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The Poincaré inequality

Theorem (Poincaré, 1890 and 1894)

Let K ⊆ R3 be convex and open.
Let f : K → R be C1-smooth, with∫

K f = 0. Then,

λK

∫
K

f 2 ≤
∫

K
|∇f |2

where λK ≥ (16/9) · Diam−2(K ).

In 2D, Poincaré got a better constant, 24/7.
Related to Wirtinger’s inequality on periodic functions in
one dimension (sharp constant, roughly a decade later).
The largest possible λK is the Neumann spectral gap or
the inverse Poincaré constant of K .
Proof: Estimate

∫
K×K |f (x)− f (y)|2dxdy via segments.
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Motivation: The heat equation

Suppose K ⊆ R3 with ∂K an ‘insulator’,
i.e., heat does not escape/enter K .
Write ut (x) for the temperature at the
point x ∈ K at time t ≥ 0.

Heat equation (Neumann boundary conditions){
u̇t = ∆ut in K
∂ut
∂n = 0 on ∂K

Fourier’s law: Heat flux is proportional to the temp. gradient.

Rate of convergence to equilibrium

1
|K |

∫
K

u0 = 1 =⇒ ‖ut − 1‖L2(K ) ≤ e−tλK ‖u0 − 1‖L2(K )
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Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960 – precursor for convex
localization)

Let K ⊆ Rn be convex and open, let µ be the Lebesgue
measure on K . If f : K → R is C1-smooth with

∫
K fdµ = 0, then,

π2

Diam2(K )

∫
K

f 2dµ ≤
∫

K
|∇f |2dµ.

The constant π2 is best possible in every dimension n.
E.g.,

K = (−π/2, π/2), f (x) = sin(x).

In contrast, Poincaré’s proof would lead to an exponential
dependence on the dimension.
Not only the Lebesgue measure on K , we may consider
any log-concave measure.
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Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960 – precursor for convex
localization)

Let K ⊆ Rn be convex and open, let µ be any log-concave
measure on K . If f : K → R is C1-smooth with

∫
K fdµ = 0, then,

π2

Diam2(K )

∫
K

f 2dµ ≤
∫

K
|∇f |2dµ.

The constant π2 is best possible in every dimension n.
E.g.,

K = (−π/2, π/2), f (x) = sin(x).

In contrast, Poincaré’s proof would lead to an exponential
dependence on the dimension.
A log-concave measure µ on K is a measure with density
of the form e−H , where the function H is convex.
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The role of convexity / log-concavity

For Ω ⊆ Rn, the Poincaré coefficient λΩ measures the
connectivity or conductance of Ω.

Without convexity/log-concavity assumptions:

long time to reach equilibrium,
regardless of the diameter
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Convexity is a strong form of connectedness



Many other ways to measure connectivity

The isoperimetric constant

For an open set K ⊂ Rn define

hK = inf
A⊂K

|∂A ∩ K |
min{|A|, |K \ A|}

If K is strictly-convex with smooth boundary, the infimum is
attained when |A| = |K |/2 (Sternberg-Zumbrun, 1999).

Theorem (Cheeger ’70, Buser ’82, Ledoux ’04)

For any open, convex set K ⊆ Rn,

h2
K
4
≤ λK ≤ 9h2

K .

Mixing time of Markov chains, algorithms for estimating
volumes of convex bodies (Dyer-Freeze-Kannan ’89, . . .)
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The study of uniform distributions on convex domains

What is this mathematical field about?
(relevant to linear programming, statistics, computer science, slightly to stat.
physics)

The questions are non-trivial in high dimensions, when

n→∞.

The theme
Convexity in high dimension is a source of regularity,
comparable to statistical independence. It may compensate for
lack of structure or symmetry.

Playground for various techniques that transcend convex
geometry: Convex Localization, Optimal Transport,
Bochner identities and curvature, heat flow and Eldan’s
stochastic localization, geometric measure theory.
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The simplest example: the Euclidean ball

Consider the Euclidean ball Bn = {x ∈ Rn ; |x | ≤ 1} or the
sphere Sn−1 = {x ∈ Rn; |x | = 1}.
Write σn−1 for the uniform probability measure on Sn−1.

For a set A ⊆ Sn−1 and for ε > 0 denote

Aε =
{

x ∈ Sn−1 ; ∃y ∈ A, d(x , y) ≤ ε
}
,

which is the ε-neighborhood of A.
Consider the hemisphere H = {x ∈ Sn−1; x1 ≤ 0}.

A well-known observation:

σn−1(Hε) = P(Y1 ≤ sin ε) ≈ P
(
Γ ≤ ε

√
n
)

where Y = (Y1, . . . ,Yn) is distributed
according to σn−1, and Γ is a standard
normal random variable.

The sphere’s marginals are approximately Gaussian
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Concentration of measure on the sphere

The amount of volume of a distance at least 1/10 from the
equator is at most

C exp(−cn)

of the sphere, for universal constants c,C > 0.

Most of the mass of the sphere Sn−1 in high dimensions, is
concentrated at a narrow strip near the equator [x1 = 0]

or any other equator.

dim→∞

“Concentration
of Measure”

(à la V. Milman)
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The isoperimetric inequality on the sphere

The isoperimetric inequality (Lévy, Schmidt, ’50s).

For any Borel set A ⊂ Sn−1 and t , ε > 0,

σn−1(A) = t =⇒ σn−1(Aε) ≥ σn−1(Cε),

where C ⊆ Sn−1 is a spherical cap of measure t (when t = 1/2
it is a hemisphere).

For any set A ⊂ Sn−1 with σn−1(A) = 1/2,

σn−1(Aε) ≥ 1− 2 exp(−ε2n/2).

Therefore, for any subset A ⊂ Sn−1 of measure 1/2,
its ε-neighborhood covers almost the entire sphere.

The isoperimetric inequality is “accompanied” by functional
inequalities on the sphere: Sobolev, log-Sobolev,
transport-cost, Poincaré and Brunn-Minkowski type.
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Concentration of Lipschitz functions on the sphere

Corollary (“Lévy’s lemma”)

Let f : Sn−1 → R be a 1-Lipschitz function. Denote

E =

∫
Sn−1

f (x)dσn−1(x).

Then, for any ε > 0,

σn−1

({
x ∈ Sn−1; |f (x)− E | ≥ ε

})
≤ C exp(−cε2n),

where c,C > 0 are universal constants.

Lipschitz functions on the high-dimensional sphere are
“effectively constant”.
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Concentration phenomena for general convex bodies?

Does the uniform probability measure on an arbitrary
convex body K ⊆ Rn exhibit similar effects?

A short answer
Pretty much, yes.
(Currently known up to polylogarithmic factors).

There are rather strong expansion properties, and the
isoperimetric inequality is nearly saturated by half-spaces.

Caveat: exponential tail rather than subgaussian tail
There is no strong small-set-expansion as in the sphere.

The tail distribution of a 1-Lipschitz function is sub-exponential,
rather than sub-gaussian.
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How would you normalize a convex body?

There is a unit ball Bn and a unit cube [0,1]n.

How would you choose the correct “units” for a general
convex body or a log-concave density?

Definition
A convex body K ⊆ Rn of volume one is isotropic if for the
random vector X distributed uniformly on K ,

1 EX = 0
2 The covariance matrix Cov(X ) ∈ Rn×n is a scalar matrix,

where Cov(X )ij = EXiXj − (EXi)(EXj).

Any convex body can be made isotropic after applying a
linear-affine transformation.
Another common, similar normalization: Rather than
requiring Voln(K ) = 1, require Cov(X ) = Id.
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The Kannan-Lovász-Simonovits (KLS ’95) conjecture

Let K ⊆ Rn be an isotropic convex body of volume one (or of
identity covariance), X distributed uniformly over K .

A conjecture (KLS), which has three equivalent formulations:
1 Concentration: For any 1-Lipschitz function f : Rn → R

with Ef (X ) = 0,

P (|f (X )| ≥ t) ≤ Ce−ct for all t > 0.

2 Poincaré inequality: For any smooth f with
∫

K f = 0,∫
K

f 2 ≤ C
∫

K
|∇f |2

3 Isoperimetry: For any open A ⊆ Rn, smooth boundary,

Voln−1(∂A ∩ K ) ≥ c ·min{Voln(K ∩ A),Voln(K \ A)}.

Here c,C > 0 are universal constants.
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The Kannan-Lovász-Simonovits (KLS ’95) conjecture

Equivalences in our formulation of the KLS conjecture due to
Ball-Nguyen ’13, Buser ’82, Cheeger ’70, Eldan-K. ’11, Gromov
and V. Milman ’83, Ledoux ’04, E. Milman ’09.

Theorem (K.-Lehec ’22, building upon Eldan ’13, Lee-Vempala
’16 and the breakthrough by Chen ’20)

KLS conjecture is true up to polylogarithmic factors.

i.e., replace the universal constants by C logα n.

Bounds for the α’s were improved a few weeks ago by
LV+Jambulapati.
Works for log-concave random vectors too.

Example: Apply the KLS Poincaré inequality with f (x) = |x | − E

If X is an isotropic log-concave random vector in Rn, then

Var(|X |) ≤ C logα n
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Thin shell phenomenon

When X is isotropic, E|X |2 ≈ n and by reverse Hölder
inequalities

E|X | ≈
√

n.

However, the variance of |X | is ≤ C logα n, much smaller!

Most of the mass of X is contained in a thin spherical shell.

Sudakov ’76,
Diaconis-Freedman ’84:

When most of the mass of the
isotropic random vector X is
contained in a thin spherical shell,
we have approx. Gaussian
marginals.
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Convexity as good as Independence

Current state of the art:

Theorem (Bobkov, Chistyakov, Götze ’19 using K.-Lehec ’22)

Let X be an isotropic, log-concave random vector in Rn. Then
there exists Θ ⊆ Sn−1 with σn−1(Θ) ≥ 9/10 such that for any
θ ∈ Θ,

sup
t∈R

∣∣∣∣P(X · θ ≤ t) − 1√
2π

∫ t

−∞
e−s2/2ds

∣∣∣∣ ≤ C logα n
n

,

where C, α > 0 are universal constants.

An optimal result for the Kolmogorov metric, up to the
polylogarithmic factor. (No log’s for independent random
variables with bounded 4th moments, K.-Sodin ’11)
This Central Limit Theorem for Convex Sets was
originally proven in K. ’07, confirming a conjecture by
Anttila, Ball and Perissinaki ’03 and Brehm-Voigt ’00.
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No log-factors under symmetry assumptions

A random vector X = (X1, . . . ,Xn) is said to be invariant
under coordinate reflections if it is equidistributed with
(±X1, . . . ,±Xn) for any choice of signs.
For instance, the uniform measure on `np-balls.

Theorem (K. ’09)

Let X = (X1, . . . ,Xn) be a log-concave random vector in Rn,
invariant under coordinate refelctions, with EX 2

i = 1 for all i .
Then for any θ1, . . . , θn ∈ R with

∑
i θ

2
i = 1,

sup
α≤β

∣∣∣∣∣P
(
α ≤

n∑
i=1

θiXi ≤ β

)
− 1√

2π

∫ β

α
e−t2/2dt

∣∣∣∣∣ ≤ C
n∑

i=1

θ4
i .

The bound is typically O(1/n), since for a random
θ ∈ Sn−1, we have

∑
i θ

4
i ≤ C/n with prob. at least

1− C exp(−c
√

n).
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Width of thin-shell controls approx. rate in convex CLT

We have the thin-shell parameter

σ2
n = sup

X
E
(
|X | −

√
n
)2
,

where the sup is over isotropic, log-concave random vectors in
Rn. A trivial bound is σn ≤ C

√
n. Better estimates:

σn ≤ Cn2/5+o(1) (K. ’07)

σn ≤ Cn3/8 (Fleury ’09)

σn ≤ Cn1/3 (Guédon-E. Milman ’11)

σn ≤ Cn1/4 (Lee-Vempala ’16)

σn ≤ C exp
(

(log n)1/2+o(1)
)

= no(1) (Chen ’20)

σn ≤ C log4 n (K.-Lehec ’22)

σn ≤ C log2.23 n (Jambulapati-L.-V. ’22+)

Concentration of measure (hinted by Paouris LDP ’06).
Heat flow, Eldan’s stochastic localization, spectral theory.Bo’az Klartag Convexity in High Dimensions 20/29 20 / 29



Isoperimetry and Thin Shell

Definition
Write ψn for the minimal number such that for any log-concave
random vector X , Cov(X ) = Id, and any 1-Lipschitz function ϕ,

Varϕ(X ) ≤ ψ2
n.

Alternatively, if ρ is the density of X , then for any A ⊆ Rn

with smooth boundary,∫
∂A
ρ ≥ c

ψn
·min{P(X ∈ A),P(X 6∈ A)}.

We actually explained that

σn ≤ Cψn.

Theorem (Eldan ’13 – breakthrough towards KLS conjecture)

ψn ≤ C log n · σn
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Thin Shell and Slicing

In the 1980s, Bourgain considered the following:

Definition
Write Ln for the minimal number such that for any convex body
K ⊆ Rn of volume one, there exists a hyperplane H ⊆ Rn such
that

Voln−1(K ∩ H) ≥ 1
Ln
.

The hyperplane conjecture: Ln ≤ C.
Any convex body of volume one should have a hyperplane
section whose volume is at least c.
We are still waiting for a short and sweet proof, but it is not
coming...

Theorem (Eldan-K. ’11)

Ln ≤ Cσn ≤ C′ψn
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The slicing problem

The relation between Slicing and KLS was promoted by K.
Ball, and Ball-Nguyen ’13 proved Ln ≤ exp(Cψ2

n).

Corollary (because “thin shell implies slicing”)

Ln ≤ C logα n for a universal constant C > 0 and α ≤ 2.23

For many years, the best bound in Bourgain’s slicing
problem was Cn1/4 log n (Bourgain ’89) or n1/4 (K. ’06).
With Lee-Vempala ’16, we reached three completely
different proofs for 1/4 bound. Yet it was non-optimal.

An equivalent formulation of Bourgain’s slicing problem

Suppose that K ⊆ Rn with Voln(K ) = 1 is isotropic, so

Cov(K ) = L2
K · Id.

It is known that c < LK . Is it true that c < LK < C?
i.e., do the two normalizations essentially coincide?
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Using the Brunn-Minkowski inequality

This is related to Hensley’s theorem:

Theorem (Volumes of slices – Hensley ’80, Fradelizi ’99)

Let K ⊆ Rn be an isotropic convex body. Then for any
hyperplanes H1,H2 ⊆ Rn through the origin,

Voln−1 (K ∩ H2)

Voln−1(K ∩ H1)
≤
√

6.

In fact, Voln−1 (K ∩ H) ∼ 1/LK .
Proven using the Brunn-Minkowski inequality (1887):
For any Borel sets A,B ⊂ Rn,

Vol
(

A + B
2

)
≥
√

Vol(A)Vol(B)

Here (A + B)/2 = {(a + b)/2 ; a ∈ A,b ∈ B}.
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Corrected Busemann-Petty conjecture

In the 1950s, Busemann-Petty conjectured the following:
Let K ,T ⊆ Rn be centrally-symmetric convex bodies such
that

Voln−1(K ∩ θ⊥) ≤ Voln−1(T ∩ θ⊥) for all θ ∈ Sn−1.

Does it follow that Voln(K ) ≤ Voln(T )?

True if K is a Euclidean ball or a cross-polytope.
In general, true if n ≤ 4 and false if n ≥ 5.
(Lutwak ’88, Zhang, Gardner-Koldobsky-Schlumprecht
’90s)
Fails already for the cube and Euclidean ball in high
dimensions! We lose a factor of ≈

√
e/2 (Ball ’86).

Another equivalent formulation of the slicing problem

Does it follow that Voln(K ) ≤ C · Voln(T ) for some universal
constant C > 0?
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Sharpened Milman ellipsoid?

An equivalent formulation of the slicing problem

Let K ⊂ Rn be a convex body. Does there exist an ellipsoid
E ⊂ Rn, with Voln(E) = Voln(K ), such that

Voln(K ∩ CE)/Voln(K ) ≥ 1/2.

Theorem (V. Milman, ’80s)

Voln(K ∩ CE)/Voln(K ) ≥ cn,

for universal constants C, c > 0.

This suffices for proving the reverse Brunn-Minkowski
inequality as well as the Bourgain-Milman inequality

Voln(K )Voln(K ◦) ≥ cnVoln(Bn)2

where K ◦ is the polar body of the convex K ⊆ Rn.
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Two more equivalent formulations of the slicing
problem

1 Sylvester problem. Select n + 2 independent, random
points according to the uniform measure in a convex body
K . Let p(K ) be the probability that these n + 2 points are in
convex position. Is it true that

(1− p(K ))1/n ' 1/
√

n?

2 Entropy and covariance. Is it true that for any
log-concave random vector X in Rn,

Ent(X ) =
1
2
· log det Cov(X ) + O(n)?

Bo’az Klartag Convexity in High Dimensions 27/29 27 / 29



Could the cube and simplex be the extreme cases?

The isotropic constant of a convex body K ⊆ Rn is an
affine-invariant defined via

L2n
K =

det Cov(K )

Voln(K )2 .

We know that LK > c, and is minimized for the Euclidean
ball. The conjecture is that LK < C. For example,

L[0,1]n =
1√
12
, L∆n =

(n!)1/n

(n + 1)(n+1)/(2n)
√

n + 2
≈ 1

e
.

Relations to classical conjectures
1 If LK is maximized for the simplex ∆n, then the Mahler

volume-product conjecture follows (the non-symmetric
case, proven in 2D by Mahler, 1939). See K. ’18.

2 If among centrally-symmetric bodies, LK is maximized for
the cube, then the Minkowski lattice conjecture follows
(proven in 2D by Minkowski, 1901). See Magazinov ’18.
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The end

Thank you!
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