Volumes in High Dimensions - Remarks on the Home Assignments Uri Grupel

In this file I want to address some points about the assignments you have submitted.

Week 1

• In questions 1, many students had problems with the tail estimation. Since the condition is $|\theta_i| \le 4/\sqrt{n}$ some of the θ_i can be very small. Hence, using the estimation we saw in class without modifications will not work.

A simple fix for this, using the fact that $\theta \in S^{n-1}$, and so, many of the θ_i 's are not too small. For example, let

$$k = \#\left\{i; \ |\theta_i| \le \frac{1}{10\sqrt{n}}\right\}$$

Without loss of generality, assume $0 \le \theta_1 \le \ldots \le \theta_n$ we have

$$1 = \sum_{i=1}^{n} \theta_i^2 = \sum_{i=1}^{k} \theta_i^2 + \sum_{i=k+1}^{n} \theta_i^2 \le k \frac{1}{100n} + (n-k) \frac{25}{n}.$$

From this we have $k \leq n/30$.

To finish, we note that the estimation does not change if a small fraction are big, since $|\operatorname{sinc}(t)| \leq 1$.

• Question 3 can be found as Theorem 1 (which is a special case of Theorem 3) in [1].

Week 2

The solutions were very nice. A remark about question 4. In class you proved concentration around the *median* and the *expectation*. In order to prove concentration around other values (such as the L_2 norm) it is enough to show that it is close to one of those values. Since $f \ge 0$ we have

$$\begin{aligned} \left| \int_{S^{n-1}} f d\sigma_{n-1} - \sqrt{\int_{S^{n-1}} f^2 d\sigma_{n-1}} \right| &\leq \left| \int_{S^{n-1}} f d\sigma_{n-1} - \sqrt{\int_{S^{n-1}} f^2 d\sigma_{n-1}} \right| \left| \int_{S^{n-1}} f d\sigma_{n-1} + \sqrt{\int_{S^{n-1}} f^2 d\sigma_{n-1}} \right| \\ &= \left| \left(\int_{S^{n-1}} f d\sigma_{n-1} \right)^2 - \int_{S^{n-1}} f^2 d\sigma_{n-1} \right| = \operatorname{Var}(f). \end{aligned}$$

Hence, we may use Poincaré's inequality.

Week 3

No remarks about the submitted assignments. I do recommend that you look at the questions that are not for submission, and give yourself an outline of the proof.

Week 4

In question 3 you had to calculate the expectation of $\max\{X_i\}$ where X is a uniform vector in the sphere. We know that

$$\frac{(G_1,\ldots,G_n)}{\sqrt{G_1^2+\cdots+G_n^2}},$$

where G_1, \ldots, G_n are independent Gaussians, sn equal in distrubiton to X and by concentration we get that X is very close to $(G_1, \ldots, G_n)/\sqrt{n}$. This can be very useful for estimating probabilities of some events and to give us intuition, but when calculating expectation we have another tool that can give us a cleaner and more acurate result.

Proposition 1. Let f be a p-homogeneous function. Let θ be a uniform random vector on the sphere, and let G be a random vector with independent standard Gaussian entries. Then,

$$\mathbb{E}f(\theta) = C_{n,p}\mathbb{E}f(G),$$

where $C_{n,p} \approx n^{-p/2}$

Proof. We use integration in polar coordinates:

$$\mathbb{E}f(G) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-|x|^2/2} dx = \frac{n\kappa_n}{(2\pi)^{n/2}} \int_0^\infty r^{n-1} \int_{S^{n-1}} f(r\theta) e^{-r^2/2} d\sigma_{n-1}(\theta) dr,$$

where κ_n is the volume of the unit ball. Since f is homogeneous, we have

$$\mathbb{E}f(G) = \frac{n\kappa_n}{(2\pi)^{n/2}} \int_0^\infty r^{n-1+p} e^{-r^2/2} dr \int_{S^{n-1}} f(\theta) d\sigma_{n-1}(\theta) = C_{p,n}^{-1} \mathbb{E}f(\theta).$$

Setting $t = r^2/2$ we get,

$$\int_0^\infty r^{n+p-1} e^{-r^2/2} dr = 2^{n/2+p/2-1} \Gamma(n/2+p/2).$$

Remembering that $\kappa_n = \pi^{n/2} / \Gamma(n/2 + 1)$, we have

$$C_{p,n}^{-1} = \frac{2^{p/2-1}n\Gamma(n/2+p/2)}{\Gamma(n/2+1)}$$

The Stirling formula finishes the proof.

Note that changing G to G/\sqrt{n} (Gaussian with variance 1/n) gives us a constant that is approximately one.

Week 5

In question 1, there was a typo. It should have been,

$$\mathbb{P}\left(\left||\operatorname{Proj}_F(y_j)|^2 - \frac{k}{n}\right| \ge \varepsilon \frac{k}{n}, \text{ for some } j = 1, \dots, N\right) \le e^{-c\varepsilon^2 k}.$$

Also, I noticed some confusion about the formulation:

Let $y_1, \ldots, y_N \in S^{n-1}$ where $N \leq e^{c\varepsilon^2 k}$.

This means, that you need to show that for some universal constant c > 0 (that does not depend on n, N, ε , or any other parameter), the statement holds true for any $N \leq e^{c\varepsilon^2 k}$.

Week 6

The solutions where good. Please note that in the instructions (and your solutions) of question 1, there was an hidden assumption the the process is finite, that is a Gaussian vector in \mathbb{R}^N for some N > 0.

As in many other proofs in this subject, we start by proving for finite set T, and show that the cardinality of T does not effect the result. Then we need to take supremum in order to move to infinite sets (question 2 in the homework).

Week 7

As we wrote to you, questions 3 had a mistake. The correct set to consider is

$$T = \left\{ \frac{e_i}{\sqrt{1 + \log i}}; \ 1 \le i \le n \right\}.$$

To see a solution, please look at page 44 in [2]. There are some notations you should know before you read this.

- 1. The letter L denotes some universal constant.
- 2. The cardinality N_s is defined by $N_s = 2^{2^s}$.
- 3. Entropy numbers $e_n(T)$. You can define them in two ways:

$$e_n(T) = \inf_{T_n} \sum_{t \in T} d(t, T_n),$$

where the infimum is taken over all sets T_n with cardinality at most N_n . Another definition, is by covering numbers.

$$e_n(T) = \inf \{\varepsilon; N(T, d, \varepsilon) \le N_n\}.$$

This connection is exactly the one we used to move from the usual *chaining* argument to *generic chaining*.

Week 8

You should note that in question 2 part 3, we use step functions to find a net for Lipschitz functions. Since step functions are not Lipschitz this does not directly gives us a bound on the covering numbers. Denote this external covering number by $N_{\text{ext}}(T, d, \varepsilon)$ (this is covering that allows centers outside of the set T). By the triangle inequality we have,

$$N(T, d, \varepsilon) \leq N_{\text{ext}}(T, d, \varepsilon/2).$$

In addition, trivially we have

$$N_{\text{ext}}(T, d, \varepsilon) \le N(T, d, \varepsilon).$$

References

- [1] Franck Barthe, Olivier Guédon, Shahar Mendelson, and Assaf Naor. A probabilistic approach to the geometry of the l_p^n -ball. Ann. Probab., 33(2):480–513, 2005.
- [2] Michel Talagrand. *The generic chaining*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. Upper and lower bounds of stochastic processes.