Convexity in High Dimensions

Bo'az Klartag

Weizmann Institute of Science

Minerva mini-course at Princeton University

Fall semester, 2022

The Poincaré inequality

Theorem (Poincaré, 1890 and 1894)

Let $K \subseteq \mathbb{R}^{3}$ be convex and open. Let $f: K \rightarrow \mathbb{R}$ be C^{1}-smooth, with $\int_{K} f=0$. Then,

$$
\lambda_{K} \int_{K} f^{2} \leq \int_{K}|\nabla f|^{2}
$$

where $\lambda_{K} \geq(16 / 9) \cdot \operatorname{Diam}^{-2}(K)$.

- In 2D, Poincaré got a better constant, 24/7.
- Related to Wirtinger's inequality on periodic functions in one dimension (sharp constant, roughly a decade later).
- The largest possible λ_{K} is the Neumann spectral gap or the inverse Poincaré constant of K.
- Proof: Estimate $\int_{K \times K}|f(x)-f(y)|^{2} d x d y$ via segments.

Motivation: The heat equation

- Suppose $K \subseteq \mathbb{R}^{3}$ with ∂K an 'insulator', i.e., heat does not escape/enter K.
- Write $u_{t}(x)$ for the temperature at the point $x \in K$ at time $t \geq 0$.

Heat equation (Neumann boundary conditions)

$$
\begin{cases}\dot{u}_{t}=\Delta u_{t} & \text { in } K \\ \frac{\partial u_{t}}{\partial n}=0 & \text { on } \partial K\end{cases}
$$

Fourier's law: Heat flux is proportional to the temp. gradient.
Rate of convergence to equilibrium

$$
\frac{1}{|K|} \int_{K} u_{0}=1 \quad \Longrightarrow \quad\left\|u_{t}-1\right\|_{L^{2}(K)} \leq e^{-t \lambda_{K}}\left\|u_{0}-1\right\|_{L^{2}(K)}
$$

Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960 - precursor for convex localization)

Let $K \subseteq \mathbb{R}^{n}$ be convex and open, let μ be the Lebesgue measure on K. If $f: K \rightarrow \mathbb{R}$ is C^{1}-smooth with $\int_{K} f d \mu=0$, then,

$$
\frac{\pi^{2}}{\operatorname{Diam}^{2}(K)} \int_{K} f^{2} d \mu \leq \int_{K}|\nabla f|^{2} d \mu
$$

- The constant π^{2} is best possible in every dimension n. E.g.,

$$
K=(-\pi / 2, \pi / 2), \quad f(x)=\sin (x)
$$

- In contrast, Poincaré's proof would lead to an exponential dependence on the dimension.
- Not only the Lebesgue measure on K, we may consider any log-concave measure.

Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960 - precursor for convex localization)

Let $K \subseteq \mathbb{R}^{n}$ be convex and open, let μ be any log-concave measure on K. If $f: K \rightarrow \mathbb{R}$ is C^{1}-smooth with $\int_{K} f d \mu=0$, then,

$$
\frac{\pi^{2}}{\operatorname{Diam}^{2}(K)} \int_{K} f^{2} d \mu \leq \int_{K}|\nabla f|^{2} d \mu
$$

- The constant π^{2} is best possible in every dimension n. E.g.,

$$
K=(-\pi / 2, \pi / 2), \quad f(x)=\sin (x)
$$

- In contrast, Poincaré's proof would lead to an exponential dependence on the dimension.
- A log-concave measure μ on K is a measure with density of the form e^{-H}, where the function H is convex.

The role of convexity / log-concavity

- For $\Omega \subseteq \mathbb{R}^{n}$, the Poincaré coefficient λ_{Ω} measures the connectivity or conductance of Ω.

Convexity is a strong form of connectedness

Without convexity/log-concavity assumptions:

long time to reach equilibrium, regardless of the diameter

Many other ways to measure connectivity

The isoperimetric constant

For an open set $K \subset \mathbb{R}^{n}$ define

$$
h_{K}=\inf _{A \subset K} \frac{|\partial A \cap K|}{\min \{|\boldsymbol{A}|,|K \backslash \boldsymbol{A}|\}}
$$

- If K is strictly-convex with smooth boundary, the infimum is attained when $|\boldsymbol{A}|=|K| / 2$ (Sternberg-Zumbrun, 1999).

Theorem (Cheeger '70, Buser '82, Ledoux '04)

For any open, convex set $K \subseteq \mathbb{R}^{n}$,

$$
\frac{h_{K}^{2}}{4} \leq \lambda_{K} \leq 9 h_{K}^{2} .
$$

- Mixing time of Markov chains, algorithms for estimating volumes of convex bodies (Dyer-Freeze-Kannan '89, ...)

The study of uniform distributions on convex domains

What is this mathematical field about?
(relevant to linear programming, statistics, computer science, slightly to stat. physics)

- The questions are non-trivial in high dimensions, when

$$
n \rightarrow \infty
$$

The theme

Convexity in high dimension is a source of regularity, comparable to statistical independence. It may compensate for lack of structure or symmetry.

- Playground for various techniques that transcend convex geometry: Convex Localization, Optimal Transport, Bochner identities and curvature, heat flow and Eldan's stochastic localization, geometric measure theory.

The simplest example: the Euclidean ball

- Consider the Euclidean ball $B^{n}=\left\{x \in \mathbb{R}^{n} ;|x| \leq 1\right\}$ or the sphere $S^{n-1}=\left\{x \in \mathbb{R}^{n} ;|x|=1\right\}$.
- Write σ_{n-1} for the uniform probability measure on S^{n-1}.

For a set $A \subseteq S^{n-1}$ and for $\varepsilon>0$ denote

$$
A_{\varepsilon}=\left\{x \in S^{n-1} ; \exists y \in A, d(x, y) \leq \varepsilon\right\}
$$

which is the ε-neighborhood of A.

- Consider the hemisphere $H=\left\{x \in S^{n-1} ; x_{1} \leq 0\right\}$.

A well-known observation:

$$
\sigma_{n-1}\left(H_{\varepsilon}\right)=\mathbb{P}\left(Y_{1} \leq \sin \varepsilon\right) \approx \mathbb{P}(\Gamma \leq \varepsilon \sqrt{n})
$$

where $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ is distributed according to σ_{n-1}, and Γ is a standard normal random variable.

The sphere's marginals are approximately Gaussian

Concentration of measure on the sphere

The amount of volume of a distance at least $1 / 10$ from the equator is at most

$$
C \exp (-c n)
$$

of the sphere, for universal constants $c, C>0$.

- Most of the mass of the sphere S^{n-1} in high dimensions, is concentrated at a narrow strip near the equator $\left[x_{1}=0\right.$]
- or any other equator.

The isoperimetric inequality on the sphere

The isoperimetric inequality (Lévy, Schmidt, '50s).

For any Borel set $A \subset S^{n-1}$ and $t, \varepsilon>0$,

$$
\sigma_{n-1}(A)=t \quad \Longrightarrow \quad \sigma_{n-1}\left(A_{\varepsilon}\right) \geq \sigma_{n-1}\left(C_{\varepsilon}\right)
$$

where $C \subseteq S^{n-1}$ is a spherical cap of measure t (when $t=1 / 2$ it is a hemisphere).

- For any set $A \subset S^{n-1}$ with $\sigma_{n-1}(A)=1 / 2$,

$$
\sigma_{n-1}\left(A_{\varepsilon}\right) \geq 1-2 \exp \left(-\varepsilon^{2} n / 2\right)
$$

Therefore, for any subset $A \subset S^{n-1}$ of measure $1 / 2$, its ε-neighborhood covers almost the entire sphere.

- The isoperimetric inequality is "accompanied" by functional inequalities on the sphere: Sobolev, log-Sobolev, transport-cost, Poincaré and Brunn-Minkowski type.

Concentration of Lipschitz functions on the sphere

Corollary ("Lévy's lemma")

Let $f: S^{n-1} \rightarrow \mathbb{R}$ be a 1-Lipschitz function. Denote

$$
E=\int_{S^{n-1}} f(x) d \sigma_{n-1}(x)
$$

Then, for any $\varepsilon>0$,

$$
\sigma_{n-1}\left(\left\{x \in S^{n-1} ;|f(x)-E| \geq \varepsilon\right\}\right) \leq C \exp \left(-c \varepsilon^{2} n\right)
$$

where $c, C>0$ are universal constants.

- Lipschitz functions on the high-dimensional sphere are "effectively constant".

Concentration phenomena for general convex bodies?

- Does the uniform probability measure on an arbitrary convex body $K \subseteq \mathbb{R}^{n}$ exhibit similar effects?

A short answer

Pretty much, yes.
(Currently known up to polylogarithmic factors).

- There are rather strong expansion properties, and the isoperimetric inequality is nearly saturated by half-spaces.

Caveat: exponential tail rather than subgaussian tail
There is no strong small-set-expansion as in the sphere.
The tail distribution of a 1-Lipschitz function is sub-exponential, rather than sub-gaussian.

How would you normalize a convex body?

There is a unit ball B^{n} and a unit cube $[0,1]^{n}$.

- How would you choose the correct "units" for a general convex body or a log-concave density?

Definition

A convex body $K \subseteq \mathbb{R}^{n}$ of volume one is isotropic if for the random vector X distributed uniformly on K,
(1) $\mathbb{E} X=0$
(2) The covariance matrix $\operatorname{Cov}(X) \in \mathbb{R}^{n \times n}$ is a scalar matrix, where $\operatorname{Cov}(X)_{i j}=\mathbb{E} X_{i} X_{j}-\left(\mathbb{E} X_{i}\right)\left(\mathbb{E} X_{j}\right)$.

- Any convex body can be made isotropic after applying a linear-affine transformation.
- Another common, similar normalization: Rather than requiring $\operatorname{VoI}_{n}(K)=1$, require $\operatorname{Cov}(X)=\mathrm{Id}$.

The Kannan-Lovász-Simonovits (KLS '95) conjecture

Let $K \subseteq \mathbb{R}^{n}$ be an isotropic convex body of volume one (or of identity covariance), X distributed uniformly over K.

A conjecture (KLS), which has three equivalent formulations:
(1) Concentration: For any 1-Lipschitz function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\mathbb{E} f(X)=0$,

$$
\mathbb{P}(|f(X)| \geq t) \leq C e^{-c t} \quad \text { for all } t>0
$$

(2) Poincaré inequality: For any smooth f with $\int_{K} f=0$,

$$
\int_{K} f^{2} \leq C \int_{K}|\nabla f|^{2}
$$

(3) Isoperimetry: For any open $A \subseteq \mathbb{R}^{n}$, smooth boundary,

$$
\operatorname{VoI}_{n-1}(\partial A \cap K) \geq c \cdot \min \left\{\operatorname{Vol}_{n}(K \cap A), \operatorname{VoI}_{n}(K \backslash A)\right\}
$$

Here $c, C>0$ are universal constants.

The Kannan-Lovász-Simonovits (KLS '95) conjecture

Equivalences in our formulation of the KLS conjecture due to Ball-Nguyen '13, Buser '82, Cheeger '70, Eldan-K. '11, Gromov and V. Milman '83, Ledoux '04, E. Milman '09.
Theorem (K.-Lehec '22, building upon Eldan '13, Lee-Vempala '16 and the breakthrough by Chen '20)
KLS conjecture is true up to polylogarithmic factors.
i.e., replace the universal constants by $C \log ^{\alpha} n$.

- Bounds for the α 's were improved a few weeks ago by LV+Jambulapati.
- Works for log-concave random vectors too.

Example: Apply the KLS Poincaré inequality with $f(x)=|x|-E$
If X is an isotropic log-concave random vector in \mathbb{R}^{n}, then

$$
\operatorname{Var}(|X|) \leq C \log ^{\alpha} n
$$

Thin shell phenomenon

- When X is isotropic, $\mathbb{E}|X|^{2} \approx n$ and by reverse Hölder inequalities

$$
\mathbb{E}|X| \approx \sqrt{n}
$$

However, the variance of $|X|$ is $\leq C \log ^{\alpha} n$, much smaller!
Most of the mass of X is contained in a thin spherical shell.

- Sudakov '76, Diaconis-Freedman '84:

When most of the mass of the isotropic random vector X is contained in a thin spherical shell, we have approx. Gaussian marginals.

Convexity as good as Independence

Current state of the art:

Theorem (Bobkov, Chistyakov, Götze '19 using K.-Lehec '22)

Let X be an isotropic, log-concave random vector in \mathbb{R}^{n}. Then there exists $\Theta \subseteq S^{n-1}$ with $\sigma_{n-1}(\Theta) \geq 9 / 10$ such that for any $\theta \in \Theta$,

$$
\sup _{t \in \mathbb{R}}\left|\mathbb{P}(X \cdot \theta \leq t)-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-s^{2} / 2} d s\right| \leq \frac{C \log ^{\alpha} n}{n},
$$

where $C, \alpha>0$ are universal constants.

- An optimal result for the Kolmogorov metric, up to the polylogarithmic factor. (No log's for independent random variables with bounded $4{ }^{\text {th }}$ moments, K.-Sodin '11)
- This Central Limit Theorem for Convex Sets was originally proven in K. ' 07 , confirming a conjecture by Anttila, Ball and Perissinaki ' 03 and Brehm-Voigt ' 00.

No log-factors under symmetry assumptions

- A random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ is said to be invariant under coordinate reflections if it is equidistributed with $\left(\pm X_{1}, \ldots, \pm X_{n}\right)$ for any choice of signs.
- For instance, the uniform measure on ℓ_{p}^{n}-balls.

Theorem (K. '09)

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a log-concave random vector in \mathbb{R}^{n}, invariant under coordinate refelctions, with $\mathbb{E} X_{i}^{2}=1$ for all i.
Then for any $\theta_{1}, \ldots, \theta_{n} \in \mathbb{R}$ with $\sum_{i} \theta_{i}^{2}=1$,

$$
\sup _{\alpha \leq \beta}\left|\mathbb{P}\left(\alpha \leq \sum_{i=1}^{n} \theta_{i} X_{i} \leq \beta\right)-\frac{1}{\sqrt{2 \pi}} \int_{\alpha}^{\beta} e^{-t^{2} / 2} d t\right| \leq C \sum_{i=1}^{n} \theta_{i}^{4} .
$$

- The bound is typically $O(1 / n)$, since for a random $\theta \in S^{n-1}$, we have $\sum_{i} \theta_{i}^{4} \leq C / n$ with prob. at least $1-C \exp (-c \sqrt{n})$.

Width of thin-shell controls approx. rate in convex CLT

We have the thin-shell parameter

$$
\sigma_{n}^{2}=\sup _{X} \mathbb{E}(|X|-\sqrt{n})^{2}
$$

where the sup is over isotropic, log-concave random vectors in \mathbb{R}^{n}. A trivial bound is $\sigma_{n} \leq C \sqrt{n}$. Better estimates:

$$
\begin{align*}
& \sigma_{n} \leq C n^{2 / 5+o(1)} \tag{K.'07}\\
& \sigma_{n} \leq C n^{3 / 8} \\
& \sigma_{n} \leq C n^{1 / 3} \\
& \sigma_{n} \leq C n^{1 / 4} \\
& \sigma_{n} \leq C \exp \left((\log n)^{1 / 2+o(1)}\right)=n^{o(1)} \\
& \sigma_{n} \leq C \log ^{4} n \\
& \sigma_{n} \leq C \log ^{2.23} n
\end{align*}
$$

(Fleury '09)
(Guédon-E. Milman ’11)
(Lee-Vempala '16)
(Lee-Vempala ’16)
(Chen '20)
(K.-Lehec ’22)
(K.-Lehec '22)
(Jambulapati-L.-V. '22+)

- Concentration of measure (hinted by Paouris LDP '06).

Isoperimetry and Thin Shell

Definition

Write ψ_{n} for the minimal number such that for any log-concave random vector $X, \operatorname{Cov}(X)=\mathrm{Id}$, and any 1-Lipschitz function φ,

$$
\operatorname{Var} \varphi(X) \leq \psi_{n}^{2}
$$

- Alternatively, if ρ is the density of X, then for any $A \subseteq \mathbb{R}^{n}$ with smooth boundary,

$$
\int_{\partial A} \rho \geq \frac{c}{\psi_{n}} \cdot \min \{\mathbb{P}(X \in A), \mathbb{P}(X \notin A)\}
$$

- We actually explained that

$$
\sigma_{n} \leq \boldsymbol{C} \psi_{n}
$$

Theorem (Eldan '13 - breakthrough towards KLS conjecture)

$$
\psi_{n} \leq C \log n \cdot \sigma_{n}
$$

Thin Shell and Slicing

In the 1980s, Bourgain considered the following:

Definition

Write L_{n} for the minimal number such that for any convex body $K \subseteq \mathbb{R}^{n}$ of volume one, there exists a hyperplane $H \subseteq \mathbb{R}^{n}$ such that

$$
\operatorname{Vol}_{n-1}(K \cap H) \geq \frac{1}{L_{n}}
$$

- The hyperplane conjecture: $L_{n} \leq C$.

Any convex body of volume one should have a hyperplane section whose volume is at least c.

- We are still waiting for a short and sweet proof, but it is not coming...

Theorem (Eldan-K. '11)

$$
L_{n} \leq C \sigma_{n} \leq C^{\prime} \psi_{n}
$$

The slicing problem

- The relation between Slicing and KLS was promoted by K. Ball, and Ball-Nguyen '13 proved $L_{n} \leq \exp \left(\boldsymbol{C} \psi_{n}^{2}\right)$.
Corollary (because "thin shell implies slicing")
$L_{n} \leq C \log ^{\alpha} n$ for a universal constant $C>0$ and $\alpha \leq 2.23$
- For many years, the best bound in Bourgain's slicing problem was $C n^{1 / 4} \log n$ (Bourgain '89) or $n^{1 / 4}$ (K. '06). With Lee-Vempala '16, we reached three completely different proofs for $1 / 4$ bound. Yet it was non-optimal.

An equivalent formulation of Bourgain's slicing problem

Suppose that $K \subseteq \mathbb{R}^{n}$ with $\operatorname{Vol}_{n}(K)=1$ is isotropic, so

$$
\operatorname{Cov}(K)=L_{K}^{2} \cdot \mathrm{Id}
$$

It is known that $c<L_{K}$. Is it true that $c<L_{K}<C$?
i.e., do the two normalizations essentially coincide?

Using the Brunn-Minkowski inequality

This is related to Hensley's theorem:
Theorem (Volumes of slices - Hensley '80, Fradelizi '99)
Let $K \subseteq \mathbb{R}^{n}$ be an isotropic convex body. Then for any hyperplanes $H_{1}, H_{2} \subseteq \mathbb{R}^{n}$ through the origin,

$$
\frac{\operatorname{VoI}_{n-1}\left(K \cap H_{2}\right)}{\operatorname{VoI}_{n-1}\left(K \cap H_{1}\right)} \leq \sqrt{6}
$$

- In fact, Vol $_{n-1}(K \cap H) \sim 1 / L_{K}$.
- Proven using the Brunn-Minkowski inequality (1887):

For any Borel sets $A, B \subset \mathbb{R}^{n}$,

$$
\operatorname{Vol}\left(\frac{A+B}{2}\right) \geq \sqrt{\operatorname{Vol}(A) \operatorname{Vol}(B)}
$$

Here $(A+B) / 2=\{(a+b) / 2 ; a \in A, b \in B\}$.

Corrected Busemann-Petty conjecture

In the 1950s, Busemann-Petty conjectured the following:

- Let $K, T \subseteq \mathbb{R}^{n}$ be centrally-symmetric convex bodies such that

$$
\operatorname{Vol}_{n-1}\left(K \cap \theta^{\perp}\right) \leq \operatorname{Vol}_{n-1}\left(T \cap \theta^{\perp}\right) \quad \text { for all } \theta \in S^{n-1}
$$

Does it follow that $\operatorname{Vol}_{n}(K) \leq \operatorname{VoI}_{n}(T)$?
True if K is a Euclidean ball or a cross-polytope.
In general, true if $n \leq 4$ and false if $n \geq 5$.
(Lutwak '88, Zhang, Gardner-Koldobsky-Schlumprecht '90s)

- Fails already for the cube and Euclidean ball in high dimensions! We lose a factor of $\approx \sqrt{e / 2}$ (Ball '86).

Another equivalent formulation of the slicing problem

Does it follow that $\operatorname{Vol}_{n}(K) \leq C \cdot \operatorname{Vol}_{n}(T)$ for some universal constant $C>0$?

Sharpened Milman ellipsoid?

An equivalent formulation of the slicing problem

Let $K \subset \mathbb{R}^{n}$ be a convex body. Does there exist an ellipsoid $\mathcal{E} \subset \mathbb{R}^{n}$, with $\operatorname{VoI}_{n}(\mathcal{E})=\operatorname{Vol}_{n}(K)$, such that

$$
\operatorname{VoI}_{n}(K \cap C \mathcal{E}) / \operatorname{Vol}_{n}(K) \geq 1 / 2
$$

Theorem (V. Milman, '80s)

$$
\operatorname{VoI}_{n}(K \cap C \mathcal{E}) / \operatorname{Vol}_{n}(K) \geq c^{n}
$$

for universal constants $C, c>0$.

- This suffices for proving the reverse Brunn-Minkowski inequality as well as the Bourgain-Milman inequality

$$
\operatorname{Vol}_{n}(K) \operatorname{Vol}_{n}\left(K^{\circ}\right) \geq c^{n} \operatorname{Vol}_{n}\left(B^{n}\right)^{2}
$$

where K° is the polar body of the convex $K \subseteq \mathbb{R}^{n}$.

Two more equivalent formulations of the slicing problem

(1) Sylvester problem. Select $n+2$ independent, random points according to the uniform measure in a convex body K. Let $p(K)$ be the probability that these $n+2$ points are in convex position. Is it true that

$$
(1-p(K))^{1 / n} \simeq 1 / \sqrt{n} ?
$$

(2) Entropy and covariance. Is it true that for any log-concave random vector X in \mathbb{R}^{n},

$$
\operatorname{Ent}(X)=\frac{1}{2} \cdot \log \operatorname{det} \operatorname{Cov}(X)+O(n) ?
$$

Could the cube and simplex be the extreme cases?

- The isotropic constant of a convex body $K \subseteq \mathbb{R}^{n}$ is an affine-invariant defined via

$$
L_{K}^{2 n}=\frac{\operatorname{det} \operatorname{Cov}(K)}{\operatorname{Vol}_{\mathrm{n}}(K)^{2}}
$$

- We know that $L_{K}>c$, and is minimized for the Euclidean ball. The conjecture is that $L_{K}<C$. For example,

$$
L_{[0,1]^{n}}=\frac{1}{\sqrt{12}}, \quad L_{\Delta^{n}}=\frac{(n!)^{1 / n}}{(n+1)^{(n+1) /(2 n)} \sqrt{n+2}} \approx \frac{1}{e}
$$

Relations to classical conjectures

(1) If L_{K} is maximized for the simplex Δ^{n}, then the Mahler volume-product conjecture follows (the non-symmetric case, proven in 2D by Mahler, 1939). See K. '18.
(2) If among centrally-symmetric bodies, L_{K} is maximized for the cube, then the Minkowski lattice conjecture follows (proven in 2D by Minkowski, 1901). See Magazinov '18.

The end

Thank you!

