We proved in class the following variant of Slepian's lemma:
Lemma 0.1. Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} be real centered Gaussian random variables such that
(i) $\mathbb{E} X_{i}^{2}=\mathbb{E} Y_{i}^{2}$ for all i, and
(ii) $\mathbb{E}\left|X_{i}-X_{j}\right|^{2} \leq \mathbb{E}\left|Y_{i}-Y_{j}\right|^{2}$ for all i and j.

Then $\mathbb{E} \max X_{i} \leq \mathbb{E} \max Y_{i}$.
It is known that we condition (i) is actually unneeded in Lemma 0.1 . Below we prove this fact, up to a factor of two:

Corollary 0.2. Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} be real centered Gaussian random variables such that $\mathbb{E}\left|X_{i}-X_{j}\right|^{2} \leq \mathbb{E}\left|Y_{i}-Y_{j}\right|^{2}$ for all i, j. Then $\mathbb{E} \max X_{i} \leq 2 \mathbb{E} \max Y_{i}$.
Proof (from the Ledoux-Talagrand book): First, we replace X_{i} by $X_{i}-X_{1}$ and $Y_{i}-Y_{1}$ for all i. This replacement does not alter neither the assumptions nor the conclusions of the lemma. Hence we may assume that $X_{1}=Y_{1}=0$. In particular, from our assumption,

$$
\begin{equation*}
\mathbb{E} X_{i}^{2} \leq \mathbb{E} Y_{i}^{2} \quad(i \geq 1) \tag{1}
\end{equation*}
$$

Next, introduce a standard normal random variable $g \sim N(0,1)$, independent of the X_{i} 's and the Y_{i} 's. For $i \geq 1$ define

$$
\left\{\begin{array}{l}
\tilde{X}_{i}=X_{i}+g \sigma \\
\tilde{Y}_{i}=Y_{i}+g \sqrt{\sigma^{2}+\mathbb{E} X_{i}^{2}-\mathbb{E} Y_{i}^{2}}
\end{array}\right.
$$

where $\sigma=\max _{i} \sqrt{\mathbb{E} Y_{i}^{2}}$. Then $\mathbb{E} \tilde{X}_{i}^{2}=\mathbb{E} \tilde{Y}_{i}^{2}$ and for all i and j,

$$
\mathbb{E}\left|\tilde{X}_{i}-\tilde{X}_{j}\right|^{2}=\mathbb{E}\left|X_{i}-X_{j}\right|^{2} \leq \mathbb{E}\left|Y_{i}-Y_{j}\right|^{2} \leq \mathbb{E}\left|\tilde{Y}_{i}-\tilde{Y}_{j}\right|^{2}
$$

Hence we may invoke Lemma 0.1 , and deduce that $\mathbb{E} \max _{i} \tilde{X}_{i} \leq \mathbb{E} \max _{i} \tilde{Y}_{i}$. Since $\mathbb{E} \max _{i} \tilde{X}_{i}=$ $\mathbb{E} \max _{i} X_{i}$, all that remains is to prove that

$$
\begin{equation*}
\mathbb{E} \max _{i} \tilde{Y}_{i} \leq 2 \mathbb{E} \max _{i} Y_{i} . \tag{2}
\end{equation*}
$$

In order to prove (2), we note that

$$
\mathbb{E} \max _{i} \tilde{Y}_{i} \leq \mathbb{E} \max _{i} Y_{i}+\mathbb{E} g^{+} \cdot \max _{i} \sqrt{\sigma^{2}+\mathbb{E} X_{i}^{2}-\mathbb{E} Y_{i}^{2}} \leq \mathbb{E} \max _{i} Y_{i}+\sigma \mathbb{E} g^{+},
$$

where $x^{+}=\max \{x, 0\}$, and where we used (1) in the last passage. Thus, in order to prove (1), it suffices to show that $\sigma \mathbb{E} g^{+} \leq \mathbb{E} \max _{i} Y_{i}$. This holds true because of the following chain of equalities and inequalities:

$$
\begin{aligned}
\mathbb{E} \max _{i} Y_{i} & =\frac{\mathbb{E} \max _{i} Y_{i}+\mathbb{E} \max _{i}\left(-Y_{i}\right)}{2}=\frac{\mathbb{E} \max _{i} Y_{i}-\min _{i} Y_{i}}{2}=\frac{1}{2} \cdot \mathbb{E} \max _{i, j}\left|Y_{i}-Y_{j}\right| \\
& \geq \frac{1}{2} \cdot \mathbb{E} \max _{i}\left|Y_{i}\right| \geq \frac{1}{2} \cdot \max _{i} \mathbb{E}\left|Y_{i}\right|=\frac{1}{2} \cdot \mathbb{E}|g| \cdot \max _{i} \sqrt{\mathbb{E} Y_{i}^{2}}=\mathbb{E} g^{+} \cdot \sigma,
\end{aligned}
$$

and the proof is complete.

