Volumes in High Dimensions - Remarks on the Home Assignments

Uri Grupel

In this file I want to address some points about the assignments you have submitted.

Week 1

- In questions 1 , many students had problems with the tail estimation. Since the condition is $\left|\theta_{i}\right| \leq 4 / \sqrt{n}$ some of the θ_{i} can be very small. Hence, using the estimation we saw in class without modifications will not work.

A simple fix for this, using the fact that $\theta \in S^{n-1}$, and so, many of the θ_{i} 's are not too small. For example, let

$$
k=\#\left\{i ;\left|\theta_{i}\right| \leq \frac{1}{10 \sqrt{n}}\right\}
$$

Without loss of generality, assume $0 \leq \theta_{1} \leq \ldots \leq \theta_{n}$ we have

$$
1=\sum_{i=1}^{n} \theta_{i}^{2}=\sum_{i=1}^{k} \theta_{i}^{2}+\sum_{i=k+1}^{n} \theta_{i}^{2} \leq k \frac{1}{100 n}+(n-k) \frac{25}{n} .
$$

From this we have $k \leq n / 30$.
To finish, we note that the estimation does not change if a small fraction are big, since $|\operatorname{sinc}(t)| \leq 1$.

- Question 3 can be found as Theorem 1 (which is a special case of Theorem 3) in [1].

Week 2

The solutions were very nice. A remark about question 4. In class you proved concentration around the median and the expectation. In order to prove concentration around other values (such as the L_{2} norm) it is enough to show that it is close to one of those values. Since $f \geq 0$ we have

$$
\begin{aligned}
\left|\int_{S^{n-1}} f d \sigma_{n-1}-\sqrt{\int_{S^{n-1}} f^{2} d \sigma_{n-1}}\right| & \leq\left|\int_{S^{n-1}} f d \sigma_{n-1}-\sqrt{\int_{S^{n-1}} f^{2} d \sigma_{n-1}}\right|\left|\int_{S^{n-1}} f d \sigma_{n-1}+\sqrt{\int_{S^{n-1}} f^{2} d \sigma_{n-1}}\right| \\
& =\left|\left(\int_{S^{n-1}} f d \sigma_{n-1}\right)^{2}-\int_{S^{n-1}} f^{2} d \sigma_{n-1}\right|=\operatorname{Var}(f)
\end{aligned}
$$

Hence, we may use Poincaré's inequality.

Week 3

No remarks about the submitted assignments. I do recommend that you look at the questions that are not for submission, and give yourself an outline of the proof.

Week 4

In question 3 you had to calculate the expectation of $\max \left\{X_{i}\right\}$ where X is a uniform vector in the sphere. We know that

$$
\frac{\left(G_{1}, \ldots, G_{n}\right)}{\sqrt{G_{1}^{2}+\cdots+G_{n}^{2}}}
$$

where G_{1}, \ldots, G_{n} are independent Gaussians, sn equal in distrubiton to X and by concentration we get that X is very close to $\left(G_{1}, \ldots, G_{n}\right) / \sqrt{n}$. This can be very useful for estimating probabilities of some events and to give us intuition, but when calculating expectation we have another tool that can give us a cleaner and more acurate result.

Proposition 1. Let f be a p-homogeneous function. Let θ be a uniform random vector on the sphere, and let G be a random vector with independent standard Gaussian entries. Then,

$$
\mathbb{E} f(\theta)=C_{n, p} \mathbb{E} f(G),
$$

where $C_{n, p} \approx n^{-p / 2}$
Proof. We use integration in polar coordinates:

$$
\mathbb{E} f(G)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} f(x) e^{-|x|^{2} / 2} d x=\frac{n \kappa_{n}}{(2 \pi)^{n / 2}} \int_{0}^{\infty} r^{n-1} \int_{S^{n-1}} f(r \theta) e^{-r^{2} / 2} d \sigma_{n-1}(\theta) d r,
$$

where κ_{n} is the volume of the unit ball. Since f is homogeneous, we have

$$
\mathbb{E} f(G)=\frac{n \kappa_{n}}{(2 \pi)^{n / 2}} \int_{0}^{\infty} r^{n-1+p} e^{-r^{2} / 2} d r \int_{S^{n-1}} f(\theta) d \sigma_{n-1}(\theta)=C_{p, n}^{-1} \mathbb{E} f(\theta) .
$$

Setting $t=r^{2} / 2$ we get,

$$
\int_{0}^{\infty} r^{n+p-1} e^{-r^{2} / 2} d r=2^{n / 2+p / 2-1} \Gamma(n / 2+p / 2) .
$$

Remembering that $\kappa_{n}=\pi^{n / 2} / \Gamma(n / 2+1)$, we have

$$
C_{p, n}^{-1}=\frac{2^{p / 2-1} n \Gamma(n / 2+p / 2)}{\Gamma(n / 2+1)} .
$$

The Stirling formula finishes the proof.
Note that changing G to G / \sqrt{n} (Gaussian with variance $1 / n$) gives us a constant that is approximately one.

Week 5

In question 1, there was a typo. It should have been,

$$
\mathbb{P}\left(\left|\left|\operatorname{Proj}_{F}\left(y_{j}\right)\right|^{2}-\frac{k}{n}\right| \geq \varepsilon \frac{k}{n}, \text { for some } j=1, \ldots, N\right) \leq e^{-c \varepsilon^{2} k} .
$$

Also, I noticed some confusion about the formulation:
Let $y_{1}, \ldots, y_{N} \in S^{n-1}$ where $N \leq e^{c \varepsilon^{2} k}$.
This means, that you need to show that for some universal constant $c>0$ (that does not depend on n, N, ε, or any other parameter), the statement holds true for any $N \leq e^{c \varepsilon^{2} k}$.

Week 6

The solutions where good. Please note that in the instructions (and your solutions) of question 1 , there was an hidden assumption the the process is finite, that is a Gaussian vector in \mathbb{R}^{N} for some $N>0$.

As in many other proofs in this subject, we start by proving for finite set T, and show that the cardinality of T does not effect the result. Then we need to take supremum in order to move to infinite sets (question 2 in the homework).

Week 7

As we wrote to you, questions 3 had a mistake. The correct set to consider is

$$
T=\left\{\frac{e_{i}}{\sqrt{1+\log i}} ; 1 \leq i \leq n\right\}
$$

To see a solution, please look at page 44 in [2]. There are some notations you should know before you read this.

1. The letter L denotes some universal constant.
2. The cardinality N_{s} is defined by $N_{s}=2^{2^{s}}$.
3. Entropy numbers $e_{n}(T)$. You can define them in two ways:

$$
e_{n}(T)=\inf _{T_{n}} \sum_{t \in T} d\left(t, T_{n}\right)
$$

where the infimum is taken over all sets T_{n} with cardinality at most N_{n}. Another definition, is by covering numbers.

$$
e_{n}(T)=\inf \left\{\varepsilon ; N(T, d, \varepsilon) \leq N_{n}\right\}
$$

This connection is exactly the one we used to move from the usual chaining argument to generic chaining.

Week 8

You should note that in question 2 part 3, we use step functions to find a net for Lipschitz functions. Since step functions are not Lipschitz this does not directly gives us a bound on the covering numbers. Denote this external covering number by $N_{\text {ext }}(T, d, \varepsilon)$ (this is covering that allows centers outside of the set T). By the triangle inequality we have,

$$
N(T, d, \varepsilon) \leq N_{\mathrm{ext}}(T, d, \varepsilon / 2)
$$

In addition, trivially we have

$$
N_{\mathrm{ext}}(T, d, \varepsilon) \leq N(T, d, \varepsilon)
$$

References

[1] Franck Barthe, Olivier Guédon, Shahar Mendelson, and Assaf Naor. A probabilistic approach to the geometry of the l_{p}^{n}-ball. Ann. Probab., 33(2):480-513, 2005.
[2] Michel Talagrand. The generic chaining. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. Upper and lower bounds of stochastic processes.

