
Volumes in High Dimensions - Remarks on the Home Assignments

Uri Grupel

In this file I want to address some points about the assignments you have submitted.

Week 1

• In questions 1, many students had problems with the tail estimation. Since the condition is |θi| ≤ 4/
√
n

some of the θi can be very small. Hence, using the estimation we saw in class without modifications
will not work.

A simple fix for this, using the fact that θ ∈ Sn−1, and so, many of the θi’s are not too small. For
example, let

k = #

{
i; |θi| ≤

1

10
√
n

}
.

Without loss of generality, assume 0 ≤ θ1 ≤ . . . ≤ θn we have

1 =

n∑
i=1

θ2i =

k∑
i=1

θ2i +

n∑
i=k+1

θ2i ≤ k
1

100n
+ (n− k)

25

n
.

From this we have k ≤ n/30.

To finish, we note that the estimation does not change if a small fraction are big, since |sinc(t)| ≤ 1.

• Question 3 can be found as Theorem 1 (which is a special case of Theorem 3) in [1].

Week 2

The solutions were very nice. A remark about question 4. In class you proved concentration around the
median and the expectation. In order to prove concentration around other values (such as the L2 norm) it
is enough to show that it is close to one of those values. Since f ≥ 0 we have∣∣∣∣∣
∫
Sn−1

fdσn−1 −

√∫
Sn−1

f2dσn−1

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Sn−1

fdσn−1 −

√∫
Sn−1

f2dσn−1

∣∣∣∣∣
∣∣∣∣∣
∫
Sn−1

fdσn−1 +

√∫
Sn−1

f2dσn−1

∣∣∣∣∣
=

∣∣∣∣∣
(∫

Sn−1

fdσn−1

)2

−
∫
Sn−1

f2dσn−1

∣∣∣∣∣ = Var(f).

Hence, we may use Poincaré’s inequality.

Week 3

No remarks about the submitted assignments. I do recommend that you look at the questions that are not
for submission, and give yourself an outline of the proof.
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Week 4

In question 3 you had to calculate the expectation of max{Xi} where X is a uniform vector in the sphere.
We know that

(G1, . . . , Gn)√
G2

1 + · · ·+G2
n

,

where G1, . . . , Gn are independent Gaussians, sn equal in distrubiton to X and by concentration we get that
X is very close to (G1, . . . , Gn)/

√
n. This can be very useful for estimating probabilities of some events and

to give us intuition, but when calculating expectation we have another tool that can give us a cleaner and
more acurate result.

Proposition 1. Let f be a p−homogeneous function. Let θ be a uniform random vector on the sphere, and
let G be a random vector with independent standard Gaussian entries. Then,

Ef(θ) = Cn,pEf(G),

where Cn,p ≈ n−p/2

Proof. We use integration in polar coordinates:

Ef(G) =
1

(2π)n/2

∫
Rn

f(x)e−|x|
2/2dx =

nκn
(2π)n/2

∫ ∞
0

rn−1
∫
Sn−1

f(rθ)e−r
2/2dσn−1(θ)dr,

where κn is the volume of the unit ball. Since f is homogeneous, we have

Ef(G) =
nκn

(2π)n/2

∫ ∞
0

rn−1+pe−r
2/2dr

∫
Sn−1

f(θ)dσn−1(θ) = C−1p,nEf(θ).

Setting t = r2/2 we get, ∫ ∞
0

rn+p−1e−r
2/2dr = 2n/2+p/2−1Γ(n/2 + p/2).

Remembering that κn = πn/2/Γ(n/2 + 1), we have

C−1p,n =
2p/2−1nΓ(n/2 + p/2)

Γ(n/2 + 1)
.

The Stirling formula finishes the proof.

Note that changing G to G/
√
n (Gaussian with variance 1/n) gives us a constant that is approximately

one.

Week 5

In question 1, there was a typo. It should have been,

P
(∣∣∣∣|ProjF (yj)|2 −

k

n

∣∣∣∣ ≥ εkn, for some j = 1, . . . , N

)
≤ e−cε

2k.

Also, I noticed some confusion about the formulation:

Let y1, . . . , yN ∈ Sn−1 where N ≤ ecε2k.

This means, that you need to show that for some universal constant c > 0 (that does not depend on n, N ,

ε, or any other parameter), the statement holds true for any N ≤ ecε2k.
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Week 6

The solutions where good. Please note that in the instructions (and your solutions) of question 1, there was
an hidden assumption the the process is finite, that is a Gaussian vector in RN for some N > 0.

As in many other proofs in this subject, we start by proving for finite set T , and show that the cardinality
of T does not effect the result. Then we need to take supremum in order to move to infinite sets (question
2 in the homework).

Week 7

As we wrote to you, questions 3 had a mistake. The correct set to consider is

T =

{
ei√

1 + log i
; 1 ≤ i ≤ n

}
.

To see a solution, please look at page 44 in [2]. There are some notations you should know before you read
this.

1. The letter L denotes some universal constant.

2. The cardinality Ns is defined by Ns = 22
s

.

3. Entropy numbers en(T ). You can define them in two ways:

en(T ) = inf
Tn

∑
t∈T

d(t, Tn),

where the infimum is taken over all sets Tn with cardinality at most Nn. Another definition, is by
covering numbers.

en(T ) = inf {ε; N(T, d, ε) ≤ Nn} .

This connection is exactly the one we used to move from the usual chaining argument to generic
chaining.

Week 8

You should note that in question 2 part 3, we use step functions to find a net for Lipschitz functions. Since
step functions are not Lipschitz this does not directly gives us a bound on the covering numbers. Denote
this external covering number by Next(T, d, ε) (this is covering that allows centers outside of the set T ). By
the triangle inequality we have,

N(T, d, ε) ≤ Next(T, d, ε/2).

In addition, trivially we have
Next(T, d, ε) ≤ N(T, d, ε).
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