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Abstract
We prove that in any dimension n there exists an origin-symmetric ellipsoid E ⊂ Rn of

volume cn2 that contains no points of Zn other than the origin, where c > 0 is a universal
constant. Equivalently, there exists a lattice sphere packing in Rn whose density is at least
cn2·2−n. Previously known constructions of sphere packings in Rn had densities of the order
of magnitude of n·2−n, up to logarithmic factors. Our proof utilizes a stochastically evolving
ellipsoid that accumulates at least cn2 lattice points on its boundary, while containing no
lattice points in its interior except for the origin.

1 Introduction
Let n ≥ 2. A sphere packing in Rn is a collection of disjoint Euclidean balls of the same radius.
A lattice in Rn is the image of Zn under an invertible, linear transformation T : Rn → Rn.
Thus, by a lattice in Rn we always mean a lattice of full rank. The covolume of the lattice
L = T (Zn) ⊂ Rn is

V oln(Rn/L) := | det(T )|.
A lattice sphere packing is a collection of disjoint Euclidean balls, all of the same radius, whose
centers form a lattice in Rn. The density of a lattice sphere packing is the proportion of space
covered by the disjoint Euclidean balls of which it consists. Equivalently, if the lattice sphere
packing consists of balls of radius r whose centers form the lattice L, then its density equals

V oln(rB
n)

V oln(Rn/L)
,

where V oln stands for n-dimensional volume in Rn, where Bn ⊂ Rn is the open Euclidean ball
of radius 1 centered at the origin, and where rA = {rx ; x ∈ A} for A ⊂ Rn. We write δn for
the supremum of all densities of lattice sphere packings in Rn. The Minkowski-Hlawka theorem
(see, e.g., Gruber and Lekkerkerker [9, Chapter 3]) implies that

δn ≥ 2ζ(n) · 2−n,

where ζ(n) =
∑∞

k=1 k
−n. This bound was asymptotically improved in 1947 by Rogers [18], who

showed that
δn ≥ cn · 2−n (1)
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for a universal constant c > 0. In his proof, Rogers used the Minkowski second theorem, as well
as the concept of a random lattice and the Siegel summation formula, which we recall in Section
5 below.

The universal constant c that Rogers’ proof of (1) yields satisfies c ≥ 2/e. This was subse-
quently improved by Davenport and Rogers [7], who obtained (1) with c ≈ 1.67. Ball [2] used
Bang’s solution of Tarski’s plank problem, and proved (1) with c = 2−o(1). A plank is the region
in space between two parallel hyperplanes, and the problem was to show that the sum of widths
of planks covering a convex body, is at least its minimal width. Vance [24] obtained c ≥ 6/e in
dimensions divisible by 4, by using random lattices with quaternionic symmetries. Her approach
was further developed by Venkatesh [25], who used random lattices with sophisticated algebraic
symmetries in order to show that

lim sup
n→∞

δn
n · log log n · 2−n

≥ 1

2
.

Campos, Jenssen, Michelen and Sahasrabudhe [4] used graph-theoretic methods to prove the
existence of a non-lattice sphere packing in Rn of density(

1

2
− o(1)

)
n log n · 2−n.

Graph theory was used earlier by Krivelevich, Litsyn and Vardy [12] for the construction of a
non-lattice sphere packing of density cn ·2−n in Rn. Schmidt [21] proved (1) by considering ran-
dom lattices and by analyzing large hole events; these are rare events that occur with a probability
of only exp(−c̃n). His analysis fits well with the theme that random lattices may sometimes be
approximated by a Poisson process. The Poisson heuristic, which we recall below, was hinted at
already in Rogers [19].

To summarize, up to logarithmic factors, several papers which are based on quite different
ideas have essentially arrived at the same bound (1) over the years. This bound has represented
the state of the art on sphere packing in high dimensions – again, up to logarithmic factors – until
now. We improve it as follows:

Theorem 1.1. For any n ≥ 2,
δn ≥ cn2 · 2−n,

where c > 0 is a universal constant.

The universal constant c arising from our proof of Theorem 1.1 can probably be computed
numerically to a reasonable degree of accuracy; see Remark 5.3 below. Venkatesh [25] conjec-
tures that 2nδn grows at most polynomially in n. It is not entirely unlikely that Theorem 1.1 is
tight, up to the value of the universal constant c or perhaps up to a logarithmic correction. As for
known upper bounds for δn, in a short 1929 paper, Blichfeldt [3] proved that

δn ≤ n+ 2

2
· 2−n/2.
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See also Rankin [17]. Kabatjanskiı̆ and Levenšteı̆n [10] improved the bound to roughly δn ≲
(0.66)n, a result subsequently sharpened by constant factors by Cohn and Zhao [6] and by Sar-
dari and Zargar [20]. These upper bounds also apply for non-lattice sphere packings. There is
still a large gap between the known lower bound and the known upper bound for the optimal
density of a sphere packing in high dimension. The precise optimal density is currently known
in dimensions 2, 3, 8 and 24, see Cohn [5] and references therein.

By considering the lattice sphere packing x +K/2 (x ∈ L), Theorem 1.1 is easily seen to
be equivalent to the following:

Theorem 1.2. Let n ≥ 2 and let K ⊂ Rn be a Euclidean ball centered at the origin of volume

V oln(K) = cn2. (2)

Then there exists a lattice L ⊂ Rn of covolume one with L∩K = {0}. Here, c > 0 is a universal
constant.

An origin-symmetric ellipsoid in Rn is the image of the unit ball Bn under an invertible,
linear map T : Rn → Rn. Consider the lattice L and the Euclidean ball K from Theorem 1.2 .
Since L may be represented as L = T (Zn) for a linear map T : Rn → Rn with | det(T )| = 1,
we conclude from Theorem 1.2 that the origin-symmetric ellipsoid

E = T−1(K) ⊂ Rn

has volume cn2, yet it contains no points from Zn other than the origin. This implies the statement
in the abstract of this paper. We conjecture that the conclusion of Theorem 1.2 holds true for any
origin-symmetric convex body K ⊂ Rn satisfying (2), and not just for Euclidean balls and
ellipsoids. See Schmidt [22, 23] for a proof under the weaker assumption that V oln(K) ≤ cn.

Before presenting the main ideas of the proof of Theorem 1.2, let us briefly discuss the proof
of (1) from Rogers [18]. Consider a random lattice L ⊂ Rn satisfying V oln(Rn/L) = V oln(B

n).
By using the Siegel summation formula, it is shown that with positive probability,

n∏
i=1

λi ≥ cn

where 0 < λ1 ≤ λ2 ≤ . . . ≤ λn are the successive minima of the lattice L. Minkowski’s second
theorem is then used in order to find a linear map T : Rn → Rn with | det(T )| ≥

∏
i λi such that

T (Bn) ∩ L = {0}. Intuitively, the ellipsoid T (Bn) constructed this way “interacts” only with n
vectors from the lattice – the ones corresponding to the successive minima.

In contrast, an ellipsoid in Rn is determined by n(n + 1)/2 parameters, and it is reasonable
to expect it to “interact” with roughly n2 lattice points. In fact, it is not too difficult to show that
there exists an open, origin-symmetric ellipsoid E ⊂ Rn with E ∩ Zn = {0} such that

|∂E ∩ Zn| ≥ n(n+ 1). (3)
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Here, |A| is the cardinality of the set A ⊂ Rn, and ∂E is the boundary of the ellipsoid E . See
Remark 3.5 below for a proof of (3).

Our construction of the ellipsoid E ⊂ Rn begins with a random lattice L ⊂ Rn satisfying
V oln(Rn/L) = V oln(B

n). Consider a relatively large Euclidean ball disjoint from L \ {0}, and
run a Brownian-type stochastic motion in the space of ellipsoids, starting from this Euclidean
ball. The crucial property of our stochastic process is that whenever the evolving ellipsoid

Et = {x ∈ Rn ; Atx · x < 1}

hits a non-zero lattice point, it keeps it on its boundary at all later times. In other words, if the
ellipsoid hits the point 0 ̸= x0 ∈ L at time t0, then we ensure that for t > t0,

Atx0 · x0 = 1. (4)

Note that (4) imposes a one-dimensional linear constraint on the matrix At, and that the stochastic
evolution of At may be continued in the linear subspace of matrices obeying this constraint. The
vector space of all real symmetric n× n matrices, denoted by

Rn×n
symm,

has dimension n(n + 1)/2. Hence our evolving ellipsoid freezes only when it has absorbed
n(n + 1) lattice points; note that the absorbed points come in pairs: x0 ∈ L and −x0 ∈ L.
Related ideas were used in [11]. Intuitively, the random lattice L behaves somewhat like a
Poisson process of intensity

1/V oln(B
n)

in Rn. Thus, one might expect the ellipsoid to cover a volume of about cn2 ·V oln(B
n) during its

evolution, since it manages to find n(n + 1) lattice points. Our evolving ellipsoid expands and
contracts in a random fashion, and its volume is not monotone. Still, we expect it not to withdraw
too much from regions near absorbed lattice points. Thus the evolving ellipsoid is expected to
reach a volume of cn2 · V oln(B

n) while remaining L-free.

In the remainder of this paper we transform these vague heuristics into a mathematical proof.
In Section 2 we construct the stochastically evolving ellipsoid for a given lattice (or a lattice-like
set). In Section 3 we study the volume growth of the evolving ellipsoid, and in Section 4 we
analyze the rate at which it absorbs lattice points. In Section 5 we discuss random lattices, and
complete the proof of Theorem 1.2.

The linear space Rn×n
symm is a Euclidean space equipped with the scalar product

⟨A,B⟩ = Tr[AB] (A,B ∈ Rn×n
symm),

where Tr[A] is the trace of the matrix A ∈ Rn×n. We denote the collection of positive-definite,
symmetric n× n matrices by

Rn×n
+ ⊂ Rn×n

symm.
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We write that A ≥ B (respectively, A > B) for two matrices A,B ∈ Rn×n
symm if A − B is

positive semi-definite (respectively, positive-definite). We write Id for the identity matrix. The
Euclidean norm of x = (x1, . . . , xn) ∈ Rn is denoted by |x| =

√∑
i x

2
i . For x, y ∈ Rn we write

x · y =
∑n

i=1 xiyi for their standard scalar product, and x⊗ y = (xiyj)i,j=1,...,n ∈ Rn×n for their
tensor product. The natural logarithm is denoted by log. A subset A ⊂ Rn is origin-symmetric
if A = −A. All ellipsoids are assumed to be open and origin-symmetric. A random variable X
is centered when EX = 0.

Throughout this paper, we write c, C, C̃, c′, Ĉ, C̄ etc. for various positive universal constants
whose value may change from one line to the next. We write C0, C1, c0 etc. – that is, the letters
C or c with numerical subscripts – for positive universal constants that remain fixed throughout
the paper. In proving Theorem 1.2, we may assume that the dimension n is sufficiently large;
this is our standing assumption throughout the text.

Acknowledgement. I am grateful to Barak Weiss for interesting discussions and for his en-
couragement. Supported by a grant from the Israel Science Foundation (ISF).

2 Constructing a stochastically evolving ellipsoid
Let L ⊂ Rn be a discrete subset of Rn such that for any origin-symmetric ellipsoid E ⊂ Rn with
E ∩ L ⊆ {0},

V oln(E) ≤ CL and |∂E ∩ L| ≤ C̃L, (5)

for some constants CL, C̃L > 0 depending only on L. We refer to such a discrete set L as a
lattice-like set. The most important case is when L ⊂ Rn is a lattice; in this case the inequalities
in (5) hold true with CL = 2n · V oln(Rn/L), by Minkowski’s first theorem, and with

C̃L = 2 · (2n − 1) (6)

by an elementary argument which we reproduce in the Appendix below. For a symmetric matrix
A ∈ Rn×n

symm we consider the open set

EA = {x ∈ Rn ; Ax · x < 1} . (7)

Its boundary ∂EA is the collection of all x ∈ Rn with Ax · x = 1. The matrix A ∈ Rn×n
symm is

positive-definite if and only if the set EA is an ellipsoid, in which case

V oln(EA) = det(A)−1/2 · V oln(B
n). (8)

When A is not positive-definite, necessarily V oln(EA) = ∞. We say that an open subset E ⊆ Rn

is L-free if E ∩ L ⊆ {0}. When we write that the matrix A ∈ Rn×n
symm is L-free, we mean that the

open set EA is L-free. It follows from (5) that the volume of an L-free ellipsoid is at most CL,
and that it contains at most C̃L points on its boundary.

A point belonging both to the boundary ∂EA and to the discrete set L is referred to as a
contact point. The following lemma describes a continuous deformation of an L-free ellipsoid
that keeps all of its contact points.

5



Lemma 2.1. Let Mt ∈ Rn×n
symm (t ≥ 0) be a family of matrices depending continuously on t ≥ 0,

such that not all of the matrices are positive-definite. Assume that the matrix M0 ∈ Rn×n
symm is

positive-definite and L-free, and that for all t ≥ 0,

∂EM0 ∩ L ⊆ ∂EMt ∩ L. (9)

Then the following hold:

(A) Denote

τ := sup { t ≥ 0 ; Ms is L-free with ∂EMs ∩ L = ∂EM0 ∩ L for all s ∈ [0, t] } .

Then 0 < τ < ∞.

(B) The symmetric matrix Mt is positive-definite and L-free for all 0 ≤ t ≤ τ .

(C) We gained at least one additional contact point at time τ . That is,

∂EM0 ∩ L ⊊ ∂EMτ ∩ L. (10)

Proof. We claim that there exist t0, ε > 0 such that for all 0 ≤ t ≤ t0 and 0 ̸= x ∈ L \ ∂EM0 ,

Mtx · x > 1 + ε. (11)

In order to prove this claim, we use the fact that M0 is positive-definite, and hence there exists
ε1 > 0 such that M0 ≥ ε1 · Id. The symmetric matrix Mt depends continuously on t, and hence
for some t1 > 0 we have Mt ≥ (ε1/2)Id for all 0 ≤ t ≤ t1. Therefore (11) holds true for all
|x| > 2/

√
ε1, provided that ε < 1 and t0 ≤ t1. All that remains is to prove (11) for x ∈ F where

F = { 0 ̸= x ∈ L \ ∂EM0 ; |x| ≤ 2/
√
ε1 } . (12)

The set F is finite since L is discrete. The set F is disjoint from the ellipsoid EM0 since M0 is
L-free. It thus follows from (12) that F is disjoint from the closure of the ellipsoid EM0 , and
hence M0x · x > 1 for all x ∈ F . Since Mt depends continuously on t while F is finite, there
exists t0 ∈ (0, t1) and ε ∈ (0, 1) such that Mtx · x > 1 + ε for all x ∈ F and 0 ≤ t ≤ t0. This
completes the proof of (11).

Let us prove (A). Fix 0 ≤ t ≤ t0. It follows from (11) that any point 0 ̸= x ∈ L \ ∂EM0 does
not belong to ∂EMt , since Mty · y = 1 for all y ∈ ∂EMt . Hence

∂EMt ∩ (L \ EM0) = ∅,

where we also used the fact that 0 ̸∈ ∂EMt . Consequently,

∂EMt ∩ L ⊆ ∂EM0 ∩ L. (13)
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It follows from (9) that the open set EMt contains no points from L ∩ ∂EM0 . It follows from (11)
that the set EMt does not contain non-zero points from L \ ∂EM0 . Therefore EMt does not contain
non-zero points from

(L ∩ ∂EM0) ∪ (L \ ∂EM0) = L.

In other words, the matrix Mt is L-free. It now follows from (9), (13) and the definition of τ that

τ ≥ t0 > 0.

Since EMt is L-free for 0 ≤ t < τ , by (5),

sup
0≤t<τ

V oln(EMt) ≤ CL < ∞. (14)

It follows from (8) and (14) that the matrix Mt is positive-definite for all 0 ≤ t < τ , and

inf
0≤t<τ

det(Mt) > 0. (15)

This implies in particular that τ < ∞, since we assumed that (Mt)0≤t<∞ is not a family of
positive-definite matrices. Thus (A) is proven.

We move on to the proof of (B). We have seen that the matrix Mt is L-free for 0 ≤ t < τ , and
hence the matrix Mτ is L-free as well, by continuity. Since Mt is positive-definite for 0 ≤ t < τ ,
the matrix Mτ is positive semi-definite, by continuity. It follows from (15) that detMτ > 0 and
hence Mτ is in fact positive-definite. This completes the proof of (B).

We still need to prove (C). If (10) does not hold true, then necessarily

∂EM0 ∩ L = ∂EMτ ∩ L, (16)

according to (9). Hence, by (9),

∂EMτ ∩ L ⊆ ∂EMt ∩ L for all t ≥ τ. (17)

The matrix Mτ is positive-definite and L-free according to (B). Since Mt is positive-definite for
0 ≤ t ≤ τ , we know that (Mt+τ )t≥0 is a family of matrices depending continuously on t, not all
of them positive-definite. Therefore, thanks to (17), we may apply the lemma for the family of
matrices (Mt+τ )t≥0, and conclude from (A) that

τ1 := sup { t ≥ τ ; Ms is L-free with ∂EMs ∩ L = ∂EMτ ∩ L for all s ∈ [τ, t] }

satisfies τ1 ∈ (τ,∞). However, equality (16) and the maximality property of τ implies that
τ1 = τ , in contradiction.
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We recall that the standard Brownian motion in a finite-dimensional, real, inner product space
V is a centered, continuous, Gaussian process (Wt)t≥0 attaining values in V , with W0 = 0, and
with independent increments1, such that for all t > s ≥ 0 and a linear functional f : V → R,

E|f(Wt −Ws)|2 = (t− s)∥f∥2.

Here, ∥f∥ = sup0̸=v∈V |f(v)|/∥v∥ and ∥v∥ =
√
⟨v, v⟩. We refer the reader e.g. to Øksendal

[14] or Revuz and Yor [15] for background on Brownian motion and stochastic analysis.

The Dyson Brownian motion is a standard Brownian motion (Wt)t≥0 in the Euclidean space
Rn×n

symm. For A ∈ Rn×n
symm consider the subspace

FA =
{
B ∈ Rn×n

symm ; ∀x ∈ ∂EA ∩ L, Bx · x = 0
}
, (18)

where EA is defined in (7). We write πA : Rn×n
symm → Rn×n

symm for the orthogonal projection operator
onto the subspace FA. The following lemma explains how to randomly evolve an L-free ellipsoid
until we gain an additional contact point.

Lemma 2.2. Let M0 ∈ Rn×n
+ be an L-free matrix with FM0 ̸= {0}. Let (Wt)t≥0 be a Dyson

Brownian motion in Rn×n
symm. For t ≥ 0 denote

Mt = M0 + πM0(Wt). (19)

Then, with probability one, the random variable

τ := sup{ t ≥ 0 ; Ms is L-free with ∂EMs ∩ L = ∂EM0 ∩ L for all s ∈ [0, t] },

is non-zero and finite. Moreover, almost surely, for 0 ≤ t ≤ τ the set EMt is an L-free ellipsoid,
and

∂EM0 ∩ L ⊊ ∂EMτ ∩ L. (20)

Proof. Since FM0 ̸= {0}, the linear projection πM0 : Rn×n
symm → Rn×n

symm is not identically zero.
Hence there exists x0 ∈ Rn such that πM0(x0 ⊗ x0) ̸= 0. Almost surely, a Brownian motion in R
does not remain bounded from below indefinitely. Therefore, almost surely

lim inf
t→∞

πM0(Wt)x0 · x0 = lim inf
t→∞

⟨Wt, πM0(x0 ⊗ x0)⟩ = −∞. (21)

It follows from (19) and (21) that almost surely, (Mt)t≥0 is not a family of positive-definite
matrices. In order to verify all of the other assumptions of Lemma 2.1, we note that if x ∈
∂EM0 ∩ L then by (18),

Bx · x = 0 for all B ∈ FM0 . (22)

1i.e., Wt −Ws is independent of Ws −Wr for all 0 ≤ r < s < t.
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Recall that πM0(Wt) ∈ FM0 . Thus, by (22), for all t ≥ 0 and x ∈ ∂EM0 ∩ L,

Mtx · x = M0x · x+ πM0(Wt)x · x = M0x · x = 1.

Hence x ∈ ∂EMt ∩ L for all t ≥ 0. We have thus shown that almost surely, for all t ≥ 0,

∂EM0 ∩ L ⊆ ∂EMt ∩ L.

We have verified all of the assumptions of Lemma 2.1. We may therefore apply the lemma, and
conclude that almost surely the random variable τ is finite and non-zero. From conclusion (B)
of Lemma 2.1 we learn that almost surely, for all 0 ≤ t ≤ τ the set EMt is an L-free ellipsoid.
Conclusion (C) of Lemma 2.1 implies (20).

Recall that the filtration associated with the Brownian motion (Wt)t≥0 is (Ft)t≥0, where Ft

is the σ-algebra generated by the random variables (Ws)0≤s≤t. A stochastic process (At)t≥0 is
adapted to this filtration if for any fixed t ≥ 0, the random variable At is measurable with respect
to Ft. A stopping time τ is a random variable attaining values in [0,∞) such that for any fixed
t ≥ 0, the event {τ ≤ t} is measurable with respect to Ft. For example, the random variable τ
from Lemma 2.2 is a stopping time. The following proposition describes the construction of the
stochastically evolving ellipsoid associated with the lattice-like set L ⊂ Rn.

Proposition 2.3. Let a0 > 0 be such that the matrix a0 · Id ∈ Rn×n is L-free. Let (Wt)t≥0 be
a Dyson Brownian motion in Rn×n

symm. Then there exists a continuous stochastic process (At)t≥0,
attaining values in Rn×n

symm and adapted to the filtration induced by (Wt)t≥0, with the following
properties:

(A) Abbreviate πt = πAt . Then there exist a bounded, integer-valued random variable M ≥ 0
and stopping times 0 = τ0 < τ1 < τ2 < . . . for which the following hold: for any fixed
i ≥ 1 and t > 0, if i ≤ M and t ∈ [τi−1, τi) then πt = πτi−1

and

At = Aτi−1
+ πt

(
Wt −Wτi−1

)
. (23)

(B) For t ≥ τM we have At = AτM and πt = 0. Moreover, A0 = a0 · Id.

(C) Almost surely, for all t ≥ 0 the matrix At is positive-definite and L-free.

(D) Set Et := EAT
. Then almost surely, ∂Es ∩ L ⊆ ∂Et ∩ L for all 0 ≤ s ≤ t.

(E) Denote Ft := FAt . Then almost surely,

τ∗ := inf{t ≥ 0 ; Ft = {0}} (24)

is finite, and τ∗ = τM .
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Proof. We will recursively iterate the construction of Lemma 2.2. Set

A0 = a0 · Id, (25)

and τ0 = 0. We will inductively construct stopping times

0 = τ0 < τ1 < τ2 < . . . (26)

and symmetric matrices (Aτi)i≥1 such that almost surely, the random variable τi is finite and the
matrix Aτi is a positive-definite, L-free matrix for all i. For the base of the induction, we note
that the matrix Aτ0 is positive-definite and L-free, by assumption.

Let i ≥ 1 and suppose that τi−1 and Aτi−1
have been constructed such that almost surely τi−1

is finite, and Aτi−1
is positive-definite and L-free. Let us contruct τi and Aτi . If

Fτi−1
= {0} (27)

then we simply set At := Aτi−1
for t > τi−1. We also define M := i− 1 and τM+j := τM + j for

j ≥ 1, and end the recursive construction. By the induction hypothesis, Aτj is a positive-definite,
L-free matrix for all j ≥ i. This completes the description of the recursion step in the case where
(27) holds true. Suppose now that

Fτi−1
̸= {0}. (28)

Define
W

(i)
t := Wt+τi−1

−Wτi−1
(t ≥ 0), (29)

which is a standard Brownian motion in Rn×n
symm, or in other words, a Dyson Brownian motion.

Set
M0 = Aτi−1

, (30)

which is positive-definite and L-free by the induction hypothesis. We know that FM0 ̸= {0},
thanks to (28). Denote

Mt = M0 + πM0(W
(i)
t ), (31)

and apply Lemma 2.2. From the conclusion of the lemma, almost surely the stopping time

τi := τi−1 + sup{t ≥ 0 ; Ms is L-free with ∂EMs ∩ L = ∂EM0 ∩ L for all s ∈ [0, t]}, (32)

is finite with τi > τi−1. Moreover, almost surely EMt is an L-free ellipsoid for 0 ≤ t ≤ τi − τi−1.
Therefore, setting

At := Mt−τi−1
for t ∈ (τi−1, τi] (33)

we see that At is positive-definite and L-free for t ∈ [τi−1, τi]. Almost surely, the matrix At

depends continuously on t ∈ [τi−1, τi]. Furthermore, from conclusion (20) of Lemma 2.2 we
learn that almost surely,

∂EAτi−1
∩ L ⊊ ∂EAτi

∩ L. (34)
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This completes the description of the recursive construction of τi and Aτi for all i ≥ 0. It follows
from (26) that along the way we defined the random matrix At for all 0 < t ≤ τM , via formula
(33). For completeness, set

At = AτM for t > τM . (35)

Thus, almost surely the stochastic process (At)t≥0 is well-defined and continuous. Let us discuss
the basic properties of this construction.

We first claim that the random variable M – the number of steps in the construction – is a
bounded random variable. Indeed, relation (34) holds true for all i = 1, . . . ,M . Therefore,

|∂EAτi
∩ L| ≥ i (i = 1, . . . ,M), (36)

while the ellipsoid EAτi
is L-free. It follows from (5) and (36) that almost surely M ≤ C̃L, and

hence M is a bounded random variable. We conclude that the random variable τM is almost
surely finite, being almost surely the sum of finitely many numbers.

Next, by the construction of At in (33), the matrix At is almost surely positive-definite and
L-free for t ∈ [τi−1, τi] for all i = 1, . . . ,M . It thus follows from (25) and (26) that At is
positive-definite and L-free for t ∈ [0, τM ]. Observe that by (32) and (33), for any i = 1, . . . ,M
and t ∈ [τi−1, τi),

∂EAt ∩ L = ∂EAτi−1
∩ L. (37)

From (29), (30), (31), (33) and (37), for i = 1, . . . ,M and t ∈ [τi−1, τi) we have Ft = Fτi−1
and

At = Aτi−1
+ πAτi−1

(W
(i)
t−τi−1

) = Aτi−1
+ πAt(Wt −Wτi−1

).

Since At depends continuously on t, and since At is constant for t ∈ [τM ,∞) by (35), conclusion
(A) and conclusion (B) are proven. Note that the matrix At is a function of a0, L and (Ws)0≤s≤t.
In particular, the stochastic process (At)t≥0 is adapted to the filtration induced by the Dyson
Brownian motion.

Conclusion (C) holds true as At is positive-definite and L-free for t ∈ [0, τM ], and At = AτM

for t ∈ [τM ,∞). Conclusion (D) holds true in view of (34) and (37).

From our construction, if M ≥ 1 then the subspace Ft = FAt is constant and different
from {0} for t ∈ [τi−1, τi) and i = 1, . . . ,M . We always have FτM = {0}. It thus follows that
τ∗ = τM , where τ∗ is defined in (24). Thus the stopping time τ∗ is almost surely finite, completing
the proof of (E).

We refer to the stochastic process (Et)t≥0 from Proposition 2.3 as the stochastically evolving
ellipsoid. The volume of the L-free ellipsoid Et may increase or decrease with t, but it remains
bounded at all times. In fact, it follows from (5), (8) and Proposition 2.3(C) that almost surely,

detAt ≥ cL for all t ≥ 0, (38)

with cL = (CL/V oln(B
n))2. The Itô integral interpretation of conclusions (A) and (B) of Propo-

sition 2.3 is given in the following:

11



Corollary 2.4. Under the notation and assumptions of Proposition 2.3, for all t ≥ 0,

At = a0 · Id +

∫ t

0

πs(dWs). (39)

Thus A0 = a0 · Id and we have the stochastic differential equation

dAt = πt(dWt). (40)

Proof. The Itô integral on the right-hand side of (39) may be defined as∫ t

0

πs(dWs) = lim
ε(P )→0

Np∑
i=1

πti−1

(
Wti −Wti−1

)
, (41)

where P = {0 = t0 < t1 < . . . < tNp = t} is a non-random partition of [0, t] into NP intervals
and ε(P ) = max1≤i≤NP

|ti − ti−1|. The convergence of the Rn×n
symm-valued random variables in

(41) is in the sense of L2.

Thus (39) follows from (41) and conclusions (A) and (B) of Proposition 2.3 via a standard
argument, while (40) is the stochastic differential equation rewriting of (39).

3 The shape and volume of the evolving ellipsoid
Let L ⊂ Rn be a lattice. Assume that a0 > 0 is such that the matrix

a0 · Id ∈ Rn×n

is L-free. Fix a Dyson Brownian motion (Wt)t≥0 in Rn×n
symm, and consider the stochastic process

(At)t≥0 constructed in Proposition 2.3.

Lemma 3.1. There exist two Dyson Brownian motions (W (1)
t )t≥0 and (W

(2)
t )t≥0 in Rn×n

symm such
that for all t ≥ 0,

At = a0 · Id +
W

(1)
t +W

(2)
t

2
. (42)

Proof. We use an idea that is attributed to Bernard Maurey, see Eldan and Lehec [8, Proposition
4]. Recall from Proposition 2.3 the linear map

πt : Rn×n
symm → Rn×n

symm.

Almost surely, for all t ≥ 0 the map πt is an orthogonal projection. In particular, πt is a symmetric
operator and

0 ≤ πt ≤ Id,

12



in the sense of symmetric operators on the Euclidean space Rn×n
symm. It follows from Corollary 2.4

that (At)t≥0 is a martingale in Rn×n
symm. Its quadratic variation process is

[A]t =

∫ t

0

π2
sds =

∫ t

0

πsds. (t > 0). (43)

Denote π̃t = Id− πt : Rn×n
symm → Rn×n

symm and set

W
(1)
t =

∫ t

0

πs(dWs) +

∫ t

0

π̃s(dWs)

and

W
(2)
t =

∫ t

0

πs(dWs)−
∫ t

0

π̃s(dWs).

Thus (W (1)
t )t≥0 and (W

(2)
t )t≥0 are well-defined, continuous martingales in Rn×n

symm, with

W
(1)
t +W

(2)
t = 2

∫ t

0

πs(dWs) = 2(At − a0 · Id),

where the last passage follows from Corollary 2.4. This proves the desired conclusion (42). The
quadratic variation processes of these two martingales satisfy, for t > 0,

[W (1)]t =

∫ t

0

(πs + π̃s)
2ds = t · Id

and

[W (2)]t =

∫ t

0

(πs − π̃s)
2ds = t · Id.

Note that W (1)
0 = W

(2)
0 = 0. Thus, by Paul Lévy’s characterization of the standard Brownian

motion, both (Wt)
(1)
t≥0 and (W

(2)
t )t≥0 are standard Brownian motions in Rn×n

symm. In other words,
both stochastic processes are Dyson Brownian motions.

Write ∥A∥op = sup0̸=x∈Rn |Ax|/|x| for the operator norm of the matrix A ∈ Rn×n.

Corollary 3.2. For any t > 0 and r ≥
√
tn,

P (∥At − a0 · Id∥op ≥ C0r) ≤ C exp(−r2/t),

where C,C0 > 0 are universal constants.

Proof. From Lemma 3.1, for any r > 0,

P (∥At − a0 · Id∥op ≥ r) = P

∥∥∥∥∥W (1)
t +W

(2)
t

2

∥∥∥∥∥
op

≥ r


≤ 2P (∥Wt∥op ≥ r) = 2P

(√
tn∥Γ∥op ≥ r

)
,

13



where Γ is a Gaussian Orthogonal Ensemble (GOE) random matrix. This means that Γ =
(Γij)i,j=1,...,n ∈ Rn×n

symm is a random symmetric matrix such that (Γij)i≤j are independent, cen-
tered Gaussian random variables, with EΓ2

ij = (1 + δij)/n. It is well-known and proven by an
epsilon-net argument (e.g., Vershynin [26, Corollary 4.4.8]) that for s ≥ 1,

P (∥Γ∥op ≥ Cs) ≤ 4 exp(−s2n)

for a universal constant C > 0. The corollary is proven by setting s = r/
√
tn.

Corollary 3.2 implies that if t < c/n and a0 ≥ 1/2, then the ellipsoid Et is typically sand-
wiched between two concentric Euclidean balls whose radii r1 < r2 satisfy r2/r1 ≤ C. Our next
goal is to study the volume growth of the ellipsoid Et, or equivalently, the decay of the determi-
nant of the positive-definite matrix At. To this end we consider the non-negative, integer-valued
random variable

Nt = dim(Ft) (t ≥ 0) (44)

where Ft = FAt is defined in (18) and in Proposition 2.3.

Lemma 3.3. For any fixed T > 0,

E log detAT ≤ n log a0 −
1

2

∫ T

0

E
[
∥At∥−2

op ·Nt

]
dt.

Proof. For two fixed matrices P,B ∈ Rn×n
symm with P being positive-definite, we have the Taylor

expansion as ε → 0,

log det(P + εB) = log detP + εTr[P−1B]− ε2

2
Tr[(P−1B)2] +O(ε3).

Denote the eigenvalues of P , repeated according to their multiplicity, by λ1, . . . , λn ∈ (0,∞).
Then for any orthonormal basis of eigenvectors u1, . . . , un ∈ Rn corresponding to these eigen-
values,

d2

dε2
log det(P + εB)

∣∣∣∣
ε=0

= −
n∑

i,j=1

(Bui · uj)
2

λiλj

= −
n∑

i,j=1

⟨B, ui ⊗s uj⟩2

λiλj

,

where x⊗s y = (x⊗ y+ y⊗ x)/2 for x, y ∈ Rn. Observe that for any linear map S : Rn×n
symm →

Rn⊗n
symm,

Tr[S] =
n∑

i,j=1

⟨S(ui ⊗s uj), ui ⊗s uj⟩ .

Recall that dAt = πt(dWt) by Corollary 2.4, and that πt : Rn×n
symm → Rn×n

symm is an orthogonal
projection. From the Itô formula,

d(log detAt) = ⟨A−1
t , πt(dWt)⟩ −

1

2
δtdt (45)
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where

δt =
n∑

i,j=1

|πt(ui ⊗s uj)|2

λiλj

,

and λ1, . . . , λn ∈ (0,∞) are the eigenvalues of At while u1, . . . , un ∈ Rn constitute a corre-
sponding orthonormal basis of eigenvectors. Since λi ≤ ∥At∥op for all i, we have

δt ≥
1

∥At∥2op

n∑
i,j=1

|πt(ui⊗suj)|2 =
1

∥At∥2op

n∑
i,j=1

⟨πt(ui ⊗s uj), ui ⊗s uj⟩ =
1

∥At∥2op
·Tr[πt]. (46)

Consider the martingale (Mt)t≥0 with M0 = 0 that satisfies

dMt = ⟨πt(A
−1
t ), dWt⟩ (t > 0).

In order to show that it is indeed a well-defined martingale, we bound its quadratic variation:

E|πt(A
−1
t )|2 ≤ E|A−1

t |2 ≤ n · E∥A−1
t ∥2op ≤ n · E∥At∥2(n−1)

op

det2At

≤ n

c2L
· E∥At∥2(n−1)

op ,

where we used (38) in the last passage. By Corollary 3.2, for any fixed t > 0, the random
variable ∥At∥op has a uniformly sub-gaussian tail. Hence, E∥At∥n−2

op ≤ Cn(a0 +
√
t)n−2 for

some constant Cn depending only on n, and (Mt)t≥0 is indeed a martingale. It follows from (45)
that

log detAt = log detA0 +Mt −
1

2

∫ t

0

δsds (t ≥ 0). (47)

Since EMT = M0 = 0, by (46) and (47),

E log detAT = log detA0 −
1

2

∫ T

0

Eδtdt ≤ n log a0 −
1

2

∫ T

0

E∥At∥−2
op · Tr[πt]dt.

Since πt is the orthogonal projection operator onto the subspace Ft ⊆ Rn×n
symm we have Tr[πt] =

dim(Ft) = Nt, and the lemma is proven.

Recall the L-free evolving ellipsoid Et = EAt from Proposition 2.3.

Proposition 3.4. Fix 0 < T ≤ 20 · n−5/3 and assume that 1 ≤ a0 ≤ 1 + 10/n. Then,

E log detAT ≤ C − n2T

4
+

1

4

∫ T

0

E|∂Et ∩ L|dt,

where C > 0 is a universal constant.
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Proof. Fix 0 < t ≤ T and let St be the event that

∥At − a0 · Id∥op ≤ C0

√
tn,

where C0 > 0 is the constant from Corollary 3.2. Let 1St be the indicator of St, that equals 1 if
the event St occurs, and that vanishes otherwise. Then,

E
[
∥At∥−2

op ·Nt

]
≥ E

[
1St∥At∥−2

op ·Nt

]
≥ (a0 + C

√
tn)−2E[1StNt]

= (a0 + C
√
tn)−2 (E[Nt]− E[(1− 1St)Nt]) . (48)

Since Nt = dim(Ft) ≤ n2, by Corollary 3.2,

E[(1− 1St)Nt] ≤ n2E[1− 1St ] = n2 · P(∥At − a0 · Id∥op > C0

√
tn) ≤ Cn2e−n.

Therefore, by using (48) and the inequalities |a0 − 1| ≤ C/n and Nt ≤ n2,

E
[
∥At∥−2

op ·Nt

]
≥ (1− C ′√tn− C/n)E[Nt]− C̃e−n/2 ≥ E[Nt]− C ′√t · n5/2 − C̄n.

By integrating over t and recalling that T ≤ Cn−5/3 we thus obtain∫ T

0

E
[
∥At∥−2

op ·Nt

]
dt ≥

∫ T

0

E [Nt] dt− C ′T 3/2n5/2 − T · C̄n ≥
∫ T

0

E [Nt] dt− Ĉ.

Therefore, from Lemma 3.3,

E log detAT ≤ n log(1 + 10/n)− 1

2

∫ T

0

E
[
∥At∥−2

op ·Nt

]
dt ≤ C ′ − 1

2

∫ T

0

E [Nt] dt.

The subspace Ft = FAt is defined in (18) as the orthogonal complement in Rn×n
symm to the subspace

E spanned by x ⊗ x (x ∈ ∂Et ∩ L). The dimension of the subspace E is at most |∂Et ∩ L|/2,
since ∂Et ∩ L = −(∂Et ∩ L) while 0 ̸∈ ∂Et ∩ L. Therefore,

Nt = dim(Ft) = dim(Rn×n
symm)− dim(E) ≥ n(n+ 1)

2
− |∂Et ∩ L|

2
.

Consequently,

E log detAT ≤ C ′ − 1

2

∫ T

0

E [Nt] dt ≤ C ′ − T
n(n+ 1)

4
+

1

4

∫ T

0

E|∂Et ∩ L|dt,

completing the proof.

Remark 3.5. In the notation of Proposition 2.3, for t = τ∗ = τM the L-free ellipsoid Et ⊂ Rn

almost surely satisfies
|∂Et ∩ L| ≥ n(n+ 1). (49)

Indeed, since Ft = {0} by Proposition 2.3(B), we know that the matrices x⊗x (x ∈ ∂Et∩L) span
Rn×n

symm. The number of such distinct matrices is at most |∂Et∩L|/2, since ∂Et∩L = −(∂Et∩L).
Thus (49) follows from the fact that dim(Rn×n

symm) = n(n + 1)/2. By applying a linear map
S : Rn → Rn that transforms L to Zn, we see that the ellipsoid E = S(Et) ⊂ Rn is disjoint from
Zn \ {0} and that inequality (3) above holds true.
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4 Points absorbed by the evolving ellipsoid
We keep the notation and assumptions of the previous section. Thus L ⊂ Rn is a fixed lattice,
a0 > 0 is such that the matrix a0 · Id is L-free, and we study the stochastic process (At)t≥0

introduced in Proposition 2.3. The following proposition is a step toward showing that, for a
typical lattice L ⊂ Rn, the number of points absorbed by the L-free ellipsoid Et = EAt up to time
T is usually at most

C exp(n2T/8).

Proposition 4.1. For any fixed T > 0 and 0 ̸= x ∈ L,

P(x ∈ ∂ET ) ≤ 2P
(
Z ≥ 1√

T

(
a0 −

1

|x|2

))
,

where Z ∼ N(0, 1) is a standard Gaussian random variable.

Proof. Since the matrix a0 ·Id is L-free, necessarily a0|x|2 ≥ 1. If a0|x|2 = 1 then the conclusion
of the lemma holds trivially, so let us assume that a0|x|2 > 1. For t ≥ 0 denote

Mt = Atx · x− 1 = ⟨At, x⊗ x⟩ − 1.

If Mt > 0 then x ̸∈ ∂Et, and hence

P(x ∈ ∂ET ) ≤ P(MT ≤ 0) ≤ P
(

inf
0≤t≤T

Mt ≤ 0

)
. (50)

By Corollary 2.4,
dMt = ⟨πt(dWt), x⊗ x⟩ = ⟨dWt, πt(x⊗ x)⟩.

Thus (Mt)t≥0 is a martingale with M0 = a0|x|2 − 1 > 0. Its quadratic variation is given by

[M ]t =

∫ t

0

|πs(x⊗ x)|2ds ≤
∫ t

0

|x⊗ x|2ds = t|x|4, (51)

where we used the fact that πs is an orthogonal projection. For t ≥ 0 denote

Rt = inf{s ≥ 0 ; [M ]s > t}, (52)

where the infimum of an empty set is defined as +∞. Almost surely, the function Rt is non-
decreasing in t with MRt−0 = MRt+0 for all t for which Rt+0 < ∞. Here we write Rt−0 =
lims→t− Rs and Rt+0 = lims→t+ Rs. The Dambis-Dubins-Schwartz Theorem (e.g. Revuz and
Yor [15, Chapter V]) states that there exists a standard Brownian motion (Bt)t≥0 in R such that
for all t ≥ 0,

MRt −M0 = Bt

whenever Rt < ∞. It follows from (51) and (52) that Rt ≥ t/|x|4. Consequently,

inf
0≤t≤T |x|4

[M0 +Bt] ≤ inf
0≤t≤T |x|4

Rt<∞

MRt ≤ inf
0≤t≤T

Mt.
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Thus, from (50),

P(x ∈ ∂ET ) ≤ P
(

inf
0≤t≤T |x|4

[M0 +Bt] ≤ 0

)
.

By the reflection principle for the standard Brownian motion (e.g. [15, Section III.3]),

P
(

inf
0≤t≤T |x|4

[M0 +Bt] ≤ 0

)
= P

(
sup

0≤t≤T |x|4
Bt ≥ M0

)
= 2P

(
BT |x|4 ≥ M0

)
.

The law of BT |x|4 is the same as the law of
√
T |x|2 · Z. Therefore,

P(x ∈ ∂ET ) ≤ 2P
(√

T |x|2 · Z ≥ M0

)
= 2P

(
Z ≥ 1√

T

(
a0 −

1

|x|2

))
.

For r ≥ 0 denote

Φ(r) = min

{
1

2
,
e−r2/2

√
2π · r

}
, (53)

with Φ(0) = min{1/2,+∞} = 1/2. It is well-known that if Z is a standard Gaussian random
variable, then for r ≥ 0,

P(Z ≥ r) =
1√
2π

∫ ∞

r

e−x2/2dx ≤ min

{
1

2
,

1√
2π

∫ ∞

r

x

r
· e−x2/2dx

}
= Φ(r). (54)

In the remainder of this paper we will no longer refer to Brownian motion, let alone any denoted
by (Bt)t≥0 as in the previous proposition. In fact, from now on, for t ≥ 0 we define

Bt = {x ∈ Rn ; (a0 − C0

√
tn)|x|2 < 1}, (55)

where C0 > 0 is the universal constant from Corollary 3.2. For t > 0 we consider the non-
negative number

Kt(L) =
∑

0̸=x∈L∩Bt

Φ

(
1√
t

(
a0 −

1

|x|2

))
∈ [0,+∞]. (56)

Proposition 4.2. For any t > 0,

E|∂Et ∩ L| ≤ 2Kt(L) + Ce−cn,

where C, c > 0 are universal constants.
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Proof. By the linearity of expectation and Proposition 4.1,

E|∂Et ∩ L ∩Bt| =
∑

0̸=x∈L∩Bt

P(x ∈ ∂Et) ≤ 2
∑

0̸=x∈L∩Bt

P
(
Z ≥ 1√

t

(
a0 −

1

|x|2

))
,

where Z is a standard Gaussian random variable. The matrix a0 ·Id is L-free. Thus a0−1/|x|2 ≥
0 for x ∈ L, and we may use the standard bound (54) and the definition (56) of Kt(L) to conclude
that

E|∂Et ∩ L ∩Bt| ≤ 2Kt(L). (57)

We claim that
P (∂Et ∩ L ∩Bt ̸= ∂Et ∩ L) ≤ Ce−n. (58)

Indeed, it suffices to prove that

P
(
Et ⊆ Bt

)
≥ 1− Ce−n,

where Et ⊂ Rn is the closure of the ellipsoid Et = EAt ⊂ Rn. Equivalently, we need to show that

P
(
At >

(
a0 − C0

√
tn
)
Id
)
≥ 1− Ce−n.

This follows from Corollary 3.2, proving (58). Recall from (6) that |∂Et ∩L| ≤ 2 · (2n − 1) as Et
is an L-free ellipsoid and L ⊂ Rn is a lattice. Thus, from (57) and (58),

E|∂Et ∩ L| ≤ P (∂Et ∩ L ∩Bt ̸= ∂Et ∩ L) · 2 · (2n − 1) + E|∂Et ∩ L ∩Bt|
≤ C(2/e)n + 2Kt(L),

completing the proof.

In view of Proposition 3.4 and Proposition 4.2, it is desirable to understand how large Kt(L)
is for a typical lattice L. Recall that for small t > 0, the parameter Kt(L) is the sum of the
function

x 7→ Φ

(
1√
t

(
a0 −

1

|x|2

))
(59)

over all non-zero lattice points in a certain Euclidean ball. In the following lemma we analyze
the integral of the function from (59) over a spherical shell approximating this ball.

Lemma 4.3. Let t > 0. Assume that 0 < t ≤ 20n−2 · log n and 1 ≤ a0 ≤ 1 + 10/n. Consider
the spherical shell

R = Rt =

{
x ∈ Rn ;

1

a0
≤ |x|2 < 1

a0 − C0

√
tn

}
, (60)

where C0 > 0 is the universal constant from Corollary 3.2. Then,∫
R

Φ

(
1√
t

(
a0 −

1

|x|2

))
dx ≤ Cen

2t/8 · V oln(B
n),

where C > 0 is a universal constant.
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Proof. Denote κn = V oln(B
n) and a1 = a0 − C0

√
tn. Integrating in polar coordinates,

I :=

∫
R

Φ

(
1√
t

(
a0 −

1

|x|2

))
dx = nκn

∫ 1/
√
a1

1/
√
a0

Φ

(
a0 − 1/r2√

t

)
rn−1dr.

Changing variables y = t−1/2(a0 − 1/r2) we see that

I =
nκn

√
t

2

∫ C0
√
n

0

Φ(y)

(a0 −
√
ty)

n+2
2

dy =
nκn

√
t

2
a
−n+2

2
0

∫ C0
√
n

0

Φ(y)

(1− y
√
t/a0)

n+2
2

dy.

Recall that a0 ≥ 1 while t ≤ 20n−2 · log n. Thus y
√
t/a0 ≤ y

√
t < 1 for all y ∈ (0, C0

√
n),

assuming that n exceeds a certain given universal constant. Consequently,

I

κn

≤ n
√
t

2

∫ C0
√
n

0

Φ(y)

(1− y
√
t)

n+2
2

dy =
n
√
t

2
· (I1 + I2 + I3) , (61)

where I1 is the integral from 0 to 1, where I2 is the integral from 1 to log n and where I3 is the
integral from log n till C0

√
n. Begin by bounding I1. To this end we will use the elementary

inequality 1− x ≥ exp(−2x) for 0 < x ≤ 1/2. Since Φ(y) ≤ 1/2 and t ≤ 20n−2 · log n,

I1 =

∫ 1

0

Φ(y)

(1− y
√
t)

n+2
2

dy ≤ 1

2
(1−

√
t)−

n+2
2 ≤ e(n+2)

√
t ≤ Cen

√
t ≤ C ′ e

n2t/8

n
√
t
, (62)

where we used the bound ex ≤ Cx−1 · ex2/8 for x > 0, as well as our standing assumption
that n is sufficiently large. Next, we bound I3 using the same elementary inequality. Since√
t ≤ 5n−1 ·

√
log n,

I3 ≤
∫ C0

√
n

logn

Φ(y)e(n+2)y
√
tdy ≤

∫ ∞

logn

e−y2/2+2Cy
√
logndy = e2C

2 logn

∫ ∞

logn−2C
√
logn

e−x2/2dx.

The last integral is at most C ′e−c′ log2 n by a standard bound for the Gaussian tail such as (54)
above. Consequently,

I3 ≤ C ′e2C
2 logn−c′ log2 n ≤ C̄ ≤ Ĉ

en
2t/8

n
√
t
, (63)

as c ≤ x−1 ·ex2/8 for x > 0. For the estimation of the integral I2 we use the elementary inequality
1− x ≥ exp(−x− x2) for 0 < x < 1/2, as well as the bound

√
t ≤ 5n−1 ·

√
log n. This yields

I2 =

∫ logn

1

Φ(y)

(1− y
√
t)

n+2
2

dy ≤
∫ logn

1

Φ(y)e
(n+2)

√
t

2
y+

(n+2)y2t
2 dy

≤ C ′
∫ logn

1

e−y2/2

y
e

n
√
t

2
ydy = C ′en

2t/8

∫ logn

1

e−(y−n
√
t/2)2/2

y
dy.
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Therefore,

I2 ≤ C ′en
2t/8

[∣∣∣∣∣
∫ n

√
t/4

1

e−(y−n
√
t/2)2/2dy

∣∣∣∣∣+
∫ ∞

n
√
t/4

e−(y−n
√
t/2)2/2

y
dy

]

≤ C̄en
2t/8

[
P(Z ≥ n

√
t/4) +

4

n
√
t
·
√
2π

]
≤ C̃

en
2t/8

n
√
t
, (64)

where Z is a standard Gaussian random variable, and we used a standard tail estimate such as
(54) which gives P(Z ≥ n

√
t/4) ≤ C/(n

√
t). To summarize, by (61), (62), (63) and (64),

I

κn

≤ n
√
t

2
[I1 + I2 + I3] ≤ Cen

2t/8,

completing the proof.

Remark 4.4. When T = 16n−2 · log n, most of the contribution to the integral in Lemma 4.3
arrives from points x ∈ Rn with∣∣∣∣ |x| − (

1 + 4
log n

n

) ∣∣∣∣ ≤ C

√
log n

n
, (65)

as can be seen from the proof. When L ⊂ Rn is a random, uniformly distributed lattice as in the
next section, there will typically be about n4eC

√
logn lattice points satisfying (65).

5 Random lattices
Write Xn for the space of all lattices L ⊂ Rn with

V oln(Rn/L) = V oln(B
n).

We emphasize that our normalization is not that of covolume one lattices, but rather we consider
lattices whose covolume is the volume of the Euclidean unit ball. The space Xn is a homogenous
space under the action of the group SLn(R) = {g ∈ Rn×n ; det(g) = 1}, where the action of
g ∈ SLn(R) on the lattice L ⊂ Rn is the lattice

g.L = {g(x) ; x ∈ L}.

Minkowski and Siegel [16] discovered that there is a unique Haar probability measure on Xn

which is invariant under the action of SLn(R). When we say that L ⊂ Rn is a random lattice
distributed uniformly in Xn, we refer to the Haar probability measure on Xn. For more infor-
mation on random lattices we refer the reader e.g. to Gruber and Lekkerkerker [9, Section 19.3]
or to Marklof [13]. Throughout this section we set

a0 := (1− 1/n)−2. (66)

Clearly 1 ≤ a0 ≤ 1+10/n, as required in order to apply Proposition 3.4 and Lemma 4.3. Recall
the parameter Kt(L) ≥ 0 that is defined in (56) for any lattice L ⊂ Rn and any time t > 0.
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Proposition 5.1. Let 0 < T ≤ 20n−2 · log n. Then there exists a lattice L ∈ Xn such that
a0|x|2 > 1 for any 0 ̸= x ∈ L and∫ T

0

Kt(L)dt ≤
C

n2
· en2T/8, (67)

where C > 0 is a universal constant.

Proof. Let L ∈ Xn be a random, uniformly distributed lattice. The Siegel summation formula
[16] states that for any measurable function φ : Rn → (0,+∞),

E
∑

0̸=x∈L

φ(x) =
1

V oln(Bn)
·
∫
Rn

φ. (68)

Write f(x) = 1 if |x| ≤ 1− 1/n and f(x) = 0 otherwise. By (68),

E
∑

0̸=x∈L

f(x) =
1

V oln(Bn)
·
∫
Rn

f = (1− 1/n)n ≤ 1

e
.

Hence, by the Markov inequality,

P (∃0 ̸= x ∈ L ; |x| ≤ 1− 1/n) ≤ 1

e
. (69)

Let 0 < t ≤ T , and let R = Rt ⊆ Rn be the spherical shell defined in (60). Denote

K̃t(L) =
∑

0̸=x∈L∩Rt

Φ

(
1√
t

(
a0 −

1

|x|2

))
, (70)

i.e., the difference between K̃t(L) and Kt(L) is that we sum over the spherical shell Rt rather
than over the ball Bt. According to (68) and Lemma 4.3,

EK̃t(L) = E
∑

0 ̸=x∈L∩Rt

Φ

(
1√
t

(
a0 −

1

|x|2

))
=

1

V oln(Bn)
·
∫
Rt

Φ

(
1√
t

(
a0 −

1

|x|2

))
dx ≤ C1e

n2t/8.

Since K̃t(L) is non-negative, we may apply Fubini’s theorem and conclude that

E
∫ T

0

K̃t(L)dt ≤ C1

∫ T

0

en
2t/8dt ≤ 8C1

n2
· en2T/8.

By the Markov inequality,

P
(∫ T

0

K̃t(L)dt ≥
16C1

n2
· en2T/8

)
≤ 1

2
. (71)

22



Since 1/2 + 1/e < 1, we conclude from (69) and (71) that there exists a lattice L ∈ Xn such
that |x| > 1− 1/n for all 0 ̸= x ∈ L and such that∫ T

0

K̃t(L)dt <
16C1

n2
· en2T/8. (72)

From (66) we thus see that a0|x|2 > 1 for any 0 ̸= x ∈ L. Therefore the matrix a0 · Id is L-free,
and from (55) and (60) we see that

(L \ {0}) ∩Rt = (L \ {0}) ∩Bt for any 0 < t ≤ T.

Consequently, from (56) and (70),

K̃t(L) = Kt(L) (0 < t ≤ T ).

The desired conclusion (67) thus follows from (72).

Let L ⊂ Rn be the lattice whose existence is guaranteed by Proposition 5.1. Thus the matrix
a0 · Id is L-free. We may therefore apply Proposition 2.3, and consider the stochastic process

(At)t≥0

of positive-definite, symmetric n × n matrices. Recall that almost surely, for any t > 0 the
ellipsoid Et = EAt is L-free.

Lemma 5.2. Set T = 16n−2 · log n. Then with positive probability,

detAT ≤ C

n4
,

for a universal constant C > 0.

Proof. From Proposition 4.2 and Proposition 5.1, for any t > 0,∫ T

0

E|∂Et ∩ L|dt ≤
∫ T

0

(
2Kt(L) + C ′e−c′n

)
dt ≤ 2C

n2
· en2T/8 + C ′Te−c′n ≤ C̃,

since n2T/8 = 2 log n. By our standing assumption that n is sufficiently large, we have T ≤
20 · n−5/3. We may therefore apply Proposition 3.4, and conclude that

E log detAT ≤ C − n2T

4
+

1

4

∫ T

0

E|∂Et ∩ L|dt ≤ C ′ − n2T

4
= C ′ − 4 log n.

In particular, with positive probability, log detAT ≤ C ′ − 4 log n. The lemma follows by expo-
nentiation.
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Proof of Theorem 1.2. Since the matrix AT is almost surely L-free, Lemma 5.2 guarantees the
existence of an L-free matrix A ∈ Rn×n

+ with

det(A) ≤ C/n4.

According to (8),

V oln(EA) = det(A)−1/2 · V oln(B
n) ≥ c0n

2 · V oln(B
n). (73)

The ellipsoid EA is L-free, thus L ∩ EA = {0}. All that remains is to normalize. Write κn =
V oln(B

n) and consider the matrix

S = κ−1/n
n · det(A)−1/(2n) ·

√
A,

where
√
A ∈ Rn×n

+ is the positive-definite square root of the matrix A ∈ Rn×n
+ . Note that

EA = (
√
A)−1(Bn), where we view an n× n matrix as a linear map on Rn. Denote

L̃ = S(L) ⊂ Rn.

The lattice L̃ ⊂ Rn has covolume one, since L ∈ Xn. If K ⊆ Rn is an open Euclidean ball
centered at the origin with V oln(K) = c0n

2, then S−1(K) ⊆ EA by (73) and hence

L̃ ∩K ⊆ S(L ∩ EA) = {0}.

Remark 5.3. Our proof of Theorem 1.2 suggests a randomized algorithm for constructing the
sphere-packing lattice L ⊂ Rn. Indeed, begin by sampling L ∈ Xn uniformly, for example
by using Ajtai’s algorithm [1], and then run the stochastic process described above. It would
be interesting to carry out numerical simulations of our construction, or variants thereof (e.g.,
replacing πt in (40) by another linear transformation with the same image – perhaps the linear
map X 7→ πt(A

α
t X) for a certain exponent α). Such numerical simulations could help compute

the universal constant c from Theorem 1.2 yielded by this construction.

A Appendix
Lemma A.1. Let L ⊂ Rn be a lattice and let E ⊆ Rn be a non-empty, open, origin-symmetric,
bounded, strictly-convex set (e.g., an origin-symmetric ellipsoid) with E ∩ L = {0}. Then,

|∂E ∩ L| ≤ 2 · (2n − 1).

Proof. We follow Minkowski’s classical proof that the Voronoi cell of a lattice contains at most
2 · (2n − 1) facets. Since E ∩ L = {0}, no point of ∂E can belong to 2L. Moreover, we claim
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that for any x, y ∈ ∂E ∩ L with x ̸= y and x ̸= −y, necessarily x − y ̸∈ 2L. Indeed, otherwise
0 ̸= x− y ∈ 2L while

x− y

2
∈
{
x1 + x2

2
; x1, x2 ∈ ∂E , x1 ̸= x2

}
⊆ E .

Thus (x−y)/2 is a non-zero point belonging both to L and to E , in contradiction to E ∩L = {0}.
Consequently each coset of the subgroup of 2L of the lattice L, either contains no points from
∂E , or else contains a pair of antipodal points from ∂E . There are 2n − 1 such cosets, excluding
the subgroup 2L itself which contains no points from ∂E , and the union of these cosets covers
L \ (2L). Hence the cardinality of ∂E ∩ L is at most 2 · (2n − 1).
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