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Lecture 4: Bochner Identities and Curvature

Minerva mini-course on Convexity in High dimensions by Bo’az Klartag

So far we discussed two techniques in convex geometry, Convex Localization and Opti-
mal Transport, with applications including the Poincaré inequality with the optimal Payne-
Weinberger constant, Gromov’s waist inequality, reverse Hölder inequalities for polynomials and
the reverse Cheeger inequality. Today we discuss a method that was borrowed from Riemannian
geometry: The Bochner technique that goes back to Bochner in the 1940s and also Lichnerowicz
in the 1950s. In a nutshell, the idea is to make local computations involving something like cur-
vature, as well as integrations by parts, and then dualize and obtain Poincaré-type inequalities.
This may sound pretty vague, let us explain what we mean.

Suppose that µ is a log-concave probability measure in Rn with density e−ψ for a smooth,
convex function ψ : Rn → R. Therefore∇2ψ ≥ 0 everywhere in Rn. We will measure distances
using the Euclidean distances in Rn, but we will measure volumes using the measure µ. We thus
look at the weighted Riemannian manifold or the metric-measure space

(Rn, | · |, µ).

Thus for instance the Dirichlet energy of a smooth function f : Rn → R is

‖f‖2
Ḣ1(µ)

=

∫
Rn
|∇f |2dµ.

Indeed, we measure the length of the gradient with respect to the Euclidean metric, while we
integrate with respect to the measure µ. The Laplace-type operator associated with this measure-
metric space is defined, initially for u ∈ C∞c (Rn), via

Lu = ∆u−∇ψ · ∇u = eψdiv(e−ψ∇u).

This reason for this definition is that for any smooth functions u, v : Rn → R, with one of them
compactly-supported, ∫

Rn
(Lu)vdµ = −

∫
Rn

[∇u · ∇v]e−ψ.

We will not use much functional analysis or operator theory today, but it is worthwhile to mention
that L is essentially self adjoint in L2(µ). In Riemannian geometry, the Ricci curvature appears
when we commute the Laplacian and the gradient. Analogously, here we have the easily-verified
commutation relation

∇(Lu) = L(∇u)− (∇2ψ)(∇u),

where L(∇u) = (L(∂1u), . . . , L(∂nu)). Hence the matrix ∇2ψ is a curvature term, analogous
to the Ricci curvature.
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Proposition 1 (Integrated Bochner’s formula). For any u ∈ C∞c (Rn),∫
Rn

(Lu)2 dµ =

∫
Rn

(
∇2ψ

)
∇u · ∇u dµ+

∫
Rn
‖∇2u‖2HSdµ,

where ‖∇2u‖2HS =
∑n

i=1 |∇∂iu|2.

Proof. Integration by parts gives∫
Rn

(Lu)2 dµ = −
∫
Rn
∇(Lu) · ∇u dµ = −

∫
Rn
L(∇u) · ∇u dµ+

∫
Rn

[
(∇2ψ)∇u · ∇u

]
dµ

=
n∑
i=1

∫
Rn
|∇∂iu|2 dµ+

∫
Rn

(
∇2ψ

)
∇u · ∇u dµ.

We would like to use the property that the first summand on the right-hand side is non-
negative, since ψ is convex. For this we would need to present a given function f ∈ L2(µ)
as

f = Lu.

A necessary condition, assuming that u ∈ C∞c (Rn), is that∫
Rn
fdµ = 0.

This follows from the integration by parts above with v ≡ 1. This necessary condition is more-
or-less sufficient:

Lemma 2. The image of C∞c (Rn) under the operator L is dense in

H =

{
f ∈ L2(µ) :

∫
f dµ = 0

}
⊂ L2(µ).

Proof. Suppose that f ∈ L2(µ) with ‖f‖L2(µ) = 1 is such that for each u ∈ C∞c (Rn) we have
that Lu ⊥ f in L2(µ). We will show that f is constant. Suppose first that f is smooth. We claim
that

Lf = 0.

Indeed, for any u ∈ C∞c (Rn), ∫
Rn
u(Lf)dµ =

∫
Rn

(Lu)fdµ = 0.

In general, f is a weak solution of Lf = 0 in an appropriate sense, and this is an elliptic equation,
and hence f is smooth and it is a classical solution in Rn. Next we claim that for any u ∈
C∞c (Rn), ∫

Rn
|∇(uf)|2dµ =

∫
Rn
|∇u|2f 2dµ.
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The proof is just a fun exercise in integration by parts, where we use Lf ≡ 0 as well as the
formula L(uv) = uLv + vLu + 2〈u,∇v〉. If u is a bump function which equals one in some
large ball B(0, 1/ε) and with |∇u| < ε everywhere, then,∫

B(0,1/ε)

|∇f |2dµ ≤
∫
Rn
|∇(uf)|2dµ =

∫
Rn
|∇u|2f 2dµ ≤ ε2

By letting ε tend to zero we see that∇f ≡ 0 and f is constant. See Cordero-Erausquin, Fradelizi
and Maurey ’04 for more details.

We will use two ways for dualizing the integrated Bochner formula. Either ignore the non-
negative Hessian term and obtain the Brascamp-Lieb inequality from the 1970s, or else ignore
the curvature term and obtain the H−1-inequality to be discussed later.

Theorem 3 (Brascamp-Lieb). Assume∇2ψ > 0 throughout Rn (strong log-concavity). Then for
any C1-smooth f ∈ L2(µ),

Varµ(f) ≤
∫
Rn

(
∇2ψ

)−1∇f · ∇f dµ(x),

where Varµ(f) =
∫
Rn(f − E)2 dµ(x), and E =

∫
Rn fdµ.

Proof. Assume
∫
f dµ = 0, ε > 0 and pick u ∈ C∞c (Rn) such that

‖Lu− f‖L2(µ) < ε.

Then,

Varµ(f) = ‖f‖2L2(µ) = ‖Lu− f‖2L2(µ) + 2

∫
fLu dµ−

∫
(Lu)2 dµ

≤ ε2 − 2

∫
∇f · ∇u dµ−

∫
(∇2ψ)∇u · ∇u dµ

≤ ε2 +

∫
(∇2ψ)−1∇f · ∇f dµ,

where we have used the fact that∫
(Lu)2 dµ ≥

∫
(∇2ψ)∇u · ∇u dµ,

which follows from Bochner’s formula and

−2x · y − Ax · x ≤ A−1y · y ⇐⇒ |
√
Ax+

√
A−1y|2 ≥ 0.

The desired inequality follows by letting ε tend to zero.
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Remark. The Brascamp-Lieb inequality is an infinitesimal version of the Prékopa-Leindler
inequality. Suppose that f0, f1 : Rn → [0,∞) are integrable, log-concave functions and

ft(x) = sup
x=(1−t)y+yz

f0(y)1−tf1(z)t.

The Prékopa-Leindler inequality implies that log
∫
Rn ft is concave in t. The second derivative in t

is non-negative, and this actually amounts to the Brascamp-Lieb inequality. Thus the Brascamp-
Lieb inequality is yet another incarnation of the Brunn-Minkowski theory.

Corollary 4. If µ is more log-concave than the standard Gaussian, then its Poincaré constant
(spectral gap) satisfies

λµ ≥ 1.

Proof. Write dµ/dx = e−ψ. Then ∇2ψ ≥ Id and hence (∇2ψ)−1 ≤ Id. Hence for any f , from
the Brascamp-Lieb inequality,

V arµ(f) ≤
∫
Rn

[(∇2ψ)−1∇f · ∇f ]dµ ≤
∫
Rn
|∇f |2dµ.

This is a reasonable bound under uniform log-concavity assumptions. The KLS conjecture
suggests that uniformity is not needed, and that knowledge about the covariance matrix suffices.

Definition 5. Consider the orthant Rn
+. A function ψ : Rn → R is invariant under coordinate

reflections (a.k.a unconditional) if

ψ(x1, . . . , xn) = ψ(|x1|, . . . , |xn|) for all x ∈ Rn.

If ψ is moreover convex, then ψ|Rn+ is increasing in all coordinate directions.

Exercise: if ψ is convex and increasing in all of the coordinate directions, then ψ is p-convex
for p = 1/2, i.e., ψ(x21, . . . , x

2
n) is convex in the orthant.

Corollary 6. Let µ be a probability measure in Rn
+, set e−ψ = dµ/dx and assume that ψ is p-

convex for p = 1/2 (e.g. µ is log-concave and unconditional). Then for any C1-smooth function
f ∈ L2(µ),

Varµ(f) ≤ 4

∫
Rn

n∑
i=1

x2i |∂if |2 dµ(x).

Proof. Change variables and use the Brascamp-Lieb inequality. Denote dµ
dx

= e−ψ. Then for

π(x1, · · · , xn) = (x21, · · · , x2n),
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the function ψ(π(x)) is convex. Set

ϕ(x) = ψ(π(x))−
n∑
i=1

log(2xi).

Then π−1 pushes-forward µ to the measure with density e−ϕ. Moreover,

∇2ϕ(x) ≥ ∇2

(
−

n∑
i=1

log(2xi)

)
=


1
x21

0 · · · 0

0 1
x22
· · · 0

...
... . . . ...

0 0 · · · 1
x2n

 > 0,

and therefore

(
∇2ϕ(x)

)−1 ≤

x21 0 · · · 0
0 x22 · · · 0
...

... . . . ...
0 0 · · · x2n

 .

Set g(x) = f(π(x)). By the Brascamp-Lieb inequality,

Vare−ϕ(g) ≤
∫
Rn+

[(
∇2ϕ

)−1∇g · ∇g] e−ϕ(x) dx ≤ ∫
Rn+

n∑
i=1

x2i |∂ig(x)|2e−ϕ(x) dx.

The corollary follows since
Vare−ϕ(g) = Vare−ψ(f).

and since when y = π(x) = (x21, · · · , x2n) we have

xi∂ig(x) = 2yi∂if(y).

Corollary 7. Suppose thatX is a random vector that is log-concave, isotropic and unconditional
in Rn. Then,

V ar(|X|) ≤ C.

Proof.

V ar(|X|) ≤ E(|X| −
√
n)2 ≤ 1

n
E(|X|2 − n)2 =

1

n
V ar(|X|2)

≤ 4

n

n∑
i=1

EX2
i (2Xi)

2 =
16

n

n∑
i=1

EX4
i ≤

C

n

n∑
i=1

(EX2
i )2 ≤ C

where we used reverse Hölder inequalities in the last passage.
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This thin shell bound is optimal. The thin shell question is thus completely solved for uncon-
ditional convex bodies (K. ’09), but for the spectral gap question there is still a log n gap between
the known lower and upper bounds.

The Bochner formula states that in the log-concave case, for any u ∈ C∞c (Rn),∫
Rn

(Lu)2dµ =

∫
Rn

[(∇2ψ)∇u · ∇u]dµ+

∫
Rn
‖∇2u‖2HSdµ ≥

∫
Rn
‖∇2u‖2HSdµ.

Let us dualize this and obtain a Poincaré type inequality. To this end, for f ∈ L2(µ) we define
the dual Sobolev norm

‖f‖H−1(µ) = sup

{∫
Rn
fudµ ;

∫
Rn
|∇u|2dµ ≤ 1∀u ∈ C∞c (Rn)

}
.

This supremum can be finite only when
∫
fdµ = 0. In this case, it has a geometric interpretation

as infinitesimal transport cost:

‖f‖H−1(µ) ≈
1

ε
W2(µ, (1 + εf)µ)

where W2(µ1, µ2) = inf(πi)∗γ

√∫
Rn×Rn |x− y|2dγ(x, y) is the Wasserstein L2-distance in Opti-

mal Transport.

Proposition 8. (H−1-inequality) Let µ be log-concave, f ∈ L2(µ). Then,

V arµ(f) ≤ ‖∇f‖2H−1(µ) =
n∑
i=1

‖∂if‖2H−1(µ).

Proof. We may assume that
∫
fdµ = 0. By approximation, assume that f = −Lu for u ∈

C∞c (Rn). Then,∫
f 2dµ =

∫
[∇f · ∇u]dµ ≤ ‖∇f‖H−1(µ)

√∫
Rn
‖∇2u‖2HSdµ ≤ ‖∇f‖H−1(µ)

√∫
Rn

(Lu)2dµ,

and the proposition follows.
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