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Lecture 4: Bochner Identities and Curvature

Minerva mini-course on Convexity in High dimensions by Bo’az Klartag

So far we discussed two techniques in convex geometry, Convex Localization and Opti-
mal Transport, with applications including the Poincaré inequality with the optimal Payne-
Weinberger constant, Gromov’s waist inequality, reverse Holder inequalities for polynomials and
the reverse Cheeger inequality. Today we discuss a method that was borrowed from Riemannian
geometry: The Bochner technique that goes back to Bochner in the 1940s and also Lichnerowicz
in the 1950s. In a nutshell, the idea is to make local computations involving something like cur-
vature, as well as integrations by parts, and then dualize and obtain Poincaré-type inequalities.
This may sound pretty vague, let us explain what we mean.

Suppose that y is a log-concave probability measure in R” with density e~% for a smooth,
convex function v : R® — R. Therefore V¢ > 0 everywhere in R". We will measure distances
using the Euclidean distances in R", but we will measure volumes using the measure ;.. We thus
look at the weighted Riemannian manifold or the metric-measure space

(Rn’ | ’ ‘v:u)'

Thus for instance the Dirichlet energy of a smooth function f : R" — R is

gy = [ 195

Indeed, we measure the length of the gradient with respect to the Euclidean metric, while we
integrate with respect to the measure .. The Laplace-type operator associated with this measure-
metric space is defined, initially for u € C'°(R"), via

Lu = Au— Vi - Vu = e’div(e” Vu).

This reason for this definition is that for any smooth functions u, v : R®™ — R, with one of them
compactly-supported,

/n(LU)vdu = — /n[vu - Vole™.

We will not use much functional analysis or operator theory today, but it is worthwhile to mention
that L is essentially self adjoint in L?(1). In Riemannian geometry, the Ricci curvature appears
when we commute the Laplacian and the gradient. Analogously, here we have the easily-verified
commutation relation

V(Lu) = L(Vu) = (V*)(Vu),

where L(Vu) = (L(0'w), ..., L(0™u)). Hence the matrix V2 is a curvature term, analogous
to the Ricci curvature.



Proposition 1 (Integrated Bochner’s formula). For any u € C°(R"),

|z dn= [ (F0) Vu Vudit [Vl

where |[V2ullfys = I, [Vl

Proof. Integration by parts gives

/n(Lu)2 dp = — - V(Lu) - Vudp = —/ L(Vu) - Vudp +/ [(V*¢)Vu- Vu] du

n n

=> | IVoul du+ / (V) Vu - Vu dp.
i=1 /R" R
O

We would like to use the property that the first summand on the right-hand side is non-
negative, since ¢ is convex. For this we would need to present a given function f € L*(u)
as

f = Lu.

A necessary condition, assuming that u € C'>°(R™), is that
fdp = 0.
Rn

This follows from the integration by parts above with v = 1. This necessary condition is more-
or-less sufficient:

Lemma 2. The image of C2°(R™) under the operator L is dense in

H = {fewu): /fdMZO} c 1)

Proof. Suppose that f € L*(y) with || f||12(,) = 1 is such that for each u € C°(R") we have
that Lu L fin L?(;1). We will show that f is constant. Suppose first that f is smooth. We claim
that

Lf=0.

Indeed, for any u € C>(R"),

/n w(Lf)dy = /n(Lu)fdu ~ 0.

In general, f is a weak solution of L f = 0 in an appropriate sense, and this is an elliptic equation,
and hence f is smooth and it is a classical solution in R™. Next we claim that for any v €
e (R™),

IV (uf)Pdp = / IVl fdu
R R
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The proof is just a fun exercise in integration by parts, where we use Lf = 0 as well as the
formula L(uv) = ulv + vLu + 2(u, Vv). If u is a bump function which equals one in some
large ball B(0, 1/¢) and with |Vu| < € everywhere, then,

/ IVfPdu < | |Vf)Pdp= | |Vul*f2du < &
B(0,1/¢) Rn

R

By letting ¢ tend to zero we see that V f = 0 and f is constant. See Cordero-Erausquin, Fradelizi
and Maurey "04 for more details. O

We will use two ways for dualizing the integrated Bochner formula. Either ignore the non-
negative Hessian term and obtain the Brascamp-Lieb inequality from the 1970s, or else ignore
the curvature term and obtain the H ~!-inequality to be discussed later.

Theorem 3 (Brascamp-Lieb). Assume V?1) > 0 throughout R" (strong log-concavity). Then for
any C'-smooth f € L*(p),

Var,(f) < / (V2¢) ' V- Vf dp(),

n

where Var,(f) = [p.(f — E)* du(z), and E =[5, fdp.
Proof. Assume [ f du = 0,e > 0 and pick u € C2°(R") such that

1Lu — fllz20 < £

Then,
Var, () = s = 1Lu = Flago +2 [ FLudn— [ (Lu) du
§82—Q/Vf-Vud,u—/(VQ@b)Vu-Vud,u
e [(V20) 5V dn,
where we have used the fact that
Jww? = (209 vudg,
which follows from Bochner’s formula and

—2x-y—Aw-x§A_1y-y<:>|\/Zx+vA_1y|220.

The desired inequality follows by letting € tend to zero. O



Remark. The Brascamp-Lieb inequality is an infinitesimal version of the Prékopa-Leindler
inequality. Suppose that fy, f; : R" — [0, 00) are integrable, log-concave functions and

fx) = sup  fo(y) " fi(2)".

z=(1-t)y+yz

The Prékopa-Leindler inequality implies that log fRn f+1s concave in ¢t. The second derivative in ¢
is non-negative, and this actually amounts to the Brascamp-Lieb inequality. Thus the Brascamp-
Lieb inequality is yet another incarnation of the Brunn-Minkowski theory.

Corollary 4. If i1 is more log-concave than the standard Gaussian, then its Poincaré constant
(spectral gap) satisfies
Ap > 1

Proof. Write du/dx = e=%. Then V2 > Id and hence (V?¢)~! < Id. Hence for any f, from
the Brascamp-Lieb inequality,

Vardp) < [ (V0)'V - Vidu< [ [V1Pda

n n

O

This is a reasonable bound under uniform log-concavity assumptions. The KLS conjecture
suggests that uniformity is not needed, and that knowledge about the covariance matrix suffices.

Definition 5. Consider the orthant R';. A function ¢ : R" — R is invariant under coordinate
reflections (a.k.a unconditional) if

Gl saa) = O, 2al) forall z € R".

If 1 is moreover convex, then QMM is increasing in all coordinate directions.

Exercise: if ¢ is convex and increasing in all of the coordinate directions, then v is p-convex
forp =1/2,1i.e.,¢(a?,...,22) is convex in the orthant.

rn

Corollary 6. Let i be a probability measure in R", set e=% = dy/dx and assume that 1) is p-
convex for p = 1/2 (e.g.  is log-concave and unconditional). Then for any C*-smooth function

f e L*(p), §
Var,(f) < 4/ Z:L‘f|8zf|2 du(z).
"i=1

Proof. Change variables and use the Brascamp-Lieb inequality. Denote 2—’; = ¢~¥. Then for

7'['(1‘1’... ’xn):(x%7 I*Q)’

rrn



the function ¢ (7(x)) is convex. Set

p(r) = o(m(x)) — Z log(2;).

pushes-forward y to the measure with density e~¥. Moreover,

Then 7!
% 0 0
n 0 ;712 0
Vip(z) > V| — Zlog(Qxi) = 2 > 0,
i=1 :
0 O =
and therefore
_ 0 z2 - 0
(o)< | T
o o .- xi

f(m(z)). By the Brascamp-Lieb inequality,

Vare—qa(g)g/ [(VZ ) Vg - Vg}e ¢(x) d$</ Zﬂﬂag z)[2e @ dz.
RY =1

n
+

Set g(z) =

The corollary follows since
Var.-«(g) = Var,-«(f).

and since when y = 7(x) = (22, -+, 22) we have

2;0;9(x) = 2y;0:f (y).
O

Corollary 7. Suppose that X is a random vector that is log-concave, isotropic and unconditional

in R™. Then,
Var(|X]) < C.

Proof.

Var(|X)) < E(X| - Vi)' < SE(XJ ~n)* = L Var( X

<= ZEX2 2X;)? _ 16 Z]EX4 < ¢ zn:(EX}’f <C

=1

where we used reverse Holder inequalities in the last passage.



This thin shell bound is optimal. The thin shell question is thus completely solved for uncon-
ditional convex bodies (K. ’09), but for the spectral gap question there is still a log n gap between
the known lower and upper bounds.

The Bochner formula states that in the log-concave case, for any u € C2°(R"),

/ (Lu)dys = / (V24) V- Valldy + / IV2ulsdp > / V% gd

Let us dualize this and obtain a Poincaré type inequality. To this end, for f € L*(u) we define
the dual Sobolev norm

-0 = s [ gudus [ 19uPd < 10 e 2 |
Rn n

This supremum can be finite only when [ fdp = 0. In this case, it has a geometric interpretation
as infinitesimal transport cost:

1
11l -1 = gW2(M, (I+ef)m)

where W(pu, pt2) = inf(r,), - \/fRann |z — y|2dy(x,y) is the Wasserstein L2-distance in Opti-
mal Transport.

Proposition 8. (H ~'-inequality) Let 11 be log-concave, f € L*(u). Then,
Vary(f) < IV flli-4 = D10 F l-140-
i—1

Proof. We may assume that [ fdu = 0. By approximation, assume that f = —Lu for u €
C2°(R™). Then,

[ Fan= [195 - Vulau < HVfHH—wm\/ | 192l < 19 s [ (2P

n

and the proposition follows. O



