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The Poincaré inequality

Theorem (Poincaré, 1890 and 1894)

Let K C R® be convex and open.
Let f : K — R be C'-smooth, with
Jx f=0.Then,

AK/ fzg/ |VF[?
K K

where Ak > (16/9) - Diam—2(K).

@ In 2D, Poincaré got a better constant, 24 /7.

@ Related to Wirtinger’s inequality on periodic functions in
one dimension (sharp constant, roughly a decade later).

@ The largest possible Ak is the Neumann spectral gap or
the inverse Poincaré constant of K.

@ Proof: Estimate [, , |f(x) — f(y)[?dxdy via segments.
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Motivation: The heat equation

@ Suppose K C R3 with 9K an ‘insulator’,
i.e., heat does not escape/enter K.

@ Write us(x) for the temperature at the
point x € K attime t > 0.

Heat equation (Neumann boundary conditions)

u=Au inK
9% —0 ondK

Fourier’s law: Heat flux is proportional to the temp. gradient.

Rate of convergence to equilibrium

1 _
|K|/KUo=1 — = g < & o — gk
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Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960 — precursor for convex

localization)

Let K C R be convex and open, let . be the Lebesgue
measure on K. If f : K — R is C'-smooth with [, fdu = 0, then,

m 2 2

@ The constant 72 is best possible in every dimension n.
E.g.,

K= (-7/2,7/2), f(x)=sin(x).
@ In contrast, Poincaré’s proof would lead to an exponential
dependence on the dimension.
@ Not only the Lebesgue measure on K, we may consider
any log-concave measure.
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Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960 — precursor for convex

localization)

Let K C R be convex and open, let i be any log-concave
measure on K. If f : K — R is C'-smooth with fK fdu = 0, then,

71_2
—_— f2 < fl2dy.
D) Jy oS [ [P

@ The constant 72 is best possible in every dimension n.
E.g.,

K= (-7n/2,7/2), f(x)=sin(x).
@ In contrast, Poincaré’s proof would lead to an exponential
dependence on the dimension.

@ A log-concave measure p on K is a measure with density
of the form e ", where the function H is convex.
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The role of convexity / log-concavity

@ For Q C R”, the Poincaré coefficient A\o measures the
connectivity or conductance of Q.

Convexity is a strong form of connectedness |

Without convexity/log-concavity assumptions:

long time to reach equilibrium,
regardless of the diameter
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Many other ways to measure connectivity

The isoperimetric constant

For an open set K ¢ R” define

ho_ e 10ANK]
K= Ak min{|A[,|K \ A}

@ If K is strictly-convex with smooth boundary, the infimum is
attained when |A| = |K|/2 (Sternberg-Zumbrun, 1999).

Theorem (Cheeger ’70, Buser ‘82, Ledoux '04)

For any open, convex set K C R",

hic >
T S )\K S ghK

@ Mixing time of Markov chains, algorithms for estimating
volumes of convex bodies (Dyer-Freeze-Kannan '89, .. .)
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The study of uniform distributions on convex domains

What is this mathematical field about?
(relevant to linear programming, statistics, computer science, slightly to stat.
physics)

@ The questions are non-trivial in high dimensions, when

n — oo.

Convexity in high dimension is a source of regularity,
comparable to statistical independence. It may compensate for
lack of structure or symmetry.

@ Playground for various techniques that transcend convex
geometry: Convex Localization, Optimal Transport,
Bochner identities and curvature, heat flow and Eldan’s
stochastic localization, geometric measure theory.

Bo’az Klartag Convexity in High Dimensions 8/29 8/29



The simplest example: the Euclidean ball

@ Consider the Euclidean ball B" = {x ¢ R"; |x| < 1} or the
sphere 8"~ ' = {x e R™; |x| = 1}.
@ Write o,_1 for the uniform probability measure on S"~1.
Foraset AC S"! and for ¢ > 0 denote

AEZ{XGS’H;HyeA,d(x,y)Se}, \

which is the e-neighborhood of A.
@ Consider the hemisphere H = {x € S"'; x; < 0}.

A well-known observation:
on_1(H:) =P(Yy <sine) = P (I <evn) |

where Y = (Y1,..., Yy) is distributed
according to o,_1, and I is a standard
normal random variable.

The sphere’s marginals are approximately Gaussian
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Concentration of measure on the sphere

The amount of volume of a distance at least 1/10 from the
equator is at most
Cexp(—cn)

of the sphere, for universal constants ¢, C > 0.

@ Most of the mass of the sphere S"~' in high dimensions, is
concentrated at a narrow strip near the equator [x; = 0]

@ or any other equator.

“Concentration
of Measure”

(ala V. Milman) ‘ dim — oo
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The isoperimetric inequality on the sphere

The isoperimetric inequality (Lévy, Schmidt, ’50s).

For any Borel set Ac S"'and t,e > 0,
on—1(A) =t = op_1(A:) > 0n-1(C.),

where C C S"~' is a spherical cap of measure t (when t = 1/2
it is @ hemisphere).

@ Forany set Ac S" ' with o,_1(A) = 1/2,
on-1(Ac) > 1 — 2exp(—£2n/2).

Therefore, for any subset A ¢ S"~' of measure 1/2,
its e-neighborhood covers almost the entire sphere.

@ The isoperimetric inequality is “accompanied” by functional
inequalities on the sphere: Sobolev, log-Sobolev,
transport-cost, Poincaré and Brunn-Minkowski type.
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Concentration of Lipschitz functions on the sphere

Corollary (“Lévy’s lemma”)
Let f: S™' — R be a 1-Lipschitz function. Denote

E = f(x)don_1(x).
Sn—1

Then, for any ¢ > 0,

Tt ({x e 8™ |f(x) — E| > e}) < Cexp(—c2n),

where ¢, C > 0 are universal constants.

@ Lipschitz functions on the high-dimensional sphere are
“effectively constant”.
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Concentration phenomena for general convex bodies?

@ Does the uniform probability measure on an arbitrary
convex body K C R" exhibit similar effects?

A short answer

Pretty much, yes.
(Currently known up to polylogarithmic factors).

@ There are rather strong expansion properties, and the
isoperimetric inequality is nearly saturated by half-spaces.

Caveat: exponential tail rather than subgaussian tail

There is no strong small-set-expansion as in the sphere.

The tail distribution of a 1-Lipschitz function is sub-exponential,
rather than sub-gaussian.
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How would you normalize a convex body?

There is a unit ball B” and a unit cube [0, 1]".

@ How would you choose the correct “units” for a general
convex body or a log-concave density?

A convex body K C R" of volume one is isotropic if for the
random vector X distributed uniformly on K,
Q@ EX=0
© The covariance matrix Cov(X) € R™" is a scalar matrix,
where Cov(X); = EXiX; — (EX;)(EX;).

@ Any convex body can be made isotropic after applying a
linear-affine transformation.

@ Another common, similar normalization: Rather than
requiring Vol,(K) = 1, require Cov(X) = Id.
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The Kannan-Lovasz-Simonovits (KLS '95) conjecture

Let K C R be an isotropic convex body of volume one (or of
identity covariance), X distributed uniformly over K.

A conjecture (KLS), which has three equivalent formulations:

@ Concentration: For any 1-Lipschitz function f : R” — R
with Ef(X) =0,

P(|f(X) >t) < Ce for all t > 0.

@ Poincaré inequality: For any smooth f with [, f =0,

/f2§ c/ V2
K K

© Isoperimetry: For any open A C R”, smooth boundary,

Vol,_1(0AN K) > ¢ - min{ Volo(K N A), Voln(K \ A)}.

Here ¢, C > 0 are universal constants.
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The Kannan-Lovasz-Simonovits (KLS '95) conjecture

Equivalences in our formulation of the KLS conjecture due to
Ball-Nguyen *13, Buser ’82, Cheeger '70, Eldan-K. '11, Gromov
and V. Milman ’'83, Ledoux '04, E. Milman '09.

Theorem (K.-Lehec "22, building upon Eldan '13, Lee-Vempala

’16 and the breakthrough by Chen *20)
KLS conjecture is true up to polylogarithmic factors.

i.e., replace the universal constants by C log® n.

@ Bounds for the a’s were improved a few weeks ago by
LV+Jambulapati.
@ Works for log-concave random vectors too.
Example: Apply the KLS Poincaré inequality with f(x) = |x| — E
If X is an isotropic log-concave random vector in R”, then

Var(|X|) < Clog™n
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Thin shell phenomenon
@ When X is isotropic, E|X|?> ~ n and by reverse Holder

inequalities

However, the variance of | X| is < Clog® n, much smaller!

Most of the mass of X is contained in a thin spherical shell. J

@ Sudakov ’76,
Diaconis-Freedman ’84:

When most of the mass of the
isotropic random vector X is
contained in a thin spherical shell,
we have approx. Gaussian
marginals.
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Convexity as good as Independence

Current state of the art:
Theorem (Bobkov, Chistyakov, Gétze '19 using K.-Lehec ’22)

Let X be an isotropic, log-concave random vector in R". Then
there exists © C S™' with o,,_1(©) > 9/10 such that for any
0 €0,

Clog®n

sup |[P(X -0 <) L e—52/2ds‘ < —

teR = Ver J -

where C, « > 0 are universal constants.

@ An optimal result for the Kolmogorov metric, up to the
polylogarithmic factor. (No log’s for independent random
variables with bounded 4" moments, K.-Sodin ’11)

@ This Central Limit Theorem for Convex Sets was
originally proven in K. '07, confirming a conjecture by
Anttila, Ball and Perissinaki 03 and Brehm-Voigt ’00.
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No log-factors under symmetry assumptions

@ Arandom vector X = (Xi,..., Xp) is said to be invariant
under coordinate reflections if it is equidistributed with
(+Xj,...,£Xy) for any choice of signs.

@ For instance, the uniform measure on Eg—balls.

Theorem (K. ’09)

Let X = (Xi,..., Xnh) be a log-concave random vector in R”,
invariant under coordinate refelctions, with IEX,? =1 for all /.
Then for any 61,...,0, € Rwith ;62 =1,

n n
1 s 2
P a§§ «9,-X,-<5>—/ e~ t/2qt §C§ 6%,
( i=1 Ver Ja i=1

@ The bound is typically O(1/n), since for a random
9 € S"™1, we have 3_;0} < C/n with prob. at least
1 — Cexp(—cv/n).
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Width of thin-shell controls approx. rate in convex CLT

We have the thin-shell parameter
U% = sgj(pE (|X\ — ﬁ)z,

where the sup is over isotropic, log-concave random vectors in
R". A trivial bound is o, < Cv/n. Better estimates:

on < Cn?/3+o() (K. °07)
on < Cn°/8 (Fleury ’09)
on < Cn'/3 (Guédon-E. Milman ’11)
on < Cn'/* (Lee-Vempala *16)
on < Cexp ((Iog n)1/2+0(1)> = n°() (Chen ’20)
on < Clog*n (K.-Lehec ’22)
on < Clog®?3n (Jambulapati-L.-V. *22+)

@ Concentration of measure (hinted by Paouris LDP ’06).
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Isoperimetry and Thin Shell

Definition

Write ), for the minimal number such that for any log-concave
random vector X, Cov(X) = 1Id, and any 1-Lipschitz function ¢,

Varp(X) < ¢2.

@ Alternatively, if p is the density of X, then for any A C R”
with smooth boundary,

/ p> S min{P(X € A),B(X & A)}.
O0A

n
@ We actually explained that

On S Cwn

Theorem (Eldan ’13 — breakthrough towards KLS conjecture)

Q/)n S C|Ogn0'n
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Thin Shell and Slicing

In the 1980s, Bourgain considered the following:

Definition
Write L, for the minimal number such that for any convex body
K C R" of volume one, there exists a hyperplane H C R" such

that
1

Vol,_1(K N H) > —.

n

@ The hyperplane conjecture: L, < C.
Any convex body of volume one should have a hyperplane
section whose volume is at least c.

@ We are still waiting for a short and sweet proof, but it is not

coming...

Theorem (Eldan-K. ’11)
Ln < CUn < Clwn

Bo’az Klartag Convexity in High Dimensions 22/29 22/29



The slicing problem

@ The relation between Slicing and KLS was promoted by K.
Ball, and Ball-Nguyen '13 proved L, < exp(Cwﬁ).

Corollary (because “thin shell implies slicing”)

L, < Clog® n for a universal constant C > 0 and o < 2.23

@ For many years, the best bound in Bourgain’s slicing
problem was Cn'/#log n (Bourgain '89) or n'/4 (K. '06).
With Lee-Vempala ’16, we reached three completely
different proofs for 1/4 bound. Yet it was non-optimal.

An equivalent formulation of Bourgain’s slicing problem

Suppose that K C R" with Vol,(K) = 1 is isotropic, so
Cov(K) = L% - 1d.

It is known that ¢ < L. Isittrue thatc < Ly < C?
i.e., do the two normalizations essentially coincide?
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Using the Brunn-Minkowski inequality

This is related to Hensley’s theorem:

Theorem (Volumes of slices — Hensley '80, Fradelizi ’99)

Let K C R" be an isotropic convex body. Then for any
hyperplanes H;, Ho C R" through the origin,

Vol,_4 (Kﬁ H2)
< .
VO/n_1(Kﬂ H1) B \/é

@ Infact, Vol,_1 (KN H) ~1/Lg.

@ Proven using the Brunn-Minkowski inequality (1887):
For any Borel sets A, B C R”,

Vol (AZB> > /VoI(A)Vol(B)

Here (A+ B)/2 = {(a+ b)/2; ac A bc B} w
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Corrected Busemann-Petty conjecture

In the 1950s, Busemann-Petty conjectured the following:
@ Let K, T C R" be centrally-symmetric convex bodies such
that

Vol,_1(KN6+) < Vol,_1(Tné+) forallge S
Does it follow that Vol,(K) < Voln(T)?

True if K is a Euclidean ball or a cross-polytope.
In general, true if n < 4 and false if n > 5.
(Lutwak '88, Zhang, Gardner-Koldobsky-Schlumprecht
'90s)

@ Fails already for the cube and Euclidean ball in high
dimensions! We lose a factor of ~ \/e/2 (Ball '86).

Another equivalent formulation of the slicing problem

Does it follow that Vol,(K) < C - Vol,(T) for some universal
constant C > 07

Bo’az Klartag Convexity in High Dimensions 25/29 25/29



Sharpened Milman ellipsoid?
An equivalent formulation of the slicing problem

Let K C R"” be a convex body. Does there exist an ellipsoid
& C R", with Vol,(€) = Vol,(K), such that

Voln(K N CE)/ Voln(K) > 1/2.

4

Theorem (V. Milman, ’80s)

Vol,(K N CE&)/Voln(K) > ¢”,

for universal constants C, ¢ > 0.

@ This suffices for proving the reverse Brunn-Minkowski
inequality as well as the Bourgain-Milman inequality

Voln(K) Vol,(K®) > ¢"Voln(B")?

where K° is the polar body of the convex K C R".
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Two more equivalent formulations of the slicing

problem

@ Sylvester problem. Select n + 2 independent, random
points according to the uniform measure in a convex body
K. Let p(K) be the probability that these n+ 2 points are in
convex position. Is it true that

(1= p(K))/" = 1/v/7?

© Entropy and covariance. Is it true that for any
log-concave random vector X in R”,

Ent(X) = = - logdet Cov(X) + O(n)?

N =
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Could the cube and simplex be the extreme cases?

@ The isotropic constant of a convex body K C R” is an
affine-invariant defined via
on _ det Cov(K)
K™ Vol (K)?
@ We know that Lk > ¢, and is minimized for the Euclidean
ball. The conjecture is that Lx < C. For example,

1 (nh1/n 1

— ~

L[O,1]n:7ﬁ12, LAn— (n+1)(n+1)/(2n) T > ~ e.
Relations to classical conjectures

@ If Lx is maximized for the simplex A", then the Mahler
volume-product conjecture follows (the non-symmetric
case, proven in 2D by Mahler, 1939). See K. ’'18.

© If among centrally-symmetric bodies, Lk is maximized for
the cube, then the Minkowski lattice conjecture follows
proven in 2D by Minkowski, 1901). See Magazinov ’18.
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Thank you!
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