and a
coupling γ. For any points x, y ∈ Rn,

u(x)− u(y) ≤ d(x, y).

Integrating with respect to γ, we get∫
Rn

udµ =

∫
Rn×Rn

[u(x)− u(y)]dγ(x, y) ≤
∫
Rn×Rn

d(x, y)dγ(x, y). (1)

Hence we need to find u and γ so that equality is attained in (1). The argument goes roughly
as follows. A compactness argument shows that the infimum over all couplings is attained.
Similarly to the Monge heuristics, one may show that the optimality implies that the support of
γ must be cyclically monotone: If (xi, yi) ∈ Supp(γ) ⊆ Rn × Rn for i = 1, . . . , N then for any
permutation σ ∈ SN ,

N∑
i=1

d(xi, yi) ≤
N∑
i=1

d(xi, yσ(i)).

By an elementary argument similar to Rockafellar’s theorem from convex geometry, this condi-
tion implies that there exists a 1-Lipschitz function u : Rn → R with

(x, y) ∈ Supp(γ) =⇒ u(y)− u(x) = d(x, y).

[Hint: Fix u(x0) = 0 and define u(x) as the infimum over all constraints]. This way we find u
and γ so that equality is attained in (1). The proof that γ can also be replaced by a transport map
is due to Evans and Gangbo ’98. This relies rom the analysis of the structure of u that will be
explain next.

Remark. The minimizers γ or T are highly not unique, it is actually the 1-Lipschitz function
u which is more-or-less determined. More precisely, the gradient ∇u is determined µ-almost
everywhere.

A few words about the structure of the optimal 1-Lipschitz function u, and about 1-Lipschitz
functions in general. When a 1-Lipschitz function u satisfies |u(x) − u(y)| = d(x, y), it neces-
sarily grows in speed one along the segment from x to y.
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Fact: After eliminating a set of measure zero form Rn, the relation

x ∼ y ⇐⇒ |u(x)− u(y)| = d(x, y)

is an equivalence relation, and the equivalence classes are line segments (or geodesics in the case
of a Riemannian manifold) called transport rays. Moreover, it is guaranteed that transport rays
of positive length cover the entire support of the measure µ, up to a set of measure zero.

Exercises: what are the transport rays of u(x) = x1? and of u(x) = |x|?
Understanding the measure disintegration induced by the partition into transport rays requires

regularity analysis of the function u, basically one needs to show that the 1-Lipschitz function u
is in fact almost C2 in some sense. This follows from the seminal work of Evans-Gangbo, which
was continued by Caffarelli, Feldman and McCann and by myself. Let u be a minimizer as above,
with µ = µ1 − µ2 with the two measures being absolutely-continuous in Rn and satisfying the
above mild integrability condition. Write

f =
dµ

dλ

where λ is the Lebesgue measure on Rn (or better, we may work with any log-concave reference
measure in Rn, not just the Lebesgue measure). Then we require that∫

Rn

fdλ = 0.

The following theorem from K. ’17 is analogous to integration in polar coordinates, yet with
respect to a general 1-Lipschitz guiding function, rather than just u(x) = |x|.

Theorem 3. There is a partition {Iω}ω∈Ω of Rn and measures ν on Ω, and {µω}ω∈Ω on Rn such
that

1. Disintegration of measure

λ =

∫
Ω

µωdν(ω).

2. For any ω ∈ Ω the measure µω is supported on the segment

Iω = {γω(t)}t∈(aω ,bω) (arclength parametrization)

with C∞-smooth, positive density ρ = ρω : (aω, bω)→ R. The segments are transport rays
of the 1-Lipschitz function u.

3. For any ω ∈ Ω, ∫
Iω
fdµω = 0.

4. For any ω ∈ Ω, the function ρ is log-concave.
(In fact, in the case where λ is the Lebesgue measure, it is a polynomial of degree n − 1
with real roots, which does not vanish in the interval in which ρ is defined).
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This recovers the convex localization technique in the one-dimensional linear case, but even
in this case there is some advantage here, which is the 1-Lipschitz function u that grows with
speed one along the needles.

Remark. Another advantage of this theorem is that it works in any Riemannian manifold
with non-negative Ricci curvature. More generally, if we set κ(t) = Ricci(γ̇(t), γ̇(t)), n =
dim(M), then we have (

ρ
1

n−1

)′′
+

κ

n− 1
· ρ

1
n−1 ≤ 0.

The Riemannian version may be used to prove isoperimetric inequalities under lower bounds on
the Ricci curvature, Poincaré inequalities, log-Sobolev inequalities, Brunn-Minkowski, and in
general it is a rather strong technique for proving geometric inequalities on manifolds.

As an application, let us prove the reverse Cheeger inequality of Buser and Ledoux, and in
fact the following refinement due to E. Milman:

Proposition 4. Let µ be a log-concave probability measure on Rn and R > 0. Assume that for
any 1-Lipschitz function u : Rn → R there exists α ∈ R with∫

Rn

|u(x)− α|dµ(x) ≤ R. (2)

(this is a weaker condition than having a spectral gap of 1/R2). Then for any measurable set
S ⊆ Rn and 0 < ε < R,

µ(Sε \ S) ≥ c · ε
R
· µ(S) · (1− µ(S)), (3)

where c > 0 is a universal constant, and where Sε is the ε-neighborhood of S.

Proof. See K. ’17 for more details. Denote t = µ(S) ∈ [0, 1] and set f(x) = 1S(x) − t for
x ∈ Rn. Then

∫
fdµ = 0. Let u be a 1-Lipschitz function maximizing∫

Rn

ufdµ.

After adding a constant to u, we may assume that∫
Rn

|u|dµ ≤ R.

By the theorem, we obtain a needle decomposition: measures {µI}I∈Ω on Rn, and a measure ν
on the space Ω of transport rays which yield a disintegration of measure. We may normalize and
assume that all of these measures are probability measures. Hence,∫

Ω

(∫
I
|u|dµI

)
dν(I) =

∫
Rn

|u|dµ ≤ R.
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Denote

B =

{
I ∈ Ω ;

∫
I
|u|dµI ≤ 2R

}
.

By the Markov-Chebyshev inequality,

ν(B) ≥ 1/2. (4)

For all intervals I ∈ Ω we know that
∫
I fdµI = 0, hence

µI(S) = t · µI(Rn) = t.

We would like to prove that for any I ∈ B and any 0 < ε < R,

µI(Sε \ S) ≥ c · ε
R
· t(1− t), (5)

for a universal constant c > 0. Once (5) is proven, the bound (3) follows by integrating (5) with
respect to ν and using (4).

What remains to be proven is a one-dimensional statement about log-concave measures: If
ν = µI is a log-concave probability measure on R with

∫
R |t|dν(t) ≤ R, then (5) holds true. It

suffices to prove this under the additional assumption that S is connected (Bobkov ’96), and in
fact a half line. This one-dimensional statement is proven in Bobkov ’96 (see K. ’17).

The same proof applies for any complete Riemannian manifold with non-negative Rieman-
nian curvature. No need for completeness, the weaker geodesic-convexity assumption suffices.
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