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Abstract

We prove that in any dimension n there exists an origin-symmetric ellipsoid £ C R” of
volume cn? that contains no points of Z" other than the origin, where ¢ > 0 is a universal
constant. Equivalently, there exists a lattice sphere packing in R™ whose density is at least
cn?-27". Previously known constructions of sphere packings in R™ had densities of the order
of magnitude of n-27", up to logarithmic factors. Our proof utilizes a stochastically evolving
ellipsoid that accumulates at least cn? lattice points on its boundary, while containing no
lattice points in its interior except for the origin.

1 Introduction

Letn > 2. A sphere packing in R" is a collection of disjoint Euclidean balls of the same radius.
A lattice in R" is the image of Z" under an invertible, linear transformation 7" : R" — R".
Thus, by a lattice in R" we always mean a lattice of full rank. The covolume of the lattice
L=T(Z") CR"is
Vol,(R"/L) := | det(T)]|.

A lattice sphere packing is a collection of disjoint Euclidean balls, all of the same radius, whose
centers form a lattice in R". The density of a lattice sphere packing is the proportion of space
covered by the disjoint Euclidean balls of which it consists. Equivalently, if the lattice sphere
packing consists of balls of radius » whose centers form the lattice L, then its density equals

Vol,(rB")

Vol,(R"/L)’
where V ol,, stands for n-dimensional volume in R", where B” C R" is the open Euclidean ball
of radius 1 centered at the origin, and where 7A = {rz; x € A} for A C R". We write §,, for

the supremum of all densities of lattice sphere packings in R"”. The Minkowski-Hlawka theorem
(see, e.g., Gruber and Lekkerkerker [9, Chapter 3]) implies that

Op > 2¢(n) - 27",

where ((n) = >~ k~". This bound was asymptotically improved in 1947 by Rogers [18], who
showed that
Op >cn-27" (1)



for a universal constant ¢ > 0. In his proof, Rogers used the Minkowski second theorem, as well
as the concept of a random lattice and the Siegel summation formula, which we recall in Section
S below.

The universal constant ¢ that Rogers’ proof of (1) yields satisfies ¢ > 2/e. This was subse-
quently improved by Davenport and Rogers [7], who obtained (1) with ¢ ~ 1.67. Ball [2] used
Bang’s solution of Tarski’s plank problem, and proved (1) with ¢ = 2—0(1). A plank is the region
in space between two parallel hyperplanes, and the problem was to show that the sum of widths
of planks covering a convex body, is at least its minimal width. Vance [24] obtained ¢ > 6/e in
dimensions divisible by 4, by using random lattices with quaternionic symmetries. Her approach
was further developed by Venkatesh [25], who used random lattices with sophisticated algebraic
symmetries in order to show that

On

1
li > —.
lgljip n-loglogn -2=" = 2

Campos, Jenssen, Michelen and Sahasrabudhe [4] used graph-theoretic methods to prove the
existence of a non-lattice sphere packing in R" of density

(3 o) e 2.

Graph theory was used earlier by Krivelevich, Litsyn and Vardy [12] for the construction of a
non-lattice sphere packing of density cn-27" in R"™. Schmidt [21] proved (1) by considering ran-
dom lattices and by analyzing large hole events; these are rare events that occur with a probability
of only exp(—¢n). His analysis fits well with the theme that random lattices may sometimes be
approximated by a Poisson process. The Poisson heuristic, which we recall below, was hinted at
already in Rogers [19].

To summarize, up to logarithmic factors, several papers which are based on quite different
ideas have essentially arrived at the same bound (1) over the years. This bound has represented
the state of the art on sphere packing in high dimensions — again, up to logarithmic factors — until
now. We improve it as follows:

Theorem 1.1. For anyn > 2,
8, > cn?-27",

where ¢ > (0 is a universal constant.

The universal constant ¢ arising from our proof of Theorem 1.1 can probably be computed
numerically to a reasonable degree of accuracy; see Remark 5.3 below. Venkatesh [25] conjec-
tures that 2"¢,, grows at most polynomially in n. It is not entirely unlikely that Theorem 1.1 is
tight, up to the value of the universal constant c or perhaps up to a logarithmic correction. As for
known upper bounds for d,,, in a short 1929 paper, Blichfeldt [3] proved that

n+ 2

b, < .97/,




See also Rankin [17]. Kabatjanskii and Levenstein [10] improved the bound to roughly 6,, <
(0.66)", a result subsequently sharpened by constant factors by Cohn and Zhao [6] and by Sar-
dari and Zargar [20]. These upper bounds also apply for non-lattice sphere packings. There is
still a large gap between the known lower bound and the known upper bound for the optimal
density of a sphere packing in high dimension. The precise optimal density is currently known
in dimensions 2, 3, 8 and 24, see Cohn [5] and references therein.

By considering the lattice sphere packing x + K /2 (z € L), Theorem 1.1 is easily seen to
be equivalent to the following:

Theorem 1.2. Let n > 2 and let K C R" be a Euclidean ball centered at the origin of volume
Vol,(K) = en?. (2)

Then there exists a lattice L C R™ of covolume one with LN K = {0}. Here, ¢ > 0 is a universal
constant.

An origin-symmetric ellipsoid in R" is the image of the unit ball B" under an invertible,
linear map 7" : R™ — R"™. Consider the lattice L and the Euclidean ball K from Theorem 1.2 .
Since L may be represented as L = T'(Z") for a linear map 7' : R" — R" with |det(T)| = 1,
we conclude from Theorem 1.2 that the origin-symmetric ellipsoid

E=TYK)CR"

has volume cn?, yet it contains no points from Z" other than the origin. This implies the statement
in the abstract of this paper. We conjecture that the conclusion of Theorem 1.2 holds true for any
origin-symmetric convex body K C R" satisfying (2), and not just for Euclidean balls and
ellipsoids. See Schmidt [22, 23] for a proof under the weaker assumption that Vol,,(K) < cn.

Before presenting the main ideas of the proof of Theorem 1.2, let us briefly discuss the proof
of (1) from Rogers [18]. Consider a random lattice L C R" satisfying Vol,,(R"/L) = Vol,,(B™).
By using the Siegel summation formula, it is shown that with positive probability,

ﬁ N > cn
i=1

where 0 < A\ < Ay < ... < )\, are the successive minima of the lattice L. Minkowski’s second
theorem is then used in order to find a linear map 7" : R” — R” with | det(T")| > []; A; such that
T(B™) N L = {0}. Intuitively, the ellipsoid 7'(B™) constructed this way “interacts” only with n
vectors from the lattice — the ones corresponding to the successive minima.

In contrast, an ellipsoid in R” is determined by n(n + 1)/2 parameters, and it is reasonable
to expect it to “interact” with roughly n? lattice points. In fact, it is not too difficult to show that
there exists an open, origin-symmetric ellipsoid £ C R with £ N Z" = {0} such that

0E NZ"| > n(n + 1). 3)



Here, |A| is the cardinality of the set A C R", and 0 is the boundary of the ellipsoid £. See
Remark 3.5 below for a proof of (3).

Our construction of the ellipsoid £ C R" begins with a random lattice L C R" satisfying
Vol,(R"/L) = Vol,(B"™). Consider a relatively large Euclidean ball disjoint from L \ {0}, and
run a Brownian-type stochastic motion in the space of ellipsoids, starting from this Euclidean
ball. The crucial property of our stochastic process is that whenever the evolving ellipsoid

E={xeR"; Aix-z <1}

hits a non-zero lattice point, it keeps it on its boundary at all later times. In other words, if the
ellipsoid hits the point 0 # z, € L at time t,, then we ensure that for ¢t > ¢,

At.fo Xy = 1. (4)

Note that (4) imposes a one-dimensional linear constraint on the matrix A;, and that the stochastic
evolution of A; may be continued in the linear subspace of matrices obeying this constraint. The
vector space of all real symmetric n X n matrices, denoted by

R’VLX’VZ

symm>

has dimension n(n + 1)/2. Hence our evolving ellipsoid freezes only when it has absorbed
n(n + 1) lattice points; note that the absorbed points come in pairs: zo € L and —xy € L.
Related ideas were used in [11]. Intuitively, the random lattice L behaves somewhat like a
Poisson process of intensity

1/Vol,(B")

in R™. Thus, one might expect the ellipsoid to cover a volume of about cn? - Vol,,(B™) during its
evolution, since it manages to find n(n + 1) lattice points. Our evolving ellipsoid expands and
contracts in a random fashion, and its volume is not monotone. Still, we expect it not to withdraw
too much from regions near absorbed lattice points. Thus the evolving ellipsoid is expected to
reach a volume of cn? - Vol,, (B™) while remaining L-free.

In the remainder of this paper we transform these vague heuristics into a mathematical proof.
In Section 2 we construct the stochastically evolving ellipsoid for a given lattice (or a lattice-like
set). In Section 3 we study the volume growth of the evolving ellipsoid, and in Section 4 we
analyze the rate at which it absorbs lattice points. In Section 5 we discuss random lattices, and
complete the proof of Theorem 1.2.

The linear space R is a Euclidean space equipped with the scalar product

<A7 B> = TI[AB] (A7 B e R?Jn?m)?
where Tr[A] is the trace of the matrix A € R™*"™. We denote the collection of positive-definite,
symmetric n X n matrices by
R?’_:,-XTL C RTLXTL

symm*



We write that A > B (respectively, A > B) for two matrices A, B € Ry if A— B is
positive semi-definite (respectively, positive-definite). We write Id for the identity matrix. The
Euclidean norm of z = (z1,...,,) € R" is denoted by |z| = \/>_, z7. For =,y € R™ we write
tensor product. The natural logarithm is denoted by log. A subset A C R”1s origin-symmetric
if A= —A. All ellipsoids are assumed to be open and origin-symmetric. A random variable X

is centered when EX = 0.

Throughout this paper, we write ¢, C', C e C . C etc. for various positive universal constants
whose value may change from one line to the next. We write Cy, C', g etc. — that is, the letters
C or c with numerical subscripts — for positive universal constants that remain fixed throughout
the paper. In proving Theorem 1.2, we may assume that the dimension n is sufficiently large;
this is our standing assumption throughout the text.
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2 Constructing a stochastically evolving ellipsoid

Let L C R"™ be a discrete subset of R™ such that for any origin-symmetric ellipsoid £ C R"™ with
ENL CA{o}, )
Vol,(£) < Cp and |0ENL| <, (5)

for some constants C',, C, > 0 depending only on L. We refer to such a discrete set L as a
lattice-like set. The most important case is when L. C R" is a lattice; in this case the inequalities
in (5) hold true with C, = 2" - Vol,,(R™ /L), by Minkowski’s first theorem, and with

Cp=2-(2"-1) (6)

by an elementary argument which we reproduce in the Appendix below. For a symmetric matrix
A e RIX" we consider the open set

symm
Ea={z eR"; Az -z < 1}. (7)

Its boundary O&4 is the collection of all z € R™ with Az - x = 1. The matrix A € R{71 is
positive-definite if and only if the set £4 is an ellipsoid, in which case

Vol,(Ea) = det(A)~V2 . Vol,(B"). (8)

When A is not positive-definite, necessarily Vol,,(£4) = co. We say that an open subset £ C R”
is L-freeif £ N L C {0}. When we write that the matrix A € R" is L-free, we mean that the
open set £4 is L-free. It follows from (5) that the volume of an L-free ellipsoid is at most C7,

and that it contains at most C';, points on its boundary.

A point belonging both to the boundary 0,4 and to the discrete set L is referred to as a
contact point. The following lemma describes a continuous deformation of an L-free ellipsoid
that keeps all of its contact points.



Lemma 2.1. Let M, € R2*"  (t > 0) be a family of matrices depending continuously ont > 0,

symm
such that not all of the matrices are positive-definite. Assume that the matrix Mo € Rg50 is
positive-definite and L-free, and that for all t > 0,

&y, NL C 0y, N L. 9)
Then the following hold:
(A) Denote
T :=sup{t>0; M is L-free with 0y, N L = 0Ep, N L forall s € [0,t] }.
Then 0 < 7 < o0.
(B) The symmetric matrix M, is positive-definite and L-free for all 0 <t < T.
(C) We gained at least one additional contact point at time 7. That is,

0Ev, N L C 0Ey, N L. (10)

Proof. We claim that there exist tg, e > 0 such that forall 0 <t <{¢pand 0 # x € L\ 0&y,,
Myx -z >1+¢. (11)

In order to prove this claim, we use the fact that M is positive-definite, and hence there exists
€1 > 0 such that My > ¢; - Id. The symmetric matrix M, depends continuously on ¢, and hence
for some ¢; > 0 we have M; > (1/2)Id for all 0 < ¢ < ¢;. Therefore (11) holds true for all
|z| > 2/,/€1, provided that ¢ < 1 and ¢, < t;. All that remains is to prove (11) for z € F' where

F={0#xze€L\0Ey,; |z| <2/\e1}. (12)

The set F' is finite since L is discrete. The set F' is disjoint from the ellipsoid &, since M, is
L-free. It thus follows from (12) that F' is disjoint from the closure of the ellipsoid &£, and
hence Myx - x > 1 for all x € F. Since M; depends continuously on ¢ while F' is finite, there
exists ¢ty € (0,¢1) and e € (0,1) such that Mz -x > 1 +eforall x € Fand 0 < t < t,. This
completes the proof of (11).

Let us prove (A). Fix 0 < t < t,. It follows from (11) that any point 0 # x € L\ 9, does
not belong to A€y, since My -y = 1 for all y € 0&),,. Hence

0&m, N (L\ Engy) =0,
where we also used the fact that 0 ¢ 0&),,. Consequently,

8Ev, N L C &y, N L. (13)



It follows from (9) that the open set £y, contains no points from L N 9€yy,. It follows from (11)
that the set £);, does not contain non-zero points from L \ 0€,,,. Therefore &,;, does not contain
non-zero points from

(LN OEN,) U (L\ 0Ey,) = L.

In other words, the matrix M, is L-free. It now follows from (9), (13) and the definition of 7 that
T >1 > 0.
Since &y, is L-free for 0 < ¢ < 7, by (5),

sup Vol, (&) < Cp < 0. (14)

o<t<r

It follows from (8) and (14) that the matrix M; is positive-definite for all 0 < ¢ < 7, and

inf det(M;) > 0. (15)

0<t<T

This implies in particular that 7 < oo, since we assumed that (M;)o<i<oo is not a family of
positive-definite matrices. Thus (A) is proven.

We move on to the proof of (B). We have seen that the matrix M, is L-free for0 < ¢ < 7, and
hence the matrix M, is L-free as well, by continuity. Since M, is positive-definite for 0 < ¢ < 7,
the matrix M, is positive semi-definite, by continuity. It follows from (15) that det M, > 0 and
hence M. is in fact positive-definite. This completes the proof of (B).

We still need to prove (C). If (10) does not hold true, then necessarily
0y, NL =0Ey, NL, (16)
according to (9). Hence, by (9),
0Ey. NL C Oy, N L forallt > . (17)

The matrix M, is positive-definite and L-free according to (B). Since M, is positive-definite for
0 <t <7, we know that (M;,,):>¢ is a family of matrices depending continuously on ¢, not all
of them positive-definite. Therefore, thanks to (17), we may apply the lemma for the family of
matrices (M, )i>0, and conclude from (A) that

T :=sup{t>T1; M,is L-free with 0y, N L = 0y, N L forall s € [7,1] }

satisfies 71 € (7,00). However, equality (16) and the maximality property of 7 implies that
71 = T, In contradiction. 0



We recall that the standard Brownian motion in a finite-dimensional, real, inner product space
V' is a centered, continuous, Gaussian process (Wt)tzo attaining values in V', with W, = 0, and
with independent increments', such that for all £ > s > 0 and a linear functional f : V — R,

Elf (W, — Wy) | = (t — s)|| f]|>-

Here, || f|| = supg,ev |f(0)]/][v] and [[v|| = \/(v,v). We refer the reader e.g. to @ksendal
[14] or Revuz and Yor [15] for background on Brownian motion and stochastic analysis.

The Dyson Brownian motion is a standard Brownian motion (W;);>¢ in the Euclidean space
R2*"  For A € R?*" consider the subspace

symm* symm

Fa={BeR}" VxedésNL, Br-x=0}, (18)

symm )

where €4 is defined in (7). We write m4 : RY7H — RES for the orthogonal projection operator
onto the subspace F4. The following lemma explains how to randomly evolve an L-free ellipsoid

until we gain an additional contact point.

Lemma 2.2. Let M, € R*" be an L-free matrix with Fy, # {0}. Let (W});>0 be a Dyson

Brownian motion in RY 7. For t > 0 denote

Mt = M(] + T M, (Wt) (19)
Then, with probability one, the random variable
7 :=sup{t > 0; My is L-free with 0Ey;, N L = 0Ep, N L for all s € [0,t] },

is non-zero and finite. Moreover, almost surely, for 0 <t < 7 the set £y, is an L-free ellipsoid,
and

0Ev, N L C 9Ey. N L. (20)

Proof. Since Fyy, # {0}, the linear projection 7y, : R{7H - — REXVis not identically zero.

Hence there exists 2y € R” such that 7y, (29 ® x¢) # 0. Almost surely, a Brownian motion in R
does not remain bounded from below indefinitely. Therefore, almost surely

litm inf 7y, (We)xg - 2o = lifn inf (W, mpg, (29 ® 29)) = —o0. (21)
—00 —00

It follows from (19) and (21) that almost surely, (M;):>o is not a family of positive-definite
matrices. In order to verify all of the other assumptions of Lemma 2.1, we note that if x €
0En;, N L then by (18),

Bxr-x=0 forall B € Fyy,. 22)

Lie, W, — W, is independent of W, — W, forall 0 < r < s < t.



Recall that 7y, (W;) € Fiy,. Thus, by (22), forall t > 0 and = € 0&y, N L,
Myx - x = Moz - x + mp,(We)x - = Moz - o = 1.
Hence xz € 9&y;, N L for all t > 0. We have thus shown that almost surely, for all ¢ > 0,
0EM, NL C 0&y, N L.

We have verified all of the assumptions of Lemma 2.1. We may therefore apply the lemma, and
conclude that almost surely the random variable 7 is finite and non-zero. From conclusion (B)
of Lemma 2.1 we learn that almost surely, for all 0 < ¢ < 7 the set £, is an L-free ellipsoid.
Conclusion (C) of Lemma 2.1 implies (20). O

Recall that the filtration associated with the Brownian motion (W;);>¢ is (F;):>0, Wwhere F;
is the o-algebra generated by the random variables (W )o<s<:. A stochastic process (A;)¢>o is
adapted to this filtration if for any fixed ¢ > 0, the random variable A, is measurable with respect
to F;. A stopping time 7 is a random variable attaining values in [0, c0) such that for any fixed
t > 0, the event {7 < ¢t} is measurable with respect to F;. For example, the random variable 7
from Lemma 2.2 is a stopping time. The following proposition describes the construction of the
stochastically evolving ellipsoid associated with the lattice-like set L C R".

Proposition 2.3. Let ag > 0 be such that the matrix ag - Id € R"*" is L-free. Let (W})i>o be

a Dyson Brownian motion in R%" . Then there exists a continuous stochastic process (A;);>o,

attaining values in Rg70 and adapted to the filtration induced by (Wi)eso, with the following
properties:

(A) Abbreviate m; = T,,. Then there exist a bounded, integer-valued random variable M > 0
and stopping times 0 = 79 < 1 < T < ... for which the following hold: for any fixed
i>1landt>0,ift < Mandt € [1,_1,7;) then 7, = 7,,_, and

At = Aﬂ'—l + Tt (Wt - WTi—l) . (23)

(B) Fort > 1) we have Ay = A, and ; = 0. Moreover, Ay = ag - 1d.

™
(C) Almost surely, for all t > 0 the matrix A, is positive-definite and L-free.

(D) Set & := E4,.. Then almost surely, 0, N L C 0&, N L forall 0 < s < t.

(E) Denote I, := F5,. Then almost surely,

7. = inf{t > 0; F; = {0}} (24)

is finite, and T, = T);.



Proof. We will recursively iterate the construction of Lemma 2.2. Set
Ag = ap - 1d, (25)
and 7p = 0. We will inductively construct stopping times
O=Tp<m<m<... (26)

and symmetric matrices (A, );>; such that almost surely, the random variable 7; is finite and the
matrix A,, is a positive-definite, L-free matrix for all 7. For the base of the induction, we note
that the matrix A,, is positive-definite and L-free, by assumption.

Let7 > 1 and suppose that 7;_; and A,, , have been constructed such that almost surely 7,_;
is finite, and A,, | is positive-definite and L-free. Let us contruct 7; and A... If

F,, = {0} @7)

then we simply set A; := A,, | fort > 7,_;. We also define M := i — 1 and 7p/4; := Tas + J for
7 > 1, and end the recursive construction. By the induction hypothesis, ATj is a positive-definite,
L-free matrix for all 7 > 7. This completes the description of the recursion step in the case where
(27) holds true. Suppose now that

F,, # {0}, (28)

Define .
Wt(l) = Wir,, = Wo (t = 0)7 (29)

which is a standard Brownian motion in R{77.  or in other words, a Dyson Brownian motion.
Set

My = A, (30)

which is positive-definite and L-free by the induction hypothesis. We know that F;, # {0},
thanks to (28). Denote ‘
M, = Mo + 7y (W), 31

and apply Lemma 2.2. From the conclusion of the lemma, almost surely the stopping time
T; i= Ti—1 +sup{t > 0; M, is L-free with 0Ey;, N L = 0Ey, N Lforall s € [0,¢]}, (32)

is finite with 7; > 7,_1. Moreover, almost surely &y, is an L-free ellipsoid for 0 <t < 7, — 7;_4.
Therefore, setting
At = Mt—’ri,1 fort € (Ti—la Ti] (33)

we see that A; is positive-definite and L-free for t € [r;_;,7;]. Almost surely, the matrix A,
depends continuously on ¢ € [7;_;,7;]. Furthermore, from conclusion (20) of Lemma 2.2 we
learn that almost surely,

04,  NLCIEA NL. (34)

10



This completes the description of the recursive construction of 7; and A,, for all ¢ > 0. It follows
from (26) that along the way we defined the random matrix A; for all 0 < ¢ < 7/, via formula
(33). For completeness, set

A=A, fort > 7. (35)

Thus, almost surely the stochastic process (A;);>¢ is well-defined and continuous. Let us discuss
the basic properties of this construction.

We first claim that the random variable M — the number of steps in the construction — is a
bounded random variable. Indeed, relation (34) holds true for all : = 1, ..., M. Therefore,

0€4, NL| > (i=1,...,M), (36)

while the ellipsoid £ As, is L-free. It follows from (5) and (36) that almost surely M < C., and
hence M is a bounded random variable. We conclude that the random variable 7, is almost
surely finite, being almost surely the sum of finitely many numbers.

Next, by the construction of A; in (33), the matrix A, is almost surely positive-definite and
L-free for t € [r,_1,7;] forall i« = 1,..., M. Tt thus follows from (25) and (26) that A, is
positive-definite and L-free for t € [0, 75/]. Observe that by (32) and (33), forany i = 1,..., M
andt € [Ti—h Ti)»

04, NL = 88,4%1 N L. (37)

From (29), (30), (31), (33) and (37), fori =1,..., M and t € [r;_1,7;) we have F;, = F,_, and
At = ATi—l + 7TAT7;_1( t(i)n_l) - AT¢_1 + FAt(Wt - WTz‘—1)'

Since A; depends continuously on ¢, and since A; is constant for ¢ € [/, 00) by (35), conclusion
(A) and conclusion (B) are proven. Note that the matrix A, is a function of ag, L and (Wy)o<s<t.
In particular, the stochastic process (A;):>o is adapted to the filtration induced by the Dyson
Brownian motion.

Conclusion (C) holds true as A; is positive-definite and L-free for ¢t € [0, 75/], and A; = A
for t € [Ty, 00). Conclusion (D) holds true in view of (34) and (37).

T™

From our construction, if M/ > 1 then the subspace F; = Fl, is constant and different
from {0} for¢t € [r;_1,7;) and i = 1,..., M. We always have F,,, = {0}. It thus follows that
T« = Tz, Where 7, is defined in (24). Thus the stopping time T, is almost surely finite, completing
the proof of (E). O

We refer to the stochastic process (£;)¢>o from Proposition 2.3 as the stochastically evolving
ellipsoid. The volume of the L-free ellipsoid & may increase or decrease with ¢, but it remains
bounded at all times. In fact, it follows from (5), (8) and Proposition 2.3(C) that almost surely,

det A; > cr, forallt > 0, (38)

with ¢;, = (C/Vol,(B™))?. The It6 integral interpretation of conclusions (A) and (B) of Propo-
sition 2.3 is given in the following:

11



Corollary 2.4. Under the notation and assumptions of Proposition 2.3, for all t > 0,

t
A =ao-1d + / T (dW). (39)
0

Thus Ag = ag - Id and we have the stochastic differential equation

Proof. The It0 integral on the right-hand side of (39) may be defined as

t
/ws(dW = lim Zwt” ~ Wi ), (41)
0

e(P)—0

where P = {0 = t, < 1, < ... <y, = t} is a non-random partition of [0, ¢] into Np intervals
and e(P) = maxi<;<n, [t; — t;_1|. The convergence of the RY " -valued random variables in
(41) is in the sense of L.

Thus (39) follows from (41) and conclusions (A) and (B) of Proposition 2.3 via a standard
argument, while (40) is the stochastic differential equation rewriting of (39). O

3 The shape and volume of the evolving ellipsoid
Let L. C R"™ be a lattice. Assume that ¢y > 0 is such that the matrix
ap - I1d € R

is L-free. Fix a Dyson Brownian motion (W;);>¢ in RZ%
(A¢)i>0 constructed in Proposition 2.3.

symm» and consider the stochastic process

Lemma 3.1. There exist two Dyson Brownian motions (Wt(l))tzo and (Wt(Q))t>0 in RY\" . such
that for all t > 0,
W(l) + Wt(z)

A, :ao-Id—i—tf. (42)

Proof. We use an idea that is attributed to Bernard Maurey, see Eldan and Lehec [8, Proposition
4]. Recall from Proposition 2.3 the linear map

R’HXTL R’HX’H,

symm symm*

Almost surely, for all ¢ > 0 the map 7, is an orthogonal projection. In particular, 7; is a symmetric
operator and
0 S Ty S Ida
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in the sense of symmetric operators on the Euclidean space R7 <" . It follows from Corollary 2.4

symm*
that (A;)>o is a martingale in R

nxn . Its quadratic variation process is

symm*
t t
[A]l; = / mlds = / msds. (t>0). (43)
0 0
Denote 7, = Id — m : RE7E0 — RS and set

t t
W = / mo(dW,) + / o (dW,)
0 0

and

t t
W = / T (dW,) — / o (dW,).
0 0

Thus (Wt(l))tzg and (Wt(Q))tZO are well-defined, continuous martingales in R, with

t
W Ly 2/ o (dW,) = 2(A; — ag - 1d),
0

where the last passage follows from Corollary 2.4. This proves the desired conclusion (42). The
quadratic variation processes of these two martingales satisfy, for ¢ > 0,

t
W, = / (s + 75)%ds =t - 1d
0

and .
W@, = / (g — 75)%ds =t - 1d.
0

Note that Wo(l) = W0(2) = 0. Thus, by Paul Lévy’s characterization of the standard Brownian

motion, both (Wt)go and (Wt@))tzo are standard Brownian motions in Rg " . In other words,

both stochastic processes are Dyson Brownian motions. O

Write [|A|lop = supg,cgrn |Az|/|2| for the operator norm of the matrix A € R™*",
Corollary 3.2. Foranyt > 0andr > Vin,
P (|| Ar — ao - 1d|lop > Cor) < Cexp(—1?/t),
where C, Cy > 0 are universal constants.

Proof. From Lemma 3.1, for any r > 0,

Wt(l) + Wt(Z)
2

>r

P(|Ai —ao-1d||pp >r) =P H

op

< 2P (| Willop = 7) = 2P (Vin|Tllop = 7).

13



where ' is a Gaussian Orthogonal Ensemble (GOE) random matrix. This means that I' =
(T'ij)ij=1,.n. € RE7, is a random symmetric matrix such that (I';;);<; are independent, cen-
tered Gaussian random variables, with ]EF?j = (1 + 0;;)/n. It is well-known and proven by an

epsilon-net argument (e.g., Vershynin [26, Corollary 4.4.8]) that for s > 1,
IP)(HFHOP > Cs) < 4exp(—82n)

for a universal constant C' > 0. The corollary is proven by setting s = r/+/tn. O

Corollary 3.2 implies that if ¢ < ¢/n and ag > 1/2, then the ellipsoid &, is typically sand-
wiched between two concentric Euclidean balls whose radii r; < 5 satisfy r5/r; < C. Our next
goal is to study the volume growth of the ellipsoid &;, or equivalently, the decay of the determi-
nant of the positive-definite matrix A,;. To this end we consider the non-negative, integer-valued
random variable

N, = dim(F}) (t>0) (44)

where [} = Fy, 1s defined in (18) and in Proposition 2.3.
Lemma 3.3. For any fixed T' > (,

1 /T
Elogdet Ar < nlogag — 5/ E [HAtHO;Q - N dt.
0

Proof. For two fixed matrices P, B € Rg70 with P being positive-definite, we have the Taylor
expansion as € — 0,

2
log det(P + eB) = log det P + e Tx[P~'B] — %Tr[(PﬂB)?] +O().

Denote the eigenvalues of P, repeated according to their multiplicity, by A{, ..., A, € (0,00).
Then for any orthonormal basis of eigenvectors uy, ..., u, € R" corresponding to these eigen-
values,

n n

Bui-ujz B,UZ‘ suj2
:_Z( ) __Z< ®s Uj)

d?
— log det(P + ¢B)

d€2 e=0 i1 /\1)\3 =1 /\1)‘j ’
where z @,y = (1 ®y +y ®x)/2 for r,y € R™. Observe that for any linear map S : Ry —
Rn@n
symm?

n

TI'[S] = Z <S<Uz ®s uj)v Ui Qs U’j) :

ij=1
Recall that dA; = m;(dW;) by Corollary 2.4, and that 7, : RE"  — R{<" s an orthogonal
projection. From the It6 formula,

d(log det Ay) = (A1 7 (dIV,)) — %&dt (45)

14



where

5= 3 I 2P
- Aidj ’
i,7=1

and Aj,..., A, € (0,00) are the eigenvalues of A; while uy,...,u, € R" constitute a corre-
sponding orthonormal basis of eigenvectors. Since \; < [|A;||,, for all i, we have

1 - 1 - 1
2 e, 2 )l = e > s @) s @1 s) = g Trlm). (40
Opl] 1 OpZ] 1

Consider the martingale (M;);>o with M, = 0 that satisfies
th = <7Tt(A;1), th> (t > O)
In order to show that it is indeed a well-defined martingale, we bound its quadratic variation:

HAt” L

Elm(A;D]? <E|A']? < n-EJA7Y2, ﬁ 5
L

E[ A5

where we used (38) in the last passage. By Corollary 3.2, for any fixed ¢ > 0, the random
variable ||A;||,, has a uniformly sub-gaussian tail. Hence, E||A||?* < Cp(ao + V)" 2 for
some constant C,, depending only on n, and (M;);> is indeed a martingale. It follows from (45)
that

1 t
log det A; = logdet Ay + M; — 5/ 0sds (t>0). 47)
0

Since EMy = My = 0, by (46) and (47),

1" 1
Elogdet A = logdet Ag — 5/ Ed;dt < nlogag — 5/ E||A¢ll,,7 - Trlm]dt.
0 0

Since 7 is the orthogonal projection operator onto the subspace F; C R{ 7V we have Tr [7r]

dim(F};) = N, and the lemma is proven. a

Recall the L-free evolving ellipsoid & = £4, from Proposition 2.3.
Proposition 3.4. Fix 0 < T < 20 - n=°/% and assume that 1 < ag < 1+ 10/n. Then,

n*T 1

T
Elogdet AT < C — T + 4/ E|85t M L|dt,
0

where C' > 0 is a universal constant.

15



Proof. Fix 0 <t < T and let S; be the event that
|A: — ao - 1d][,p < CoVin,

where Cjy > 0 is the constant from Corollary 3.2. Let 15, be the indicator of &;, that equals 1 if
the event S, occurs, and that vanishes otherwise. Then,

E [ Al - Ne] > E [Ls | Adll5,) - Ne] > (a0 + CVin) *E[Ls, VY]
= (ag + CVin) ™ (E[N,] — E[(1 — 15,) Vi) . (48)
Since N; = dim(F}) < n?, by Corollary 3.2,
E[(1 - 1s,)N,] < nE[l — 1g,] = n* - P(|| A, — ao - Id||,p > Cov/tn) < Cn’e™
Therefore, by using (48) and the inequalities |ag — 1| < C/n and N; < n?,
E[|| A2 Ni] > (1 - C'Vin — C/n)E[N,] — Ce™"? > E[N,] — C'V/t - n** — Cn.

By integrating over ¢ and recalling that 7" < Cn~>/3 we thus obtain
T T - T A
/ E [|Adl,7 - Ne] dt > / E [N, dt — C'T3?n?? — T .Cn > / E[N;]dt — C.
0 0 0
Therefore, from Lemma 3.3,
I e
Elogdet Ay < nlog(1+ 10/n) — 5/ (1A, - Ne| dt < C' — §/ E [N, dt.
0 0

The subspace F; = Fly, is defined in (18) as the orthogonal complement in RY, "7 to the subspace

E spanned by z ® x (z € 0& N L). The dimension of the subspace E is at most [0&; N L|/2,
since 06, N L = —(0&, N L) while 0 ¢ &, N L. Therefore,

N, = dim(F,) = dim(R™" ) — dim(F) > "D _10& 0 L]

symm 2 2
Consequently,
1T . onn+1) 1 [
Elogdet Ap < C" — 5 E[N]dt <" — TT + 1 E|0& N Lidt,
0 0
completing the proof. O

Remark 3.5. In the notation of Proposition 2.3, for ¢ = 7, = 7, the L-free ellipsoid & C R”
almost surely satisfies
0& N LI >n(n+1). (49)

Indeed, since F; = {0} by Proposition 2.3(B), we know that the matrices z®@z (z € 0E;NL) span
R=" . The number of such distinct matrices is at most |0€; N L|/2, since 0&;NL = —(0E;NL).

symm*

Thus (49) follows from the fact that dim(Rg)" ) = n(n + 1)/2. By applying a linear map

S : R™ — R™ that transforms L to Z", we see that the ellipsoid £ = S(&;) C R" is disjoint from
Z™ \ {0} and that inequality (3) above holds true.
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4 Points absorbed by the evolving ellipsoid

We keep the notation and assumptions of the previous section. Thus L. C R" is a fixed lattice,
ap > 0 is such that the matrix o - Id is L-free, and we study the stochastic process (A;):>o
introduced in Proposition 2.3. The following proposition is a step toward showing that, for a
typical lattice L C R", the number of points absorbed by the L-free ellipsoid & = &4, up to time
T is usually at most

C exp(n®T/8).

Proposition 4.1. For any fixed T > 0 and 0 # x € L,

Plz € 0€r) < 2@(22%(%—#)),

where Z ~ N(0,1) is a standard Gaussian random variable.

Proof. Since the matrix ay-Id is L-free, necessarily ag|z|* > 1. If ap|x|* = 1 then the conclusion
of the lemma holds trivially, so let us assume that ag|x|? > 1. For ¢ > 0 denote

My=Az-z—1=(A,z®@z)— 1.

If M; > 0 then z ¢ O&,;, and hence

P(x € 06r) < P(Mr < 0) < IP’( inf M, < 0) . (50)

0<t<T

By Corollary 2.4,
dM; = (m(dW,), x @ x) = (dW;, m(x @ x)).

Thus (M, )>o is a martingale with My = ag|z|*> — 1 > 0. Its quadratic variation is given by

t t
(M), = / 1ms(z @ 7)2ds < / |z @ 2’ ds = t|z|*, (51)
0 0
where we used the fact that 7, is an orthogonal projection. For ¢ > 0 denote
R, =inf{s > 0; [M]; > t}, (52)

where the infimum of an empty set is defined as +o0o. Almost surely, the function R; is non-
decreasing in t with Mg, , = Mg, , for all ¢ for which R,y < oco. Here we write R;_y =
lim, ,;- Rs and Ry g = lim, .;+ Rs. The Dambis-Dubins-Schwartz Theorem (e.g. Revuz and
Yor [15, Chapter V]) states that there exists a standard Brownian motion (B;);>¢ in R such that
forallt > 0,

Mg, — My = B,

whenever R; < oc. It follows from (51) and (52) that R, > t/|z|*. Consequently,

inf [Mo+ B < inf Mg, < inf M,.
0<t<T|z|* 0<t<T|aw|4 0<t<T
Ry <oo

17



Thus, from (50),
P(x € 0&r) <P < inf [My+ By < O) )

0<t<T)|x|

By the reflection principle for the standard Brownian motion (e.g. [15, Section IIL.3]),

P ( inf [My+ By < 0) =P ( sup B; > M0> = 2P (BT|J;‘4 > Mo) )

0<t<T |zt 0<t<T)|z|4

The law of By« is the same as the law of \/T'|z|? - Z. Therefore,

P(z € 0Er) < 2P (\/T]x\z-Z > ]\/[0> — P (Z > % (ag - ﬁ)) .

For » > 0 denote

) 1 e /2
@('l") = min 5, m y (53)

with ®(0) = min{1/2, 400} = 1/2. It is well-known that if Z is a standard Gaussian random
variable, then for » > 0,

1 & 2 1 1 o 2
P(Z>r)= \/—2_7T/ e~ 2dy < min {5, \/_2_7r/ % e " /zd:z;} = d(r). (54)

In the remainder of this paper we will no longer refer to Brownian motion, let alone any denoted
by (B;):>0 as in the previous proposition. In fact, from now on, for t > 0 we define

B, = {z € R"; (ap — Covtn)|z|* < 1}, (55)

where C, > 0 is the universal constant from Corollary 3.2. For ¢ > 0 we consider the non-
negative number

K(L)y= > @ (% <a0 - #)) € [0, +oc]. (56)

0£x€LNB;

Proposition 4.2. For anyt > 0,
E|0& N L] < 2K, (L) + Ce ",

where C, c > 0 are universal constants.
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Proof. By the linearity of expectation and Proposition 4.1,
1 1
El0& N LN By = P(x € 0&) <2 Pl(Z>— -—,
pantnbl= 3, Rtz 3 ( —ﬁ(‘“ W))
+#x€LNB: 0#x€LNBy

where Z is a standard Gaussian random variable. The matrix ag-Id is L-free. Thus ag—1/|z|> >
0 for z € L, and we may use the standard bound (54) and the definition (56) of K;(L) to conclude
that

E|0& N LN By <2K(L). (57)

We claim that

Indeed, it suffices to prove that
P(&CB)>1-Ce™,
where £ C R" is the closure of the ellipsoid £ = £4, C R™. Equivalently, we need to show that
P (A > (a9~ Covin)1a) =1 Ce ™.

This follows from Corollary 3.2, proving (58). Recall from (6) that [0, N L| < 2- (2" —1) as &
is an L-free ellipsoid and L. C R" is a lattice. Thus, from (57) and (58),
Elo&NL <POENLNB#05NL)-2-(2" — 1)+ E|0& N LN By
< C(2/e)" +2K(L),

completing the proof. O

In view of Proposition 3.4 and Proposition 4.2, it is desirable to understand how large K;(L)
is for a typical lattice L. Recall that for small ¢ > 0, the parameter K;(L) is the sum of the

function | .
v (% (‘“ - W)) &)

over all non-zero lattice points in a certain Euclidean ball. In the following lemma we analyze
the integral of the function from (59) over a spherical shell approximating this ball.

Lemma 4.3. Let t > 0. Assume that 0 <t < 20n"2-lognand1 < ay <1+ 10/n. Consider
the spherical shell

1 1
R=R =32€eR"; —<|zf) < —————}, 60
' { CLO_H ao—Co\/%} (°0)

where Cy > 0 is the universal constant from Corollary 3.2. Then,

1 1 2
O —(ay——))de<Ce™® . Vol,(B"),
A (\/E( |x|2)) TS O Vol (BY)

where C' > 0 is a universal constant.
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Proof. Denote k,, = Vol,(B") and a; = ag — Cypv/tn. Integrating in polar coordinates,

1 1 1/v/ax —1/r2
i [0 o ) 0 ()
R Vit || 1/\/ao Vit

Changing variables y = t~'/2(ay — 1/72) we see that

—dy = —dy.
(a0 —iy)s 2 1L —yv/t/ag) s

Recall that ag > 1 while ¢ < 20n~2 - logn. Thus yv/t/ay < y/t < 1forall y € (0,Co\/n),
assuming that n exceeds a certain given universal constant. Consequently,

_ vt / avr T a(y) d n\/—
a2 Y =
(1—yvt)s
where [; is the integral from 0 to 1, where I is the integral from 1 to logn and where I3 is the

integral from logn till Cyy/n. Begin by bounding I;. To this end we will use the elementary
inequality 1 — z > exp(—2z) for 0 < x < 1/2. Since ®(y) < 1/2and t < 20n~2 - logn,

mn\f /C‘“f D(y) W&n\/_ 0 /OC‘)f ( D(y)

(L + L+ 1), (61)

I —/1 %dy 1(1_\/%) ”+2 <e(n+2)\/<c n\/<0/ n?/8 (62)
R NCEOES i’

where we used the bound ¢* < Czx~ ! - e®’/8 for x > 0, as well as our standing assumption
that n is sufficiently large. Next, we bound /3 using the same elementary inequality. Since

Vit <5nt - y/logn,

Cov/n 00
I S/ @(y)e(”ﬁ)yﬁdy S/
1

ogn logn

(\]

o0

—y2 2 2
e Y /2+26’y\/10gndy — 620 logn/ et /de
logn—2C+/logn

The last integral is at most C’e~¢ log®n by a standard bound for the Gaussian tail such as (54)
above. Consequently,

2
ont/8

nyt’

as ¢ < x~1-e**/% for 2 > 0. For the estimation of the integral /; we use the elementary inequality
1 — 2 > exp(—z — 22) for 0 < x < 1/2, as well as the bound v/# < 5n~! - /log n. This yields

logn (I)(y) logn (nADVE | (nt+2)yt
I :/ e S/ blyle 2 VT dy
1 (1-— yﬁ)%z 1 (

logn —y2/2 logn ,—(y—nvt/2)2/2
< ()’/ € Mgy = C’e”zt/s/ R ——"
1 Yy 1 Yy

I <C/ 2C? logn— clogn<C<C

(63)
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Therefore,

n\/f/4
L <Cles [ / e~ mVIR 2 gy
1

o o (y-nVE/2?/2
e,
n\f/4 )

4 \/_ 215/8
— V27| < C
nyv/t } nvt’
where Z is a standard Gaussian random variable, and we used a standard tail estimate such as
(54) which gives P(Z > n\/z_f/4) < O/(n\/t). To summarize, by (61), (62), (63) and (64),

— < M[h—i-fg—l—]?)] < Cen 215/87
Rn

< G { (Z > nv/t/4) + (64)

completing the proof. O

Remark 4.4. When T' = 16n2 - logn, most of the contribution to the integral in Lemma 4.3
arrives from points x € R" with

|x| — (1—1—4

as can be seen from the proof. When L. C R" is a random, uniformly distributed lattice as in the
next section, there will typically be about n*e®V!°8™ lattice points satisfying (65).

(65)

n

logn) ’ < C\/logn’

5 Random lattices

Write 2, for the space of all lattices . C R” with
Vol,(R"/L) = Vol,(B").

We emphasize that our normalization is not that of covolume one lattices, but rather we consider
lattices whose covolume is the volume of the Euclidean unit ball. The space 2, is a homogenous
space under the action of the group SL,(R) = {g € R™"; det(g) = 1}, where the action of
g € SL,(R) on the lattice L. C R™ is the lattice

9-L={g(x); v € L}.

Minkowski and Siegel [16] discovered that there is a unique Haar probability measure on 2,
which is invariant under the action of SL,(R). When we say that L C R" is a random lattice
distributed uniformly in 2, we refer to the Haar probability measure on Z,,. For more infor-
mation on random lattices we refer the reader e.g. to Gruber and Lekkerkerker [9, Section 19.3]
or to Marklof [13]. Throughout this section we set

=(1-1/n)"% (66)

Clearly 1 < ag < 1+ 10/n, as required in order to apply Proposition 3.4 and Lemma 4.3. Recall
the parameter /;(L) > 0 that is defined in (56) for any lattice L. C R" and any time ¢ > 0.
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Proposition 5.1. Let 0 < T < 20n~2 - logn. Then there exists a lattice L € 2, such that
aolz|? > 1 forany 0 # x € L and

T
| i < G (67)
0

where C' > 0 is a universal constant.

Proof. Let L € Z,, be a random, uniformly distributed lattice. The Siegel summation formula
[16] states that for any measurable function ¢ : R" — (0, +00),

1
EO;L p(x) = Vol (B") /n ©. (68)
Write f(z) = 1if || <1—1/nand f(:z:) = 0 otherwise. By (68),
n 1
E ) @ Vol(B) L=t

0#£z€L

Hence, by the Markov inequality,

P(H0#zel;|z|<1-1/n)< (69)

Cbl»—t

Let0) <t <T,andlet R = R; C R" be the spherical shell defined in (60). Denote

- 3ol m)

0#£zELNR,

1.e., the difference between f(t(L) and K;(L) is that we sum over the spherical shell R, rather
than over the ball B;. According to (68) and Lemma 4.3,

s 3 o5 )

1 1 1 2
=— [ & =(ag—— | ) de < Cre™5.
Vol,(B") /R (\/%( |x|2)) TG

Since K, +(L) is non-negative, we may apply Fubini’s theorem and conclude that

T T 8C1 2
]E/ Ky(L)dt < Cl/ e Bt < —= e B,
0 0

n

By the Markov inequality,

(71)

DN | —



Since 1/2 + 1/e < 1, we conclude from (69) and (71) that there exists a lattice L € Z,, such
that |z| > 1 — 1/n forall 0 # = € L and such that

6C
1 enQT/8.

T
/ K (L)dt < ! (72)
0

n2

From (66) we thus see that ag|z|*> > 1 for any 0 # x € L. Therefore the matrix aq - Id is L-free,
and from (55) and (60) we see that

(L\{0})NR; = (L\{0})N B, forany 0 <t <T.
Consequently, from (56) and (70),
Ri(L) = Ki(L) (0<t<T)

The desired conclusion (67) thus follows from (72). O

Let L C R™ be the lattice whose existence is guaranteed by Proposition 5.1. Thus the matrix
ao - Id is L-free. We may therefore apply Proposition 2.3, and consider the stochastic process

(At)e=o

of positive-definite, symmetric n X n matrices. Recall that almost surely, for any ¢ > 0 the
ellipsoid & = &4, is L-free.

Lemma 5.2. Set T = 16n~2 - log n. Then with positive probability,

det AT < %,

for a universal constant C' > (.

Proof. From Proposition 4.2 and Proposition 5.1, for any ¢ > 0,

2C

W . en2T/8 + C/Te—c’n < Cv’

T T ,
/ E|9E, N L|dt g/ (2Kt(L) +c’e-cn> dt <
0 0

since n*T'/8 = 2logn. By our standing assumption that n is sufficiently large, we have T' <
20 - n~°/3. We may therefore apply Proposition 3.4, and conclude that

2T 1 T 2T
Elog det Ay < C — ”T + 21/ E|0S, N L|dt < C' — "T — ' — 4logn.
0

In particular, with positive probability, log det Ar < C” — 4logn. The lemma follows by expo-
nentiation. O
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Proof of Theorem 1.2. Since the matrix Ar is almost surely L-free, Lemma 5.2 guarantees the
existence of an L-free matrix A € R*" with

det(A) < C/n*.
According to (8),
Vol,(E4) = det(A)™Y2 - Vol (B") > ¢on® - Vol,(B"). (73)

The ellipsoid €4 is L-free, thus L N €4 = {0}. All that remains is to normalize. Write ,, =
Vol,(B™) and consider the matrix

S =k M det(A)”VCM VA,

where VA € R7%*™ is the positive-definite square root of the matrix A € R?*". Note that
Ex = (VA)Y(B"), where we view an n X n matrix as a linear map on R". Denote

[=S(L)c R

The lattice . C R™ has covolume one, since L € Z,,. If K C R" is an open Euclidean ball
centered at the origin with Vol,,(K) = cyn?, then S™!(K) C €4 by (73) and hence

LNK CS(LNE,) = {0}
O
Remark 5.3. Our proof of Theorem 1.2 suggests a randomized algorithm for constructing the
sphere-packing lattice L C R™. Indeed, begin by sampling L € %, uniformly, for example
by using Ajtai’s algorithm [1], and then run the stochastic process described above. It would
be interesting to carry out numerical simulations of our construction, or variants thereof (e.g.,
replacing 7; in (40) by another linear transformation with the same image — perhaps the linear

map X — m(A?X) for a certain exponent «v). Such numerical simulations could help compute
the universal constant ¢ from Theorem 1.2 yielded by this construction.

A Appendix

Lemma A.1. Let L C R" be a lattice and let £ C R"™ be a non-empty, open, origin-symmetric,
bounded, strictly-convex set (e.g., an origin-symmetric ellipsoid) with € N\ L = {0}. Then,

0ENLI<2-(2"—1).
Proof. We follow Minkowski’s classical proof that the Voronoi cell of a lattice contains at most

2. (2™ — 1) facets. Since £ N L = {0}, no point of O can belong to 2L. Moreover, we claim
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that for any =,y € 0 N L with x # y and x # —y, necessarily x — y &€ 2L. Indeed, otherwise
0 # x —y € 2L while

x—ye{x1+x2

5 5 ;951>$2€ag,$17£5172}§5-

Thus (z —y)/2 is a non-zero point belonging both to L and to &, in contradiction to EN L = {0}.
Consequently each coset of the subgroup of 2L of the lattice L, either contains no points from
0&, or else contains a pair of antipodal points from 0. There are 2" — 1 such cosets, excluding
the subgroup 2L itself which contains no points from 0&, and the union of these cosets covers
L\ (2L). Hence the cardinality of 0 N L is at most 2 - (2" — 1). a
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