
1 Euclidean space Rn

We start the course by recalling prerequisites from the courses Hedva 1 and
2 and Linear Algebra 1 and 2.

1.1 Scalar product and Euclidean norm

During the whole course, the n-dimensional linear space over the reals will
be our home. It is denoted by Rn. We say that Rn is an Euclidean space if
it is equipped with a scalar product, that is a function (x, y) : Rn × Rn → R
satisfying conditions

(i) (x, x) ≥ 0;

(ii) (x, x) = 0 if and only if x = 0;

(iii) (x, y) = (y, x);

(iv) for any t ∈ R, (tx, y) = t(x, y);

(v) (x + y, z) = (x, z) + (y, z).

If {e1, ..., en} is a basis in Rn, and x =
∑

xiei, y =
∑

yjej, then (x, y) =∑
i,j xiyj(ei, ej). In particular, if {e1, ..., en} is an orthonormal basis in Rn,

then (x, y) =
∑

xiyi.
Having a chosen scalar product1, we can define the length (or the Eu-

clidean norm) of the vector ||x|| =
√

(x, x), and the angle between two
vectors:

< (x, y) = arccos
(x, y)

||x|| · ||y| .

Of course, the angle < (x, y) is defined only for x, y 6= 0.
The norm enjoys the following properties:

(a) ||x|| > 0 for x 6= 0;

(b) ||tx|| = |t| ||x|| for t ∈ R;

(c) ||x + y|| ≤ ||x||+ ||y||.
Exercise 1.1. Prove the property (c). Describe when the equality sign
attains in (c).

There are many other functions || . || : Rn → R satisfying conditions (a),
(b) and (c). They are also called the norms. For example, the lp-norm

||x||p def
=

{
n∑

i=1

|xi|p
}1/p

, 1 ≤ p < ∞ ,

1Of course, there are many different scalar products in Rn. If we fix one of them, scalar
then any other has the form (x, y)∗ = (Ax, y), where A is a positive linear operator in Rn.
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and
||x||∞ def

= max
1≤i≤n

|xi| ,
here {xi} are the coordinates of x in a fixed basis in Rn.

It is easy to see that the lp-norm meets conditions (a) and (b). In the
extreme cases p = 1 and p = ∞, condition (c) is also obvious. Now, we
sketch the proof of (c) for 1 < p < ∞, splitting it into three simple exercises.

Exercise 1.2. Let q be a dual exponent to p: 1
p

+ 1
q

= 1,
1. Prove Young’s inequality

ab ≤ ap

p
+

bq

q
,

for a, b > 0. The equality sign attains for ap = bq only. Hint: maximize the
function h(a) = ab− ap

p
.

2. Prove Hölder’s inequality

∑
i

aibi ≤
(∑

i

ap
i

)1/p

·
(∑

i

bq
i

)1/q

,

for ai, bi > 0. The equality sign attains only for ai/bi = const, 1 ≤ i ≤ n.
Hint: assume, WLOG, that

∑
i

ap
i =

∑
i

bq
i = 1 ,

and apply Young’s inequality to ai · bi.
3. Check that

(∑
i

(ai + bi)
p

)1/p

≤
(∑

i

ap
i

)1/p

+

(∑
i

bp
i

)1/p

,

Hint: write
∑

i

(ai + bi)
p =

∑
i

ai(ai + bi)
p−1 +

∑
i

bi(ai + bi)
p−1 ,

and apply Hölder’s inequality.

Having the norm || . ||, we define the distance ρ(x, y) = ||x − y||. In this
course, we will mainly use the Euclidean norm 2, and the Euclidean distance.
Normally, we denote the Euclidean norm by |x|.

2Though, as we will see in the next lecture, all the norms in Rn are equivalent and the
choice of the norm does no affect the problems we are studying.
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1.2 Open and closed subsets of Rn

Recall a familiar terminology:

open ball B(a, r) = {x ∈ Rn : |x− a| < r};
closed ball B(a, r) = {x ∈ Rn : |x− a| ≤ r};
sphere S(a, r) = {x ∈ Rn : |x− a| = r} = ∂B(a, r);

brick {x ∈ Rn : αi < xi < βi}. This brick is open. Sometimes, we’ll need
closed and semi-open bricks.

complement (to the set E) Ec = Rn \ E.

The next definition is fundamental:

Definition 1.3. A set A ⊂ Rn is open, if for each a ∈ X there is an open ball
B centered at a such that B ⊂ X. A set X ⊂ Rn is closed if its complement
is open.

The empty set ∅ and the whole Rn are open and closed at the same time.
(These two subsets of Rn are often called trivial subsets).

Exercise 1.4. Union of any family of open sets is open, intersection of any
family of closed sets is closed. Finite intersection of open sets is open, finite
union of closed subsets is closed.

Exercise 1.5. Give an example of infinite family of open sets with non-
trivial and closed intersection, and an example of infinite family of closed
sets with non-trivial and open union.

Let us proceed further.

Any open set O containing the point a is called a vicinity/neighbourhood of
a, the set O \ {a} is called a punctured neighbourhood of a. The (open) ball
B(a, δ) is called a δ-neighbourhood of a.

Interiour intE is a sent of points a which belong to E with some neighbour-
hood. Exteriour extE is a set of points a having a neighbourhood which does
not belong to E (equivalently, a belongs to the interiour of the complement
Ec). Boundary ∂E is a set of points which are neither interiour nor exteriour
points of E.

In other words, we always have a decomposition Rn = intE ∪ ∂E ∪ extE.

Closure: E = E ∪ ∂E.
Equivalently, E is a union of E with the set of all accumulation points of

E. Recall that x is an accumulation point of the set E if in any punctured
neighbourhood of x there is at least one (and therefore, infinitely many)
points of E.
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Exercise 1.6. 1. The set E is closed if and only if it contains all its accu-
mulation points; i.e. E = E.

2. The closure E is always closed, and the second closure coincides with the

first one E = E.

3. Only trivial subsets are simultaneously closed and open.

Convergence: a sequence {xk} ⊂ Rn converges to x if limk→∞ |xk − x| = 0.
Equivalently3, all coordinates must converge: xk

i → xi for 1 ≤ i ≤ n.
The Cauchy criterion and the Bolzano-Weierstrass lemma are the same

as in the 1D-case. Cauchy’s criterion says that the sequence {xk} converges
to x iff4 for an arbitrary small ε > 0 there exists a sufficiently large N such
that for all k,m ≥ N , |xk − xm| < ε.

The BW-lemma says that any bounded sequence in Rn has a convergent
subsequence.

Exercise 1.7. Prove Cauchy’s criterion and the Bolzano-Weierstrass lemma.

1.3 Compact sets

Definition 1.8. A set K ⊂ Rn is compact, if any sequence {xm} ⊂ K has a
subsequence {xmj} convergent to a point from K.

Claim 1.9. A set K is compact if and only if it is closed and bounded.

Proof:

(a) Assume that K is compact. Then K must contain all its accumulation
points and therefore K is closed.

Assume that K is unbounded. Then there is a sequence {xm} ⊂ K such
that ||xm|| ≥ m. If a subsequence {xmj} converges to a point x, then by the
triangle inequality

|x| ≥ |xmj | − |xmj − x| ≥ mj − ε ↑ +∞ .

Contradiction.

(b) Assume that the set K is closed and bounded. By the BW-lemma, each
sequence {xm} ⊂ K has a convergent subsequence. Let x be its limit. Then
x is an accumulation point of K, and since K is closed, x ∈ K. Thus, K is
compact. 2

3by the elementary inequality

max
1≤i≤n

|xi − yi| ≤ |x− y| ≤ √
n max

1≤i≤n
|xi − yi| .

4iff = if and only if
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Exercise 1.10. Any nested sequence of compact sets K1 ⊃ K2 ⊃ ... ⊃
Kj ⊃ ... has a non-empty intersection.
Hint: consider a sequence {xj} such that xj ∈ Kj.

If the diameters of Kj converge to zero, then the intersection is a singleton.
Here,

diameter(K) = max
x,y∈K

|x− y| .

Continue with definitions.

Open covering of X:

X ⊂
⋃
j∈J

Uj ,

where the sets Uj are open. If the set of indices J is finite, then the covering
is called finite.

The next lemma is fundamental:

Lemma 1.11 (Heine - Borel). The set K is compact if and only if

∀ open covering of K ∃ a finite subcovering

In topology, the boxed formula is taken as the definition of compact sets.
I’ll prove this result only in one direction, assuming that K is a compact

set.

Proof: First, we enclose the compact K by a brick I, and then will follow
the standard ‘dissection procedure’, as in the one-dimensional case. 2

The other direction probably will not be used later, so I leave it as and
exercise.

Exercise 1.12. If for any open covering of the set K ⊂ Rn there exists a
finite subcovering, then K is a compact set.

Exercise 1.13. Show that the result fails for bounded (but non-closed) sets,
and for closed (but unbounded) sets. It also fails for coverings of compact
set by non-open sets.
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2 Continuous mappings. Curves in Rn

We continue with prerequisites.

2.1 Continuous mappings

Let X ⊂ Rn, and x0 be an accumulation point of X. Let f : X 7→ Rm. If
there is a ∈ Rm such that |f(x)− a| → 0 when x → x0, x ∈ X, then we say
that f has a limit a when x → x0 along X, and write

lim
x→x0, x∈X

f(x) = a .

Usually, we assume that x ∈ intX, then there is no need to indicate that
x → x0 along X.

It is important to keep in mind that existence of such a limit, generally
speaking, does not imply existence of iterated limits and vice versa (see the
exercise in the very end of this subsection).

The mapping f : X → Rm is continuous at x0, if f(x) → f(x0) for x → x0

along X. It is always possible to check continuity using the coordinate func-
tions. Fix a basis {e1, ... em} in Rm, and consider the coordinate functions
fj(x), 1 ≤ j ≤ m (that is, f(x) =

∑
j fj(x)ej). It is easy to see that the

function f is continuous at x0 iff all the functions fj are continuous at x0.

Exercise 2.1. Write down a formal proof.

We say that f is continuous on X if it is continuous at every point of X.
By C(X) we denote the class of all continuous functions on X.

Exercise 2.2. Prove or disprove: let f : R2 → R1 be a mapping with the
following properties: for each y ∈ R, the function x 7→ f(x, y) is continuous
on R, and for each x ∈ R, the function y 7→ f(x, y) is continuous on R. Then
f is continuous on R2.

If X is a compact set, then continuous mappings defined on X enjoy
many properties of continuous functions defined on closed segments.

Exercise 2.3. Let f : K → Rm be a continuous mapping on a compact set
K ⊂ Rn. Prove:

(i) f is uniformly continuous, that is

∀ε > 0 ∃δ > 0 such that ∀x, y ∈ K, ||x−y|| < δ =⇒ ||f(x)−f(y)|| < ε .
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(ii) f is bounded on K, i.e. ∃M such that ||f(x)|| ≤ M for all x ∈ K;

(iii) if m = 1 (that is, f is a scalar function), f attains its maximal and
minimal values on K.

Exercise 2.4. A subset K ∈ Rn is compact if and only if any continuous
function map f : K → R is bounded on K.

Exercise 2.5. If f is a continuous mapping, and K is a compact set, then
its image fK is compact as well. If the set V is open, then its preimage
f−1V is also open.

Exercise 2.6. Check:
(i) for the function

f(x, y) =

{
xy

x2+y2 , (x, y) 6= (0, 0),

0, (x, y) = (0, 0),

the iterated limits exist and equal to each other

lim
x→0

lim
y→0

f(x, y) = lim
y→0

lim
x→0

f(x, y) = 0

but the limit
lim

(x,y)→(0,0)
f(x, y)

does not exist;
(ii) for the function

f(x, y) =

{
x + y sin 1

x
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0),

the limits
lim

(x,y)→(0,0)
f(x, y) and lim

x→0
lim
y→0

f(x, y)

exist and equal zero, but the second iterated limit

lim
y→0

lim
x→0

f(x, y)

does not exist;
(iii) the function

f(x, y) =

{
x2y

x4+y2 , (x, y) 6= (0, 0),

0, (x, y) = (0, 0),
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has the following property: for each a and b in R2

lim
t→0

f(ta, tb) = 0 ,

but the limit
lim

(x,y)→(0,0)
f(x, y)

does not exist.

Exercise 2.7. Let E ⊂ Rn be a closed set, f : E → Rm a continuous func-
tion. Show that its graph

Γf
def
= {(x, f(x)) : x ∈ E}

is a closed subset of Rn+m.

Exercise 2.8. Show that there is a mapping f from the unit ball B ∈ Rn

onto the whole Rn such that f and f−1 are continuous and f is one-to-one.
(Such maps are called homeomorphisms).

2.1.1 Linear mappings

We denote by L(Rn,Rm) the space of all linear mappings ( = transformations

= operators) from Rn to Rm. Since we can add mappings: (A + B)x
def
=

Ax + Bx, this is a linear space. This space can be identified with Rmn =
Rm × ... Rm

︸ ︷︷ ︸
n times

. For identification, we use the matrix representation which we

recall.
Let A ∈ L(Rn,Rm). Fix bases: {ej} ⊂ Rn, and {e∗k} ⊂ Rm. Then

Aej =
m∑

k=1

ak je
∗
k .

The matrix of A consists of n columns of height m, the j-th column consists
of the coordinates of the vector Aej in the basis {e∗k}:

Mat(A) =




a11 a12 . . . . . . a1n

a21 a22 . . . . . . a2n
...

...
. . .

...
am1 am2 . . . . . . amn




Exercise 2.9. What happens with the matrix of A under the change of the
bases in Rn and Rm?
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By MatR(m× n) we denote the linear space of m× n matrices with real
entries. Thus we get three isomorphic linear spaces:

L(Rn,Rm) ' MatR(m× n) ' Rmn.

We can also multiply elements from L(Rn,Rm) ' MatR(m × n) by el-
ements from L(Rm,Rp) ' MatR(p × m) taking the composition of linear
mappings, or, what is the same, the product of the correspondent matrices.

If m = 1, then the linear mapping L : Rn → R1 is called a linear functional
on Rn. The space of linear functionals is an n-dimensional space called the
dual space. Usually, it is denoted by (Rn)∗. The important representation
theorem from the Linear Algebra says that if Rn has an Euclidean structure,
then for any linear functions L ∈ (Rn)∗ there exists a vector l ∈ Rn such that
Lx = (l, x) for any x ∈ Rn.

Exercise 2.10. Every linear map L : Rn → Rm is continuous.

Hint: first, prove this for linear functionals (i.e., scalar linear functions) on
Rn: if x =

∑
xjej, then L(x) =

∑
L(ej)xj, and L(x)−L(y) =

∑
L(ej)(xj−

yj). The rest is clear.

Since the unit ball is a compact subset of Rn, as a corollary, we obtain
that, for any linear mapping L, the quantity

N(L)
def
= sup

|x|≤1

|Lx|

is finite, and actually the maximum on the RHS is attained somewhere on
the unit sphere. Actually, N(L) can be defined as the best possible constant
in the estimate |Lx| ≤ N(L)|x|; i.e.

N(L) = sup
x∈Rn\{0}

|Lx|
|x| .

This quantity is called the operator norm of the mapping L, and is denoted
by ||L||.
Exercise 2.11. Check that this is a norm, i.e., ||L|| = 0 iff L = 0, and
||L1 + L2|| ≤ ||L1||+ ||L2||. Check that ||L ◦M || ≤ ||L|| · ||M ||.

It is easy to show that

(2.12) ||L|| ≤
√∑

j,k

l2j,k ,

where (lj,k) are matrix elements of L.
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Exercise 2.13. Prove (2.12).

Hint: set y = Lx, using the Cauchy-Schwarz inequality, estimate first y2
k and

then
∑m

k=1 y2
k. Here yk =

∑
j lk jxj.

If m > 1, estimate (2.12) is not sharp. Later, using Lagrange multipliers,
we’ll give a sharp expression for ||L||. (Check, maybe, you already know it
from the Linear Algebra course?)

If m = 1, that is L ∈ (Rn)∗ is a linear function, there is a vector b such
that Lx =

∑
bjxj for all x (simply bj = L(ej)). In this case, ||L|| = |b|.

(Check this!)

The expression
√∑

j,k l2j,k we met above is called the Hilbert-Schmidt

norm of the operator L and denoted by ||L||HS. There is a more natural
definition of the Hilbert-Schmidt norm:

Exercise 2.14. Show that ||L||HS = trace(L∗L), and that || . ||HS does not
depend on the choice of the bases in Rn and Rm.

Exercise 2.15. Show that ||L||HS ≤
√

n‖L‖.
Hint: |Lej| ≤ ‖L‖ for each j, 1 ≤ j ≤ n.

2.1.2 Continuity of norms

Another important class of continuous functions is given by norms, i.e. func-
tions || . || : Rn → R+ satisfying conditions (a) – (c) from Lecture 1. It will
be convenient for us to prove simultaneously the next two claims.

Claim 2.16. Any norm || .||∗ in the Euclidean space Rn is equivalent to the
Euclidean one: there are positive constants c and C depending on the norm
such that for any x ∈ Rn

c|x| ≤ ||x||∗ ≤ C|x| .

Claim 2.17. Any norm is a continuous function on Rn.

Proof: First, we check the second inequality in Claim 2.16. Let {ei} be the
standard orthonormal basis in Rn. Then writing x =

∑
xiei, we get

||x||∗ ≤
n∑

i=1

|xi| · ||ei||∗ ≤
√∑

i

x2
i

︸ ︷︷ ︸
=|x|

·
√∑

i

||ei||2∗
︸ ︷︷ ︸

=C

= C|x| .
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Now, we check continuity of the norm || . ||∗:
||x||∗ − ||y||∗ = ||y + (x− y)||∗ − ||y||∗ ≤ ||x− y||∗ ≤ C|x− y| ,

and by symmetry
||y||∗ − ||x||∗ ≤ C|x− y| .

To get the first inequality in Claim 2.16, observe that the function x 7→ ||x||∗
attains its minimal value on the unit (Euclidean) sphere, and this value must
be positive (why?). Let us denote it by c. Then, writing x = |x|x̂, |x̂| = 1,
we get

||x||∗ = |x| · ||x̂||∗ ≥ c|x| ,
completing the proofs. 2

2.1.3 Norms and symmetric compact convex bodies

There is an intimate relation between the norms in Rn and a special class
of compact convex bodies in Rn. The closed ‘unit ball’ with respect to any
norm in Rn is defined as

(2.18) K = {x : ||x|| ≤ 1}
A straightforward inspection shows that K always has the following four
properties:

(i) K is compact;

(ii) K is convex, that is, if a, b ∈ K, then the whole segment with the
end-points at a and b, {ta + (1− t)b : 0 ≤ t ≤ 1}, belongs to K;

(iii) K is symmetric about the origin, i.e. if x ∈ K, then −x ∈ K as well;

(iv) K contains a Euclidean neighbourhood of the origin.

Exercise 2.19. Check the properties (i)–(iv). Draw the unit ball for the lp

norms in R2, for 1 ≤ p ≤ ∞. If the norm is generated by a scalar product,
how the body K looks like?

Assume that we know the compact convex body K. How to recover the
norm || . ||? Given x 6= 0, observe that tx ∈ K for t ≤ 1

||x|| , and tx /∈ K for

t > 1
||x|| . Thus

||x||−1 = max{t : tx ∈ K} .

Problem 2.20. Let K be a set with properties (i)–(iv). For every x 6= 0, let

||x|| def
=

1

max{t : tx ∈ K} .

Then || . || is a norm, and (2.18) holds.
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2.2 Continuous curves in Rn

Definition 2.21. (Continuous) curve in Rn is a continuous mapping γ : I →
Rn, where I ⊂ R1 is an interval. If the interval I is closed, I = [a, b], then γ(a)
and γ(b) are end-points of the curve γ. The curve γ is closed if γ(a) = γ(b).
The curve γ is simple if the function γ

∣∣
(a,b)

is one-to-one.

Intervals have a natural orientation which induces orientation on curves.
Each curve γ is oriented. We can always change the orientation defining the

‘inverse’ curve −γ. For example, if γ is defined on [0, 1], then (−γ)(t)
def
=

γ(1− t).
The curves γ1 : I1 → Rn and γ2 : I2 → Rn are called equivalent, if there

exists a homeomorphism (i.e., a continuous bijection) ϕ : I2 → I1 which
preserves the orientation of the intervals, and such that γ2(s) = γ1(ϕ(s)).
Normally, we identify equivalent curves.

Examples:

1. The segment with end-points at x and y: γ(t) = tx + (1− t)y, 0 ≤ t ≤ 1.
The segment with the inverse orientation is (−γ)(t) = ty + (1− t)x.

2. The circle with the natural (counter clock-wise) orientation γ(t) = (cos t, sin t),
0 ≤ t ≤ 2π. The circle with the opposite orientation (−γ)(t) = (cos t,− sin t).
This is also the circle γ(t) = (cos 10t, sin 10t), but run 10 times.

3. Archimedus spiral γ(t) = (t cos t, t sin t), 0 ≤ t ≤ 2π.

Exercise 2.22. Draw the images (with orientation) of the following curves
given in the polar coordinates: r = 1 − cos 2t (0 ≤ t ≤ 2π), r2 = 4 cos t
(|t| ≤ π/2), r = 2 sin 3t (0 ≤ t ≤ π). Draw the image (with orientation) of
the curve in R3 defined as γ(t) = (cos t, sin t, t), −∞ < t < ∞.

2.2.1 Peano curve

In 1890, Peano discovered a remarkable example of a (continuous) curve
filling the whole unit square in R2. The following construction is taken from
the book by Hairer and Wanner.

Start with an arbitrary curve γ(t) = (x(t), y(t)), 0 ≤ t ≤ 1 which lies in
the unit square and has the end-points γ(0) = (0, 0), γ(1) = (1, 0). Now,
applying rotation and rescaling, we define a new curve

(Φγ)(t) =





1
2
(y(4t), x(4t)), if 0 ≤ t ≤ 1

4
;

1
2
(x(4t− 1), 1 + y(4t− 1)), if 1

4
≤ t ≤ 2

4
;

1
2
(1 + x(4t− 2), 1 + y(4t− 2)), if 2

4
≤ t ≤ 3

4
;

1
2
(2− y(4t− 3), 1− x(4t− 3)), if 3

4
≤ t ≤ 1.
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This curve has the same end-points as γ.
Now, we iterate the procedure defining the curves γ1 = Φγ, γ2 = Φγ1,

and so on. We need to show that the iterations converge. For a mapping
λ : [0, 1] → Rn, we set

||λ||∞ = max
t∈[0,1]

|λ(t)| .

This is again the norm, but this time defined on continuous mappings from
[0, 1] to R2. Usually, it is called the uniform norm.

Observe, that if we start iterate another curve µ, with ||γ − µ||∞ = M ,
then ||Φγ − Φµ||∞ ≤ M/2, and hence

(2.23) ||γk − µk||∞ ≤ M · 2−k .
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Putting here µ = γm, we get

||γk − γk+m||∞ ≤ M · 2−k .

Now, applying Cauchy’s criterion, we see that the sequence of curves γk

converges uniformly, and therefore has a continuous limit γ∞.
The limiting curve γ∞ is independent of the initial curve γ (look at (2.23),

and fills the whole unit square. Indeed, the set γ([0, 1]) is a compact (why?)
and dense (why?) subset of the unit square, hence, it coincides with the unit
square. 2

Problem 2.24. Show that the coordinates of the limiting curve x∞(t) and
y∞(t) are continuous nowhere differentiable functions on [0, 1].

First examples of such functions were constructed by Weierstrass.

Problem 2.25. Show that there is no one-to-one continuous mapping from
the interval [0, 1] onto the unit square.

2.3 Arc-wise connected sets in Rn

Definition 2.26. The set X ⊂ Rn is called (arc-wise) connected if for each
pair of points x, y ∈ X there is a curve γ : [a, b] → X such that γ(a) = x and
γ(b) = y.

Examples: R1 \ {0}, R2 \ {x1 = 0}, Sn, R2 \ {0}, R3 \ {x1 = 0}. The first
two sets are disconnected, the others are arc-wise connected.

The next four claims are very useful and have straightforward proofs:

Claim 2.27 (continuous images of connected sets are connected). Let A ⊂
Rn be a connected set, and f : A → Rm be a continuous function. Then the
image B = f(A) is also connected.

Claim 2.28 (mean-value property). Suppose A is an arc-wise connected set,
and f : A → R is a continuous function. If infA f < 0 and supA f > 0, then
there exists a point x ∈ A such that f(x) = 0.

Exercise 2.29. Prove these claims.

An open connected subset of Rn is called domain ( = region).

Exercise 2.30. Any open set U ⊂ Rn can be decomposed into at most
countable union of disjoint domains.
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Claim 2.31 (polygonal connectivity). Each domain Ω in Rn is polygonal-
connected.

That is, for any two points a, b ∈ Ω there exists a polygonal line (a curve
which consists of finitely many segments) which starts at a and terminates
at b. An equivalent statement is that for any two points a, b ∈ Ω can be
connected within Ω by a finite chain of open balls B0, B1, ..., BN : B0 is
centered at a, BN is centered at b, Bi∩Bi+1 6= ∅, 0 ≤ i ≤ N−1, and Bi ⊂ Ω,
0 ≤ i ≤ N . The proof follows from the Heine-Borel lemma.

A function f on an open set X is called locally constant if for any x ∈ X
there is a neighbourhood U of x such that f is constant on U .

Claim 2.32. An open set X ⊂ Rn is connected iff any locally constant
function is a constant.

Exercise 2.33. Check that any curve γ starting at x, |x| < 1, and termi-
nating at y, |y| > 1, intersects the unit sphere.

Exercise 2.34. f is a continuous function on the unit sphere S2 ⊂ R3. Prove
that there is a point x ∈ S2 such that f(x) = f(−x).
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3 Differentiation

3.1 Derivative

In this lecture, U is always an open subset of Rn, and a ∈ U .

Definition 3.1. The mapping f : U → Rm is differentiable at the point a
if in a neighbourhood of a it can be well approximated by a linear mapping
L ∈ L(Rn,Rm):

(3.2) f(x) = f(a) + L(x− a) + o(|x− a|) , x → a .

It is important that the mapping L does not depend on the direction in
which x approach a in (3.2). If such a map L exists, then it is unique. Indeed,
set x = a + th, where |h| = 1 and t > 0. Then

f(a + th) = f(a) + tLh + o(t) , t ↓ 0,

and we can recover L:

Lh = lim
t↓0

f(a + th)− f(a)

t
, |h| = 1 .

The linear map L is called the derivative (or, sometimes, the differential)
of f at a. There are several customary notations for the derivative: f ′(a),
df(a), Df (a). Usually, we shall try to stick with the latter one.

At this point we need to slightly revise the one-dimensional definition. In
Hedva 1, we learn that if f is a real-valued function of one real variable, then
its derivative f ′(a) is a real number. From now on, we should think about it
as of a linear mapping from R1 to R1 defined as multiplication by f ′(a).

If f is differentiable everywhere in U , the derivative is a map

Df : U → L(Rn,Rm).

By C1(U) (or sometimes, by C1(U,Rn)) we denote the class of mappings f
such that the map Df is a continuous one.

Now, several simple properties of the derivative.

1. If f is a constant map, then Df = 0 everywhere in U . If U is a domain
and Df = 0 everywhere in U , then f is a constant mapping.

2. If f ∈ L(Rn,Rm), then f is differentiable everywhere and Df = f . In
the opposite direction, if U is a domain, and f : U → Rm has a constant
derivative in U , then there exist L ∈ L(Rn, Rm) and b ∈ Rm such that
f(x) = Lx + b.

3. Df+g = Df + Dg.
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Exercise 3.3. If the mapping f is differentiable at a, then f is continuous
at a.

Exercise 3.4. If f ∈ C1(U), and K ⊂ U is a compact subset, then f
∣∣∣
K

is a Lipschitz function; i.e. there exists a constant M such that for every
x, y ∈ K

|f(x)− f(y)| ≤ M |x− y| .
Theorem 3.5 (The Chain Rule). Let f : U → Rm, f(U) ⊂ V ⊂ Rm, let
g : V → Rk, and let h = g◦f . If f is differentiable at a, and g is differentiable
at b = f(a), then h is differentiable at a, and

Dh(a) = Dg(b) ·Df (a) .

Proof: Set A = Df (a), B = Dg(b). We need to check that

r(x)
def
= h(x)− h(a)−B · A(x− a)

??
= o(|x− a|) , x → a .

We have

u(x)
def
= f(x)− f(a)− A(x− a) = o(|x− a|) , x → a ,

v(y)
def
= g(y)− g(b)−B(y − b) = o(|y − b|) , y → b .

Therefore, r(x) can be written as

r(x) = g(f(x))− g(b)−B(f(x)− b)︸ ︷︷ ︸
v(f(x))

+ B(f(x)− f(a)− A(x− a))︸ ︷︷ ︸
Bu(x)

.

We estimate the terms on the RHS.
For an arbitrary small positive ε, we choose η > 0 such that

|v(y)| ≤ ε|y − b| , |y − b| ≤ η .

Then we choose δ > 0 so small that, for |x− a| ≤ δ,

|f(x)− f(a)| ≤ η , and |u(x)| ≤ ε|x− a| .

With this choice, we have

|v(f(x))| ≤ ε|f(x)− b| = ε|A(x− a) + u(x)| ≤ ε · ||A|| · |x− a|+ ε2|x− a| ,

and
|Bu(x)| ≤ ||B|| · |u(x)| ≤ ε · ||B|| · |x− a| .
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Putting together, this gives us

|r(x)| ≤ (
ε · ||A||+ ε2 + ε · ||B||) |x− a| = o(|x− a|) .

Done! 2

As a special case, we get that if f : U → Rm is differentiable, T ∈
L(Rp,Rn), and Q ∈ L(Rm,Rk), then the mappings f ◦ T and Q ◦ f are
differentiable, and Df◦T = Df · T , DQ◦f = Q ·Df . In particular, we see that
if fj = (f, ej), 1 ≤ j ≤ m are coordinate functions of the mapping f , then f
is differentiable iff all the functions fj are differentiable. (Prove!)

Exercise 3.6. Let fj : R → R be differentiable functions, 1 ≤ j ≤ n, and
f(x) =

∑
j fj(xj) (xj are the coordinates of x). Then f is differentiable and

Df(x)h =
∑

f ′i(xi)hi.

Exercise 3.7. Show that the function f(x) = |x|, x ∈ Rn, is differentiable
on Rn \ {0}, and find its derivative.
Differentiate the function x 7→ |x− y|2, x ∈ Rn.

Exercise 3.8. Suppose f : Rn → R is a non-constant homogeneous C1-
function; i.e. f(tx) = tkf(x) for all x ∈ Rn, t > 0. Prove:

(i) k ≥ 1,

(ii)
n∑

i=1

xi
∂f

∂xi

= kf

(Euler’s identity).

Exercise 3.9. If f and g are differentiable mappings, and ϕ = 〈f, g〉, then

Dϕh = 〈Dfh, g〉+ 〈f,Dgh〉 .

Now, we shall turn to the derivatives of scalar functions of several vari-
ables.

3.2 The gradient

Now, f : U 7→ R, and the derivative Df (a) is a linear functional on Rn.
Therefore, there exists the vector, denoted ∇f(a), such that

(3.10) Df (a)h = (∇f(a), h) , h ∈ Rn .
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This vector called the gradient of the function f at the point a. For |h| = 1,
the expression (3.10) is called the derivative of f in direction h. We have

f(a + th) = f(a) + t(∇f(a), h) + ... .

This yields the following geometric properties of the gradient:

• f increases in the directions h where (∇f(a), h) > 0, and decreases in
the directions h where (∇f(a), h) < 0. Direction of the fastest increase

is h = ∇f(a)
|∇f(a)| , direction of the steepest descent is the opposite one:

h = − ∇f(a)
|∇f(a)| . The rate of increase (decay) in f is measured by the

length |∇f(a)|.
• If f has a local extremum at a, then ∇f(a) = 0. The points where the

gradient vanish are called the critical points of the function f .

• ∇f(a) is orthogonal to the level set S = {x : f(x) = f(a)}.
Let us comment the last claim. Consider a differentiable curve γ : I → S,
I = (−c, c), γ(0) = a. Then f(γ(t)) = f(a), and

0 =
d

dt
f(γ(t))

∣∣∣
t=0

= (∇f(a), γ′(0)) .

That is, the vectors ∇f(a) and γ′(0) are orthogonal to each other5.

Question 3.11. Whether the gradient depends on the choice of the inner
product in Rn? Justify your answer.

Exercise 3.12 (Rolle theorem in Rn). Let U ⊂ Rn be a bounded domain,
f : U → R1 be a continuous function differentiable on U , and vanishing on
the boundary ∂U . Show that there exists x ∈ U such that Df (x) = 0.

3.3 The partial derivatives

Choose the orthogonal coordinates in Rn, i.e. fix an orthonormal basis
{e1, ... en} in Rn. Then

Df (a)h = Df (a)
∑

i

hiei =
∑

i

hi ·Df (a)ei .

5The vector γ′(0) is called the tangent vector to S at the point a.
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The real numbers Df (a)ei = (∇f(a), ei) are called the partial derivatives of
f at a, and are denoted by ∂f

∂xi
(a), fxi

(a), or by ∂if(a). That is,

∇f(a) =




∂1f(a)
...

∂nf(a)


 .

Equivalently, the partial derivatives can be defined as

∂if(a) = lim
t→0

f(a + tei)− f(a)

t
.

Probably, you’ve started with this definition in the course Hedva 2.
Existence of partial derivatives does not imply differentiability of f . Look

at the function

f(x, y) =

{
x2y

x2+y2 , (x, y) 6= (0, 0),

0 (x, y) = (0, 0) .

It’s partial derivatives exist everywhere in the plane and vanish at the origin
(f(x, 0) = f(0, y) = 0 =⇒ ∂xf(0, 0) = ∂y(0, 0) = 0). Thus, if f would be
differentiable, its derivative at the origin must be the zero linear functional.
Then ∣∣∣∣f(x, y)− f(0, 0)− (

0 0
) (

x
y

)∣∣∣∣
∣∣∣∣
(

x
y

)
−

(
0
0

)∣∣∣∣
=

x2|y|
(x2 + y2)3/2

.

Substituting x = y = t, we get

t2|t|
(2t2)3/2

=
1

23/2
6= 0 .

Thus, f is not differentiable at the origin.
Existence of partial derivatives does not yield even continuity, as the

function

f(x, y) =

{
x2y

x4+y2 (x, y) 6= (0, 0),

0 (x, y) = (0, 0)

shows. This function has partial derivatives everywhere in the plane but is
discontinuous at the origin.

Exercise 3.13. Fill the details.

If the partial derivatives are continuous, then the function must be con-
tinuously differentiable:
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Theorem 3.14. TFAE:
(i) f ∈ C1(U);
(ii) Everywhere in U , there exist continuous partial derivatives ∂if .

Proof:
(i) =⇒ (ii):

|∂if(a)− ∂if(b)| = |(Df (a)−Df (b)) ei| ≤ ||Df (a)−Df (b)|| , 1 ≤ i ≤ n .

(ii) =⇒ (i). First, we prove that f is differentiable at U . To simplify nota-
tions, we assume that we deal with the function of two variables. Then

f(a1 + h1, a2 + h2)− f(a1, a2)

= f(a1 + h1, a2 + h2)− f(a1, a2 + h2) + f(a1, a2 + h2)− f(a1, a2)

= fx1(a1 + θ1h1, a2 + h2)h1 + fx2(a1, a2 + θ2h2)h2 .

In the last line, we used the mean value property for differentiable functions
of one variable t 7→ f(t, a2 + h2) and t 7→ f(a1, t). Using the continuity of
the partial derivatives, we get

f(a1 + h1, a2 + h2)− f(a1, a2)

= (fx1(a1, a2) + o(1)) h1 + (fx2(a1, a2) + o(1)) h2

= fx1(a1, a2)h1 + fx2(a1, a2)h2 + o(
√

h2
1 + h2

2) .

That is, the function f is differentiable at the point a = (a1, a2).
It remains to check the continuity of the derivative Df . It is obvious,

since

||Df (a)−Df (b)|| =
√√√√

n∑
i=1

(∂if(a)− ∂if(b))2 .

Done! 2

Corollary 3.15. f ∈ C1(U,Rm) iff all partial derivatives are continuous:
∂fj

∂xi
∈ C1(U), 1 ≤ i ≤ n, 1 ≤ j ≤ m.

The matrix consisting of partial derivatives



∂1f1 . . . ∂nf1
...

. . .
...

∂1fm . . . ∂nfm




is called the Jacobi matrix of the mapping f . In the case m = n, the de-
terminant of this matrix is called the Jacobian of the mapping f . Both will
play a very important role in this course.

21



Exercise 3.16. Let f(x, y) be a differentiable function, and g(r, θ) = f(r cos θ, r sin θ).
Show that (

∂f

∂x

)2

+

(
∂f

∂y

)2

=

(
∂g

∂r

)2

+
1

r2

(
∂g

∂θ

)2

.

Exercise 3.17. Let Matn(R) be the linear space of n×n matrices with real
entries, and det : Matn(R) → R be the determinant.

(i) The function det is continuously differentiable on Mat(R). For each A
the derivative at A, i.e. (Ddet)(A), is a linear functional on n× n matrices.

(ii) if I is the unit matrix, then (Ddet)(I)H = tr(H);

(iii) if the matrix A is invertible, then (Ddet)(A)H = (detA)−1tr(A−1H);

(iv) in the general case, (Ddet)(A)H = tr(A]H), where A] is the comple-
mentary matrix to A, that is, A]

i,j equals (−1)i−j times the determinant of
the (n − 1) × (n − 1) matrix obtained from A by deleting the i-th row and
the j-th column.

3.4 The mean-value theorem

Theorem 3.18. Let f : U → R be a differentiable function, and let [a, b] ⊂ U
be a closed segment. Then there exists ξ ∈ (a, b) such that

f(b)− f(a) = (∇f(ξ), b− a) = Df (ξ)(b− a) .

Proof: Define the function

ϕ(t)
def
= f(a + t(b− a)) , 0 ≤ t ≤ 1 ,

and apply the one-dimensional mean-value theorem. 2

Corollary 3.19. In the assumptions of the previous theorem,

|f(b)− f(a)| ≤ sup
ξ∈(a,b)

‖Df (ξ)‖ · |b− a| .

Exercise 3.20. 1. Suppose U ⊂ Rn is an open convex set, f : U → R1 is a
differentiable function, such that ‖Df‖ ≤ M everywhere in U . Then, for any
a, b ∈ U , |f(b)− f(a)| ≤ M |b− a|.
2. Construct a non-convex domain U ⊂ R2 and a function f ∈ C1(U) such
that ‖Df‖ ≤ 1 everywhere in U , but |f(b)−f(a)| > |b−a| for some a, b ∈ U .

Exercise 3.21. 1. Let U ⊂ R2 be a convex domain. Let f be a C1-function
in U . If ∂1f ≡ 0 everywhere in U , then f does not depend on x1.
2. Whether the result from item 1. persists if U is an arbitrary domain in
Rn? (Prove or disprove by a counterexample).
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3.5 Derivatives of high orders

In this course, we shall use the high order derivatives only occasionally. So
here, we restrict ourselves by few comments.

Partial derivatives of higher orders are defined recursively; e.g.

∂2
ij =

∂

∂xi

(
∂

∂xj

)

etc. A very important fact, which you certainly know from Hedva 2 says
that under certain assumptions it does not matter in which order to take the
partial derivatives.

Theorem 3.22. If the mixed derivatives ∂2
ijf , ∂2

jif of a scalar function f
exist and continuous at a, then

∂2
ijf(a) = ∂2

jif(a) .

If you are not sure that you remember this result, I strongly suggest to
look at any analysis textbook.

The next six exercises also pertain to Hedva-2, rather than to Hedva-3.

Exercise 3.23. Suppose ∆ =
∑n

j=1 ∂2
j (this is the second order differential

operator in Rn called Laplacian).
(i) Check that ∆(f · g) = f∆g + 2(∇f,∇g) + g∆f .
(ii) Compute Laplacian of the functions f(x, y) = log(x2+y2), (x, y) ∈ R2\0,
and f(x) = |x|−n+2, x ∈ Rn \ {0}.
(iii) Let Rθ be the (counterclockwise) rotation of the plane by angle θ, and
Fθ : f 7→ f ◦ Rθ be the composition operator. Check that the operators ∆
and Fθ commute, i.e., ∆ ◦ Fθ = Fθ ◦∆.

Exercise 3.24. The function

f(x, t) =

{
1√
t
e−x2/4t t > 0

0 t ≤ 0, (x, t) 6= (0, 0)

is infinitely differentiable in R2\{(0, 0)} and satisfies therein the heat equation
fxx = ft.

Exercise 3.25 (combinatorics). How many m-th order partial derivatives
has an infinitely differentiable function of 3 variables? of n variables?

Exercise 3.26. Let f be an infinitely differentiable function on R3, and
ϕ(t) = f(t, t2, t3). Find the first 4 terms of the Taylor expansion of ϕ at
t = 0.
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Exercise 3.27. Show that the point (0, 0) is a local extremum of the function

1√
(1− x)2 + (1− y)2

+
1√

(1 + x)2 + (1− y)2

+
1√

(1− x)2 + (1 + y)2
+

1√
(1 + x)2 + (1 + y)2

.

Find out whether this is a local minimum or local maximum.

Exercise 3.28. Suppose f is a C2-function such that ∆f ≥ 0 (∆ is the
Laplacian). Prove that f does not have strong local maxima

Hint: start with a stronger assumption ∆f > 0.

The second derivative D2
f of a scalar function f is the derivative of the map

Df : U → L(Rn,R1), that is D2
f is an element of the space L(Rn,L(Rn,R1)).

If D2
f exists and continuous in U , then we say that f is twice continu-

ously differentiable in U and write f ∈ C2(U). Elements of the linear
space L(Rn,L(Rn,R1)) can be identified with (R1-valued) bilinear forms;
i.e. with functions ϕ : Rn × Rn → R1 linear with respect to each argument:
if Φ ∈ L(Rn,L(Rn,R1)), then ϕ(h1, h2) = (Φh1) h2. Therefore, the second
derivative D2

f can be viewed as a symmetric (R1-valued) bilinear form.
Similarly, if f : U → Rm, then D2

f can be regarded as a symmetric Rm-
valued bilinear form.

The higher derivatives are defined by recursion with respect to the order
k. If the function f has continuous derivatives of all order k in U , then we
say that is Ck-smooth.

Problem 3.29. Let f : U → Rm be a Ck-smooth mapping. Identify the k-
th derivative Dk

f with a symmetric k-linear Rm-valued form; i.e. a mapping
Rn × Rn × ... × Rn

︸ ︷︷ ︸
k times

→ Rm which is linear with respect to each argument

(when the others are fixed) and symmetric.
Hint: use induction with respect to k.
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4 Inverse Function Theorem

In this lecture, we address the following problem. Let f be a C1-mapping.
Consider equation f(x) = y. When it can be (locally) inverted? what are
the properties of the inverse mapping f−1? We expect that locally f behaves
similarly to its derivative Df ; i.e. if Df (a) is invertible, then f maps in a
one-to-one way a neighbourhood of a onto a neighbourhood of b = f(a), that
the inverse map is differentiable at b, and Df−1(b) ·Df (a) = I (the identity
map). The main result of this lecture (which is the first serious theorem
in this course!) confirms that prediction. However, first, we will prove the
following simple

Claim 4.1. Let U ⊂ Rn be an open set, f : U → Rm be a differentiable
function with a differentiable inverse. Then m = n.

Proof: We have x = f−1 ◦ f(x), and the chain rule is applicable:

Df−1(f(x)) ·Df (x) = In

(identity map). Recall that Df ∈ L(Rn,Rm). Then a result from the Linear
Algebra course insists that n ≤ m. (Recall the result!). By symmetry, m ≤ n.
Thus m = n, completing the proof. 2

4.1 The Theorem

Our standing assumptions are: U ⊂ Rn is a domain, a ∈ U , f : U → Rn is a
C1-mapping.

Theorem 4.2. Suppose that the linear map Df (a) is invertible. Then
1. there are a neighbourhood U = Ua of a and a neighbourhood V = Vb of
b = f(a) such that f

∣∣
U

is a one-to-one mapping, and f(U) = V ;
2. the inverse map g : V → U is a C1-mapping, and Dg(b) ·Df (a) = In.

Examples:
1. (n = 1) The function of one variable

f(t) =

{
t + 2t2 sin(1/t) t 6= 0,

0 t = 0

is differentiable, and the derivative f ′(t) is bounded everywhere. However,
this function is not one-to-one on any neighbourhood of the origin. Here, the
C1-assumption is violated.
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2. (n = 2) The mapping f defined as

{
x1 = ex cos y,

y1 = ex sin y

meets conditions of the Inverse Function Theorem. f maps R2 onto R2 \{0},
but for any w ∈ R2\{0}, the equation f(z) = w has infinitely many solutions.
This shows that the IFT can be applied only locally.

4.2 Continuity of the inversion of linear operators

We shall prove the linear algebra claim that we need in the proof of the IFT.
By GLn we denote the group of all invertible linear mappings from L(Rn,Rn).

Claim 4.3. 1. Suppose A ∈ GLn, and B ∈ L(Rn,Rn) is such that

||B − A|| < 1

||A−1|| ,

then B ∈ GLn as well.
2. The mapping A 7→ A−1 is continuous in the operator norm.

The second assertion says that if a sequence of operators Bk converges to
A ∈ GLn in the operator norm, then according to the item 1, Bk ∈ GLn for
sufficiently large k, and B−1

k also converges to A−1.

Proof of the claim:

1. Set

α =
1

||A−1|| , β = ||B − A||.

Then
|Bx| ≥ |Ax| − |(B − A)x| ≥ |Ax| − β|x| .

Since,
|x| = |A−1Ax| ≤ α−1|Ax| ,

we get |Ax| ≥ α|x|, and then |Bx| ≥ (α − β)|x| > 0 for all x ∈ Rn \ {0}.
Thus, B is invertible.

2. Start with the identity

B−1 − A−1 = B−1(A−B)A−1,

then
||B−1 − A−1|| ≤ ||B−1|| · ||A−B|| · ||A−1||.
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We already know from the first part that |Bx| ≥ (α− β)|x|, or

(α− β)|B−1y| ≤ |BB−1y| = |y|,

that is,

||B−1|| ≤ 1

α− β
,

and finally

||B−1 − A−1|| ≤ β

α(α− β)
.

Therefore, ||B−1 − A−1|| can be made arbitrary small, if β = ||B − A|| is
small enough (and α is fixed). 2

4.3 Proof of the IFT

The proof will be split into several parts.
Set

A = Df (a), λ =
1

4||A−1|| ,

and choose a sufficiently small ball B centered at a such that

sup
x∈B

||Df (x)− A|| ≤ λ .

(Why this is possible?) This choice guarantees that Df (x) is invertible ev-
erywhere in B.

4.3.1 The map f is one-to-one in B.

Let x, x+h ∈ B. We shall estimate from below the distance |f(x+h)−f(x)|.
We need the following

Claim 4.4.

|f(x + h)− f(x)− Ah| ≤ 1

2
|Ah| .

Proof: introduce the Rn-valued function of one variable

ϕ(t)
def
= f(x + th)− tAh .

Then ϕ′(t) = Df (x + th)h− Ah, and

||ϕ′(t)|| ≤ ||Df (x + th)− A|| · |h| ≤ λ · |h| = 1

4||A−1|| · |h| ≤
1

4
|Ah| .
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Therefore,

||ϕ(1)− ϕ(0)|| =
∣∣∣∣
∣∣∣∣
∫ 1

0

ϕ′(t) dt

∣∣∣∣
∣∣∣∣ ≤

∫ 1

0

||ϕ′(t)|| dt ≤ 1

4
|Ah| ,

proving the claim. 2

Now,

|f(x + h)− f(x)| ≥ |Ah| − |f(x + h)− f(x)− Ah| 4.4≥ 1

2
|Ah|

≥ 1

2||A−1|| · |h| = 2λ|h| ,

that is, f is one-to-one on the ball B.
We shall record the estimate

(4.5) |f(x + h)− f(x)| ≥ 2λ|h|

for future references.

4.3.2 Surjectivity

We shall show that f(B) is an open set. This will be the neighbourhood V
of b, where the inverse map f−1 exists.

Take y0 ∈ f(B), y0 = f(x0) (x0 ∈ B), and take a ball B′ = B(x0, r) such
that B′ ⊂ B.

Claim 4.6.
B(y0, λr) ⊂ f(B′) .

Of course, this claim yields that the image f(B) is an open set.

Proof of the claim: Take any y such that |y − y0| < λr. We are looking for
the point x∗ ∈ B′ such that y = f(x∗). It is natural to try to find x∗ by
minimizing the function ϕ(x) = |y − f(x)|2 over the closed ball B′.

First of all, show that the minimum is not attained on the boundary
sphere. Observe that ϕ(x0) = |y − f(x0)|2 < (λr)2 (due to the choice of y).
On the other hand, if x ∈ S ′ = ∂B′, then

√
ϕ(x) = |f(x)− y| > |f(x)− y|+ |f(x0)− y| − λr

≥ |f(x)− f(x0)| − λr
(4.5)

≥ 2λ|x− x0| − λr = 2λr − λr = λr ,

whence ϕ(x) > (λr)2. Thus, ϕ does not achieve its minimum on the boundary
of B′.
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Let x∗ ∈ B′ be the minimum point of ϕ, then Dϕ(x∗) = 0.
Differentiating ϕ(x) = (y − f(x), y − f(x)), we get

Dϕ(x)h = −2〈Df (x)h, y − f(x)〉 ,

and we arrive at the equation

〈Df (x
∗)h, y − f(x∗)〉 = 0 , for any h ∈ Rn .

Since the linear map Df (x) is invertible everywhere on B′, and in particular
at x∗, the range of Df (x

∗) coincides with Rn; i.e., {Df (x
∗)h}h∈Rn = Rn.

Since y − f(x∗) belongs to the orthogonal complement to this set, we get
y − f(x∗) = 0, that is y = f(x∗), proving Claim 4.6. 2

4.3.3 Continuous differentiability of the inverse map

Let g = f−1. It remains to show, that g ∈ C1(V ), where V = f(B), and that
Dg = D−1

f .
As in the one-dimensional case, first, we shall see that g is a continuous

map, then we check that g is differentiable and Dg = D−1
f , and then that the

derivative Dg is continuous on V .
Let y, y + k ∈ V = f(B). We need to estimate the norm of h = g(y +

k)− g(y). Set x = g(y). Then

f(x + h)− f(x) = f(g(y + k))− y = y + k − y = k,

and by estimate (4.5)

|k| = |f(x + h)− f(x)| ≥ 2λ|h| = 2λ|g(y + k)− g(y)| .

This gives us continuity of g.
Now, let L = D−1

f . Since

k = f(x + h)− f(x) = Df (x)h + rx(h) ,

we get Lk = h + Lrx(h), or

g(y + k)− g(y)− Lk = h− Lk = −Lrx(h) .

We shall estimate the norm of this expression. Since f is differentiable,
|rx(h)| ≤ ε|h|, provided that |k| (and therefore |h|) is sufficiently small. Hence

|Lrx(h)| ≤ ||L|| · |rx(h)| ≤ ε||L|| · |h|
(4.5)

≤ ε||L|| · |k|
2λ

.
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This shows that

lim
k→0

|Lrx(h)|
|k| = 0 .

Hence, g is differentiable at y, and its derivative is

Dg(y) = L = Df (x)−1 .

It remains to check the continuity of the map y 7→ Dg(y). Let us look
again at the formula we’ve obtained:

Dg(y) = (Df (g(y)))−1 .

The RHS is a composition of three mappings: y 7→ g(y), a 7→ Df (a), and
L 7→ L−1. The first two are continuous. The third map L 7→ L−1 is also
continuous (item 2. of Claim 4.3). This does the job and finishes off the long
proof of the Inverse Function Theorem. 2

Exercise 4.7. The mapping f maps the coefficients a1, a2, a3 of the equation
x3 + a1x

2 + a2x + a3 = 0 into its roots x1 ≤ x2 ≤ x3. Prove that f is a C1-
mapping defined in a neighbourhood of the point a1 = −3, a2 = 2 and a3 = 0,
and compute Jacobian of f at this point.

Exercise 4.8. The mapping f : Rn → Rn maps x1, x2, ... xn into the co-
efficients a1, a2, ... an of the polynomial (x − x1)(x − x2) · ... · (x − xn) =
xn + a1x

n−1 + ... + an.

(i) Prove that the rank of Df equals the number of distinct values among
x1, ..., xn.

(ii) Compute the Jacobian of f .

Hint: start with the cases n = 2 and n = 3.

Exercise 4.9. Let f be a C1-mapping. Show that the rank of Df is an upper
semi-continuous function, i.e., rankDf (x) ≥ rankDf (x0) in a neighbourhood
of the point x0.

In the next two lectures, we shall show how powerful the Inverse Function
Theorem is. We exhibit several of its important consequences:

• the open mapping theorem;

• the implicit function theorem;

• the Lagrange multipliers method.
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5 Open Mapping Theorem and Lagrange Mul-

tipliers

5.1 Open Mapping Theorem

Definition 5.1. The mapping f : U → Rm is called open if for any open
subset U ′ ⊂ U the image f(U ′) is also open.

Definition 5.2. The C1-mapping f is regular, if, for all a ∈ U , rank Df (a) =
m.

Recall that, for L ∈ L(Rn,Rm), rankL = dim(LRn) (in other words, the
maximal number of linear independent columns in the matrix representation
of L).

Theorem 5.3. Regular mappings are open.

We shall prove a local version of this result which says:

(5.4) rank Df (a) = m =⇒ f(a) ∈ intf(U) .

Of course, the Open Mapping Theorem follows from (5.4). If m = n, then
(5.4) is a part of the Inverse Function Theorem. Now, we shall reduce the
general case to this special one.

First take a linear map T ∈ L(Rm,Rn) such that Df (a) · T is invertible.
Such a map T exists. Indeed, since rank Df (a) = m, we have dim Ker Df (a) =
n−m. Let Y be the orthogonal complement to Ker Df (a) in Rn, dim Y = m.
As we know from the Linear Algebra course, the mapping Df (a) is one-to-
one on the subspace Y . Choose any one-to-one linear mapping T : Rm → Y ,
then Df (a) · T is invertible.

Now, consider the function g(x)
def
= f(a+Tx). Its derivative at the origin

Dg(0) = Df (a) ·T is invertible. Thus by the Inverse Function Theorem, there
is a neighbourhood V of the point g(0) = f(a) which belongs to f(U). That
is, f(a) lies in the interiour of the image f(U). 2

5.2 Lagrange Multipliers

In the courses Hedva 1 and Hedva 2 you’ve learnt how to find extrema of
functions of one and several variables. Here, we learn how to find the extremal
values of functions when the variables are subjects to additional restrictions.

Let U ⊂ Rn be an open set, the functions f, g1, ..., gk are C1 (scalar)
functions defined on U ,

M = {x ∈ U : g1(x) = ... = gk(x) = 0} .

31



We want to find extremal values of f when x ∈ U is subject to additional
restrictions given by x ∈ M . Such extremal values are called conditional.

Theorem 5.5. Let a ∈ M be a conditional extremum of f . Suppose that the
vectors ∇g1(a), ..., ∇gk(a) are linearly independent vectors. Then the linear
span of these vectors contains the vector ∇f(a).

In other words, there exist constants λ1, ..., λk such that

∇f(a) =
k∑

j=1

λk∇gk(a) .

Proof: Define the map H : U → Rk+1 by

H =




f
g1

...
gk


 .

This is a C1-map, and rank(DH(a)) ≥ k (since the vectors∇g1(a), ..., ∇gk(a)
are linearly independent). Assume that a is a conditional minimum of f :

f(x) ≥ f(a) x ∈ M ∩ Ua ,

where Ua is a neighbourhood of a. If rank(DH(a)) = k+1, then by the Open
Mapping Theorem




f(a)
0
...
0


 = H(a) ∈ int H(Ua) .

But then there exist t < f(a) and x ∈ Ua such that

H(x) =




t
0
...
0


 .

In other words, there is x ∈ M such that f(x) = t < a. Contradiction!
Hence rank DH(a) = k, and the vector ∇f(a) belongs to the linear span

of the vectors ∇g1(a), ..., ∇gk(a). 2

Now, we bring several applications of the Lagrange multipliers technique.
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5.2.1 Geometrical extremal problems

We start with simple geometrical problems taken from the ‘high-school ana-
lytic geometry’:

Find the distance from the origin to the affine hyperplane
∑

αixi = c
in Rn. Solution: Here, we minimize the function f(x) =

∑
x2

i under
condition g(x, y, z) =

∑
αixi − c = 0. In this case, the Lagrange equations

are {
2xi = λαi, 1 ≤ i ≤ n ,∑

αixi = c .

We get

c =
λ

2

∑
α2

i ,

or

λ =
2c∑
α2

i

.

Substituting this value into the first n of the Lagrange equations, we get the
coordinates of the point where f attains the conditional maximum:

xi =
cαi∑

α2
i

, 1 ≤ i ≤ n .

The distance is √∑
x2

i =
|c|√∑

α2
i

.

Exercise 5.6. Find the point on the line
{

αx + βy + γz = c

x + y + z = 1

the closest to the origin.

Exercise 5.7. The closed curve Γ ⊂ R3 is defined as the intersection of the
ellipsoid

3∑
j=1

x2
j

a2
j

= 1 ,

and the plane
3∑

j=1

Ajxj = 0 .

Find the points on Γ which are the closest and the most distant from the
origin.
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Isoperimetry for Euclidean triangles By A we denote the area, and
by L the length. The Dido isoperimetric inequality says that, for any plane
figure G,

A(G) ≤ L(∂G)2

4π
,

and equality is attained for discs only. For triangles, the estimate can be
improved:

Theorem 5.8 (Heron). For any plane triangle ∆,

(5.9) A(∆) ≤ L(∂∆)2

12
√

3
,

and the equality sign attains for the equilateral triangles and only for them.

In other words, among all triangles with the given perimeter, the equilateral
one has the largest area.

Solution: is based on the Heron formula that relates the area A and length
of the sides x, y and z:

A2 =
L

2
·
(

L

2
− x

)
·
(

L

2
− y

)
·
(

L

2
− z

)
.

Set L = 2s. Then we need to maximize the function

f(x, y, z) = s(s− x)(s− y)(s− z)

under condition
g(x, y, z) = x + y + z − 2s = 0 .

Of course, we have additional restrictions

x, y, z > 0, x + y > z, x + z > y, y + z > x ,

which define the domain U in the space (x, y, z). (Draw this domain!) On
the boundary of this domain (when the inequalities turn to the equations),
the function f identically vanishes. Thus, f attains its maximal value inside
U and we can use the Lagrange multipliers.

The Lagrange equations are





−s(s− y)(s− z) = λ

−s(s− x)(s− z) = λ

−s(s− x)(s− y) = λ

x + y + z = 2s
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The first three equations give us

(s− y)(s− z) = (s− x)(s− z) = (s− x)(s− y) ,

whence

x = y = z =
2

3
s ,

and A2 = s · (s/3)3. The result follows. 2

5.2.2 The linear algebra problems

Here, we look at two Linear Algebra problems.

Extrema of quadratic forms We are looking for the maximal and mini-
mal values of the symmetric quadratic form

f(x) =
n∑

i,j=1

aijxixj aij = aji ,

on the unit sphere
n∑

i=1

x2
i = 1 .

In this case, f(x) = (Ax, x), where A is a symmetric linear operator
with the matrix coefficients aij. Thus ∇f(x) = 2Ax. Furthermore, g(x) =∑

i x
2
i −1, and ∇g(x) = 2x. Therefore, the Lagrange equations take the form

{
2Ax = 2λx

(x, x) = 1 .

Hence, λ is the eigenvalue of A, and the maximum of the form is the largest
eigenvalue, the minimum of the form is the smallest eigenvalue.

The operator norm As a corollary, we compute the (operator) norm of
a linear operator L ∈ L(Rn,Rn). By definition,

||L|| = max
|x|=1

|Lx| .

Thus, we need to maximize the function f(x) = |Lx|2 = (Lx, Lx) under
additional condition |x|2 = 1.

Observe that f(x) = (Lx,Lx) = (L∗Lx, x). Hence, by the previous
paragraph, ||L||2 equals the maximal eigenvalue of the symmetric matrix
L∗L.

Exercise 5.10. Let L be an invertible linear operator. Find ||L−1||.
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5.2.3 Inequalities

Lagrange multipliers are very useful in proving inequalities. Here are several
examples.

The Hölder Inequality Let 1 < p < ∞. Then

(5.11)
∣∣∣
∑

xi · yi

∣∣∣ ≤
{∑

|xi|p
}1/p

·
{∑

|yi|q
}1/q

,

where q is ‘the dual exponent’ to p: 1
p

+ 1
q

= 1.

Proof: We assume that all xi’s and yi’s are non-negative. Since Hölder’s
inequality is homogeneous with respect to multiplication of all xi by the
same positive number, we assume that

∑
xp

i = 1. Given y ∈ Rn with
non-negative coordinates, define the function f(x) =

∑
xiyi. That is, for

a compact set K = {x ∈ Rn : xi ≥ 0,
∑

xp
i = 1}, we want to prove that

maxK f ≤ {∑ yq
i }1/q. We use induction with respect to the number n of

variables. For n = 1, we have K = {1}, and there is nothing to prove.
For an arbitrary n ≥ 2, we look at the extremum of f on K. We assume

that all yi are positive (otherwise, the actual number of variables is reduced
and we can use the induction assumtpion). Note that he Lagrange multipliers
technique can be applied only on the set K0 = {x ∈ Rn : xi > 0,

∑
xp

i = 1}.
(why?) However, the rest K \ K0 consists of x’s such that at least one of
the coordinates xi vanishes and

∑
xp

i = 1. Hence, by the assumption of

the induction maxK\K0 f < {∑ yq
i }1/q. Now, using the Lagrange method,

we shall find that the conditional extremum of f under assumptions g(x) =∑
xp

i − 1 = 0 equals {∑ yq
i }1/q. Hence, this is the conditional maximum.

This will prove Hölder’s inequality (and also will show that in cannot be
improved).

The Lagrange equations have the form

yi = λpxp−1
i , 1 ≤ i ≤ n ,
∑

xp
i = 1 .

To simplify notations, set ν = λp. Then xi = (yi/ν)
1

p−1 , 1 ≤ i ≤ n, whence

1 =
∑

(yi/ν)
p

p−1 , or ν
p

p−1 =
∑

y
p

p−1

i . We get

xj = (yj/ν)
1

p−1 = y
1

p−1

j ·
{∑

y
p

p−1

i

}−1/p

, 1 ≤ j ≤ n ,

then

f(x) =
∑

xjyj =
∑

y
1+ 1

p−1

j ·
{∑

y
p

p−1

i

}−1/p

=
{∑

yq
j

}1− 1
p

=
{∑

yq
j

} 1
q
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(recall that p
p−1

= q). 2

We proved Hölder’s inequality in the case of finitely many variables {xi} and
{yi}. Note that it persists in the case of countable many variables xi and yi.
In this case, it means that if two series

∑ |xi|p and
∑

yi|q converge (and q is
dual to p), then the series

∑
xiyi also converges and inequality (5.11) holds.

Exercise 5.12. Prove that, for xi > 0,

n
1
x1

+ ... + 1
xn

≤ n
√

x1 · x2 · ... · xn ≤ x1 + x2 + ... + xn

n
.

The equality sign attains only in the case when all xi’s are equal.
Hint: to get the first inequality, minimize x1 ·x2 · ... ·xn under assumption that
all xi’s are positive and

∑
i x

−1
i = 1. To get the second inequality, maximize

x1 · x2 · ... · xn under assumption that all xi’s are positive and
∑

i xi = 1.

Exercise 5.13. Find the maximum of the function f(x, y, z) = xaybzc (a, b, c >
0), where x, y and z are positive, and xk + yk + zk = 1 (k > 0).

The following inequality is essentially more involved. It’s first proof used
Lagrange multipliers, though later Pólya and Carleson found direct proofs:

Problem 5.14 (Carleman). Suppose ci > 0. Then

∑
n

{c1 · ... · cn}1/n < e
∑

k

ck .

For those who like inequalities, there is an excellent classical book: “In-
equalities” by Hardy, Littlewood and Pólya. Our Library also has a recent
book by Steele “The Cauchy-Schwarz master class” which looks good.
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6 Implicit Function Theorem

6.1 Curves in the plane

Start with a motivation. Assume we have a curve in the plane R2 defined
implicitly by

(6.1) f(x, y) = 0 ,

where f is a smooth function. We want to solve this equation; i.e. to find a
smooth function x = g(y) such that

(6.2) f(g(y), y) ≡ 0 ,

or a smooth function y = h(x) such that

f(x, h(x)) ≡ 0 .

After a minute reflection, we come to the conclusion that there is at least
one obstacle for this: differentiating identity (6.2), we get

f ′x · g′ + f ′y = 0,

or

g′(y) = −f ′y(g(y), y)

f ′x(g(y), y)
.

That is the function g(y) does not exists at the points y such that simulta-
neously f(x, y) = 0 and fx(x, y) = 0. Similarly, the function h(x) does not
exists at the points x such that simultaneously f(x, y) = 0 and fy(x, y) = 0.

To fix the idea, we will be after the function x = g(y). The simplest
example is the unit circle: f(x, y) = x2 + y2 − 1. We see that the function
g(y) does not exists at the points (0,±1). Now, assume that we’ve excluded
these points. Then, there are two solutions x = g±(y) = ±

√
1− y2, and we

need to specify which sign to take. We can do this simply by choosing one
point (a, b) (a 6= 0) which automatically determines the whole branch: After
we fixed the point (a, b) we can uniquely determine the smooth function
x = g(y) we were looking for. It is defined in a neighbourhood of b and
g(b) = a.

Another example is the the famous ‘folium cartesii’. This is a curve
in R2 defined by the equation

f(x, y) = x3 + y3 − 3axy = 0 ,

a is a positive parameter.
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The point (0, 0) is a singular point, since at this point f ′x = f ′y = 0 and
we cannot “resolve” the equation f(x, y) = 0. There are two other points on
the folium: (a21/3, a22/3) and (a22/3, a21/3); at the first one f ′x vanishes, at
the second one f ′y vanishes.

So now, we can formulate the two-dimension result that we hope to get6:

Theorem 6.3 (2D version). Let U ∈ R2 be a domain, and f ∈ C1(U,R2).
Let (a, b) ∈ U be such a point that f(a, b) = 0, and f ′x(a, b) 6= 0. Then there
exists a neighbourhood W of b and a unique function g ∈ C1(W ) such that
g(b) = a, and f(g(y), y) ≡ 0 in W .

Exercise 6.4. The following equations have unique solutions for y = y(x)
near the points indicated: x cos xy = 0, (1, π/2), and xy + log xy = 1, (1, 1).
Prove that in both cases the function y(x) is convex.

Exercise 6.5. Find the maximum and the minimum of the function y that
satisfies the equation x2 + xy + y2 = 27.

6.2 The theorem

Here are our standing assumptions:
U ⊂ Rn×Rm is an open set, we denote points of U by (x, y), x ∈ Rn, y ∈ Rm;
f : U → Rn is a C1-mapping;
(a, b) ∈ U is such a point that f(a, b) = 0.

We consider equation

(6.6) f(x, y) = 0 .

This is a system of n equations with n + m variables. We want to solve this
system; i.e. to express x in terms of y. More formally, we are looking for a
neighbourhood W of b and for a C1 mapping g : W → Rn such that a = g(b)
and

f(g(y), y) ≡ 0, y ∈ W .

By f ′x we denote the derivative of the mapping f with respect to the variable
x ∈ Rn when the other variable y is fixed, f ′x ∈ L(Rn,Rn), and by f ′y the
derivative of f with respect to y when x is fixed, f ′y ∈ L(Rm,Rn).

6It is a special case of a general result proven below by applying the inverse function
theorem, though this special case can be proven by elementary means you know from
Hedva-1
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Before stating and proving the theorem, let us try to guess the result
“linearizing the problem”. We have

f(x, y) = f(a, b) + Df (a, b)

(
x− a
y − b

)
+ 〈remainder〉

= f(a, b) + f ′x(a, b)(x− a) + f ′y(a, b)(y − b) + 〈remainder〉 .
Discarding the remainder, to get the function x = g(y), we have

∂xf(a, b)(x− a) + ∂yf(a, b)(y − b) = 0.

If ∂xf(a, b) is invertible, then we get

x = a− [∂xf(a, b)]−1 ∂yf(a, b)(y − b) .

The left hand side is the unique function g we are looking for.
Now, the theorem follows:

Theorem 6.7. Suppose that the linear operator f ′x(a, b) is invertible. Then
there is a neighbourhood W of b and a unique C1-mapping g : W → Rn such
that a = g(b), and

(6.8) f(g(y), y) ≡ 0 ,

for any y ∈ W .

Remark The derivative of the mapping g is given by

(6.9) g′(y) = − [f ′x(g(y), y))]
−1 · f ′y(g(y), y)

We get this differentiating equations (6.8) by y.

Exercise 6.10. If, in assumptions of the implicit function theorem, the func-
tion f belongs to Ck(U) (k ≥ 2), then the function g also belongs to Ck(W ).

Hint: use induction with respect to k.

6.3 Proof of the implicit function theorem

The idea is not difficult. To explain it, consider the simplest case m = n = 1.
For each y in a neighbourhood of the point b, we are looking for the unique
C1-solution x(y) of the equation f(x, y) = 0 such that x(b) = a. Instead, we
consider a more general system of two equations

{
f(x, y) = ξ ,

y = η ,
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with respect to the variables (x, y). The right-hand side belongs to a neigh-
bourhood of the point (0, b), the solution should belong to a neighbourhood
of the point (a, b). The Inverse Function Theorem says that there exists
a unique C1-solution x = ϕ(ξ, η), y = ψ(ξ, η) to this system. Clearly,
y(ξ, η) = η. Now, recalling that we are interested only in a special case
ξ = 0, we get the C1-function x(y) : = ϕ(0, y) such that f(x(y), y) = 0, and
x(b) = 0.

To make this argument formal, define the mapping

F (x, y) =

(
f(x, y)

y

)
: U → Rn+m .

Its derivative at the point (a, b) acts as follows

DF (a, b) :

(
h
k

)
→


Df

(
h
k

)

k


 .

In the block-matrix form,

DF =

(
∂xf ∂yf
0 I

)
.

Since ∂xf(a, b) is invertible, the linear operator DF (a, b) is also invertible¿
More formally, if 




Df

(
h

k

)
= 0

k = 0 ,

then Df

(
h
0

)
= 0, and by our assumption about the operator ∂xf(a, b),

h = 0.
By the Inverse Function Theorem, there are the neighbourhoods

(a, b) ∈ Ũ ⊂ Rn+m, (0, b) ∈ Ṽ ⊂ Rn+m,

and the C1-mapping Φ: Ṽ → Ũ such that Φ(0, b) = (a, b), and F ◦ Φ is the
identity map. We have

Φ(ξ, η) = (ϕ(ξ, η), η) , (η, η) ∈ Ṽ ,

where ϕ : Ṽ → Rn is a C1-function. In other words,

f(ϕ(ξ, η), η) ≡ ξ , for any (ξ, η) ∈ Ṽ .
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Now, define the neighbourhood of b: W = {η : (0, η) ∈ Ṽ }, and the
C1-mapping g(y) = ϕ(0, y), y ∈ W . Then we have

f(g(y), y) ≡ 0 for y ∈ W ,

and g(b) = ϕ(0, b) = a.
The mapping g with these properties is unique. Indeed, if f(x, y) =

f(x′, y) for (x, y), (x′, y) ∈ Ṽ , then F (x, y) = F (x′, y), and since F is one-
to-one x = x′. This completes the proof of the Implicit Function Theorem.
2

If you feel that this proof is too complicated, I strongly suggest, first, to
work out all its details in the case n = m = 1, and only when this special
case will be clear to pass to the general case.

Exercise 6.11. Let f : U → R1 be a C1-function on an open set U , such
that ∂f

∂xj
6= 0 in U for all j = 1, 2, ..., n. Then the equation

f(x1, ... xn) = 0

locally defines n functions x1(x2, ..., xn), x2(x1, x3, ..., xn), ..., xn(x1, ... xn−1).
Find the product

∂x1

∂x2

· ∂x2

∂x3

· ... · ∂xn−1

∂xn

· ∂xn

∂x1

.
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7 Null-sets

It is not a simple task to understand what is the volume? and which sets
have the volume? In our course, we’ll be able to answer this question only
partially. It is much simpler to understand which sets have zero volume.
These sets play a very important role in analysis and its applications.

7.1 Definition

Let Q = I1 × I2 × ... × In ⊂ Rn be a brick (Ik are the intervals, open,
semi-open, or closed). Its volume equals

v(Q) =
n∏

k=1

|Ik| .

Definition 7.1. The set E ⊂ Rn is a null-set if for each ε > 0 there exist
open bricks Qj such that E ⊂ ∪jQj, and

∑
j v(Qj) < ε.

The null-sets are also called the zero measure sets, and the negligible sets.
By N we denote the set of all null-sets. Here are some useful properties of
the null-sets:

1. If E ∈ N and F ⊂ E, then F ∈ N .

2. The countable sets are null-sets. Indeed, if E = {am}m∈N, then for each
m, we find a cube Qm that contains am and such that v(Qm) < ε2−m.

3. The countable union of null-sets is a null-set. The proof is similar: if
E = ∪Em, then we cover Em ⊂ ⋃

j Qjm in such a way that
∑

j v(Qjm) <
ε2−m.

4. If E is a compact set in Rn, then for each ε > 0 there is a finite covering
E ⊂ ⋃

j Qj such that
∑

j v(Qj) < ε.

Note, that the number of the bricks Qj in the covering of a null-set E can be
infinite. For instance, if E = Q ∩ [0, 1] is a set of all rational points in [0, 1],
then there is no finite covering with small total volume. (Why?)

Here are several exercises which help to get used to the new notion:

Exercise 7.2. Prove or disprove: if E ∈ N , then the closure of E is also a
null-set, Ē ∈ N .
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Exercise 7.3. Denote by Q∗ the projection of the set Q ⊂ Rn onto the
hyperplane Rn−1; i.e. Q∗ = {x ∈ Rn−1 : ∃y ∈ R1 (x, y) ∈ Q}. Show that if
Q∗ is a null-set, then Q is also a null-set. Is the converse true?

Exercise 7.4. Let A ⊂ Rn, and f : A → Rn be a Lipschitz map; i.e. |f(x)−
f(y)| ≤ M |x − y| for any x, y ∈ A. Show that if E ⊂ A is a null-set, then
fE is a null-set as well.

Exercise 7.5. Suppose U ∈ Rn is an open set, f ∈ C1(U,Rn). If E ⊂ U is
a null set, then fE is a null set as well.
Hint: any open subset of Rn can be exhausted from inside by finite unions
of closed bricks.

The both exercises yield that the image of a null-set under a linear trans-
formation L ∈ L(Rn,Rn) is again a null-set. We see that the notion of
null-set is independent on the choice of the coordinates in Rn.

7.2 Examples of null-sets

Theorem 7.6. Let Q ⊂ Rn be a closed brick, and f be a continuous function
on Q. Then the graph Γf = {(x, f(x)) : x ∈ Q} of f is a null set in Rn+1.

Proof: Fix ε > 0 and choose δ > 0 such that |x1 − x2| < δ yields |f(x1) −
f(x2)| < ε. Let Π be a partition of Q onto closed bricks, the partition is
chosen so fine that the diameter of each brick from Π is < δ.

For any brick S from Π, the oscillation of f on S is less than ε:

Mf (S)−mf (S) < ε, where Mf (S) = max
S

f, mf (S) = min
S

f.

The graph Γf is covered by the n+1-dimensional bricks S̃ = S×[mf (S),Mf (S)],
and

vn+1(S̃) = vn(S) · (Mf (S)−mf (S)) < εvn(S) .

Then ∑

S̃

vn+1(S̃) < ε
∑

S

vn(S) = εvn(Q) ,

and we are done. 2

In the proof, we silently used that for any finite partition Π of the brick
Q onto bricks S: ∑

S∈Π

v(S) = v(Q) .

Exercise 7.7. Prove this!
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The theorem we proved persists for the graphs of continuous functions
defined on open subsets of Rn.

Exercise 7.8. Prove this!

Hint: again the same idea: any open subset of Rn can be exhausted from
inside by finite unions of closed bricks.

Exercise 7.9. Let f : I → R1 be an increasing function, I be an interval.
Show that the discontinuity set of f is a null set.
Hint: show that for each j ∈ N, the set of points x ∈ I such that f(x + 0)−
f(x− 0) ≥ 1/j is a null-set.

Another important example is provided by

Theorem 7.10 (Sard). Let U be an open set in Rn and f is a non-constant
C1-function on U . Let Bf = {x ∈ U : Df (x) = 0} be the set of critical points
of f , and Cf = f(Bf ) be the set of critical values of f . Then Cf is a null-set.

Note that the set Bf of critical points does not have to be a null-set.

Proof of Sard’s theorem in the one-dimensional case: First, we assume that
f ∈ C1(J,R1), where J ⊂ R1 is a closed bounded interval. Fix an arbitrary
ε > 0. Since f ′ is uniformly continuous on J , we can split J onto small closed
sub-intervals I with disjoint unions such that |f ′(x)− f ′(y)| ≤ ε for x, y ∈ I.

Consider only those sub-intervals I that contain at least one critical point
of f . If f ′(ξ) = 0 for ξ ∈ I, then, by the choice of I, max

I
|f ′| ≤ ε, whence

max
I

f −min
I

f = f(β)− f(α) =

∫ β

α

f ′ ≤
∫ β

α

|f ′| ≤ ε|I| .

In other words, the image f(I) is contained in an interval of length ≤ ε|I|.
Thereby, the critical set Cf is covered by a system of intervals of length
≤ ε

∑ |I| ≤ ε|J |.
Now, if f is a C1-function on an open set U ⊂ R1, then we exhaust U by

finite unions of closed bounded intervals and apply the special case proved
above. 2

Problem 7.11. Prove Sard’s theorem in the multi-dimensional case.

An excellent reference to this problem is Milnor’s book “Topology from
the differentiable viewpoint”.
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7.3 Cantor-type sets

7.3.1 Classical Cantor set

We construct a nested sequence of compacts K0 ⊃ K1 ⊃ ... ⊃ Km ⊃ ... .
First step: K0 = [0, 1].
Second step: we remove from K0 the middle third, i.e. K1 = K0 \ (1

3
, 2

3
).

Then K1 consists of two closed intervals of equal length, and |K1| = 2
3
.

After the m-th step, we obtain a compact Km which is a union of 2m

equal intervals of total length |Km| = (2
3
)m; K0 ⊃ K1 ⊃ ... ⊃ Km. On the

m + 1-st step, we remove from each of these intervals the middle third, and
obtain the compact Km+1. And so on.

Then we set K =
⋂

m Km. This is a compact null-set called the classical
Cantor set.

Exercise 7.12. Show that

1. the set Ω = [0, 1] \K is an open set;

2. ∂Ω = K;

3. K has no isolated points.

4. K coincides with the set of points x ∈ [0, 1] which have no digit 1 in
their ternary representation.

Exercise 7.13. Consider the set of points x ∈ [0, 1] which have no digits 7
in the decimal expansion. Whether this is a null-set?
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7.3.2 Cantor set with “variable steps”

The Cantor construction has various modifications. For example, on each
step, we can remove not the middle third of each component but an interval
of a different length that varies from step to step.

On the m-th step we remove from each closed interval I the middle open
interval of the length εm|I| (in the previous construction, εm = 1

3
for all m).

Then the length of the compact Km we obtain on the m-th step is

|Km| = (1− εm)|Km−1| = ... =
m∏

j=1

(1− εj) .

Now we need to exercise:

Exercise 7.14. Let 0 < εj < 1. Then

lim
m→∞

m∏
j=1

(1− εj) = 0

if and only if ∑
j

εj = +∞ .

We see that the limiting Cantor-type set K =
⋂

m Km is a null-set if
and only if

∑
j εj = +∞. If εj decay so fast that the series

∑
εj converges,

then Cantor-type set K is not a null-set. So that, we obtain an open set
Ω = [0, 1] \K with a huge boundary ∂Ω = K which is not a null set.

7.3.3 Cantor-type sets in R2

If we perform the same construction in the unit square (on each step, one
square is replaced by 4 equal smaller sub-squares on the corners of the original
square), then the open complement [0, 1]2 \K is connected, and we obtain a
domain in the unit square with a large boundary which is not a null-set.

This time, we get a nested sequence of compacts Km in the unit square,
each Km consists of 4m equal closed squares, and the area of Km is

m∏
j=1

(1− εj)
2 .

Then we set K =
⋂

m Km.

Exercise 7.15. Check that
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1. K is a compact set with empty interiour and without isolated points;

2. K is a null-set if and only if
∑

εj = +∞;

3. Ω = (0, 1)2 \K is a domain, ∂Ω ⊃ K.

Thus, we’ve constructed a domain in R2 whose boundary is not a null-set.
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8 Multiple Integrals

8.1 Integration over the bricks

8.1.1 Darboux sums

Let Q = I1 × I2 × ...× In be an n-dimensional brick, f : Q → R1 a bounded
function on Q.

Construction of the Darboux sums is practically the same as in the one-
dimensional case. Let Π be a partition of the brick Q, S a brick from the
partition Π. We set

Mf (S) = sup
S

f , mf (S) = inf
S

f .

Then the upper and lower Darboux sums (of the function f with respect to
the partition Π) are defined as follows:

U(f, Π) =
∑

S

Mf (S)v(S), L(f, Π) =
∑

S

mf (S)v(S) .

The proofs of the following properties are the same as in the one-dimensional
case:

1. if the partition Π′ is finer 7, than the partition Π, then

L(f, Π) ≤ L(f, Π′), U(f, Π′) ≤ U(f, Π);

2. for each partitions Π1 and Π2,

L(f, Π1) ≤ U(f, Π2) .

Exercise 8.1. Prove these properties!

8.1.2 The fundamental definition

Definition 8.2. The function f : Q → R1 is (Riemann) integrable over Q if
f is bounded, and

sup
Π

L(f, Π) = inf
Π

U(f, Π) .

The common value for this supremum and infimum is called the integral
of f over the cube Q, and denoted by

∫

Q

f =

∫

Q

f(x) dx .

7This means that each brick from Π′ is a sub-brick of a brick from Π.
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By R(Q) we denote the class of all Riemann integrable functions on Q.

As in the one-dimensional case, we get

Claim 8.3. The function f is integrable iff for each ε > 0 exists the partition
Π of Q such that

U(f, Π)− L(f, Π) < ε .

Now, we are able to state explicitly which functions are Riemann-integrable8.

8.2 Lebesgue Theorem

The result is formulated in terms of the size of the discontinuity set of the
function f . This set should not be too large. The quantitative way to say
that the function f is discontinuous at the point x is to measure its oscillation
at x:

oscf (x) = lim sup
y→x

f(y)−lim inf
y→x

f(y)

(
=: lim

δ→0
sup

|y−x|<δ

f(y)− lim
δ→0

inf
|y−x|<δ

f(y)

)
.

Exercise 8.4. The function f is continuous at x iff oscf (x) = 0.

That is, the discontinuity set of f is Bf = {x : oscf (x) > 0}.
Exercise 8.5 (properties of the discontinuity set). Prove that the sets Bf+g,
Bf ·g and Bmax(f,g) are contained in Bf ∪Bg. Prove that B|f | ⊂ Bf .

Theorem 8.6 (Lebesgue). The bounded function f : Q → R1 is Riemann-
integrable if and only if Bf is a null set.

We start with

Claim 8.7. Let f : Q → R1 be a bounded function on a closed brick Q. Then
the set Bf,ε = {x ∈ Q : oscf (x) ≥ ε} is compact.

Proof: We’ll show that the set Rn \Bf,ε is open. A minute reflection shows
that it suffices to check that if x ∈ Q and oscf (x) < ε, then there exists a
neighbourhood of x, where still oscf < ε.

Choose δ > 0 such that

sup
|y−x|<δ

f(y)− inf
|y−x|<δ

f(y) < ε.

8Probably, the next result is new for you also in the one-dimensional case.
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Then, for any z from the ball |z − x| < δ
2
,

oscf (z) ≤ sup
|z−y|<δ/2

f(y)− inf
|z−y|<δ/2

f(y) ≤ sup
|y−x|<δ

f(y)− inf
|y−x|<δ

f(y) < ε ,

and we are done. 2

Proof of the theorem: First, assume that Bf is null-set. We need to build a
partition Π of Q such that U(f, Π)− L(f, Π) is as small as we wish.

We choose an arbitrarily small ε > 0 and consider the compact set Bf,ε.
Since this is a null-set, Bf,ε can be covered by finitely many open bricks {Sj}
with the sum of volumes less than ε.

Let Π be a partition of Q. By R we denote the closed bricks from this
partition. If some R intersects the set Bf,ε, we choose the brick R so small
that it contains in the corresponding brick Sj

9. Then we have an alternative:
each closed brick R from this partition is either a sub-brick of one of the
bricks Sj (in this case, we say that R ∈ (I)), or is disjoint with the set Bf,ε

(then R ∈ (II)). Clearly,

U(f, Π)− L(f, Π) =
∑
R∈Π

oscf (R)v(R) =


 ∑

R∈(I)

+
∑

R∈(I I)


 oscf (R)v(R) .

We estimate separately these two sums.
The first sum is small since the total volume of the bricks Sj is small:

∑

R∈(I)

oscf (R)v(R) ≤ 2||f ||∞ ·
∑

j

v(Sj) < 2||f ||∞ · ε ,

here ||f ||∞ = supQ |f |.
If R ∈ (II), then

oscf (x) < ε, ∀x ∈ R .

Splitting, if needed, the closed brick R onto finitely many smaller closed
bricks, we assume that oscf (R) = supR f−infR f < ε. (Why this is possible?)
Now, we see that the second sum is also small:

∑

R∈(II)

oscf (R)v(R) < ε ·
∑
R∈Π

v(R) ≤ εv(Q) .

This proves the result in one direction.

Question 8.8. How the proof uses compactness of the sets Bf,ε?

9Otherwise, we just refine it.
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Now, we prove the converse. Assume that f is Riemann-integrable on Q.
Since Bf =

⋃
j Bf,1/j, it suffices to show that each Bf,1/j is a null-set.

Given ε > 0, choose a partition Π of Q such that U(f, Π)−L(f, Π) < ε/j.
Let {R∗} be those of the bricks from this partition that intersect the set
Bf,1/j. Then, automatically, oscf (R

∗) ≥ 1/j for each brick R∗. Summing
over these bricks, we get

∑
R∗

v(R∗) ≤ j ·
∑
R∗

oscf (R
∗)v(R∗) ≤ j ·

∑
R∈Π

oscf (R)v(R) < j · ε

j
= ε .

That is, Bf,1/j ⊂
⋃

R∗ is a null-set, and Bf is a null-set as well. We are done.
2

To better understand this proof, I recommend to check it with all details
in the one-dimensional case.

8.3 Properties of the Riemann integral

8.9. The constant function is integrable, and
∫

Q

c = cv(Q) .

8.10. If the functions f and g are integrable, then any linear combination is
integrable, and ∫

Q

(αf + βg) = α

∫

Q

f + β

∫

Q

g.

8.11. If f is an integrable function, then

mf (Q)v(Q) ≤
∫

Q

f ≤ Mf (Q)v(Q) .

Hence if f is a non-negative integrable function, then
∫

Q
f ≥ 0. If f and g

are integrable functions and f ≥ g, then
∫

Q
f ≥ ∫

Q
g.

If the function f is integrable, then |f | is also integrable, and

∣∣∣∣
∫

Q

f

∣∣∣∣ ≤
∫

Q

|f | .

8.12. If f is an integrable function, and f = 0, except of a null-set, then
∫

Q

f = 0 .
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Hint: for any partition Π of Q, L(f, Π) ≤ 0 (since in each cube S of Π there
is at least one point where f = 0), while U(f, Π) ≥ 0 (for a similar reason).

Corollary 8.13. If two integrable functions f1, f2 coincide a.e.10, then their
integrals coincide: ∫

Q

f1 =

∫

Q

f2 .

8.4 Integrals over bounded sets with negligible bound-
aries

Now, we extend the definition of the Riemann integral to any bounded sets
E with a “negligible boundary” ∂E.

For any set E ⊂ Rn, we denote by

1lE(x) =

{
1, x ∈ E,

0, x /∈ E

its indicator-function.11 This function is continuous on the interiour and
exteriour of E and is discontinuous on the boundary ∂E.

Let Q be a brick in Rn, E ⊂ Q, f : Q → R1 be a bounded function on Q.

Definition 8.14. ∫

E

f :=

∫

Q

f · 1lE .

Of course, to make this definition the “correct” one needs to check several
things.

• We’d like to know that the function f · 1lE is integrable.

Claim 8.15. The function 1lE is integrable iff the boundary ∂E is a null-set.

Claim 8.16. If the functions f and g are integrable, then their product f · g
is integrable as well.

The both claims are obvious corollaries to the Lebesgue theorem (the second
one uses that Bf ·g ⊂ Bf ∪Bg). From now on, writing

∫
E

f , we always assume
that the boundary ∂E is a null-set.

10i.e. everywhere, except of a null set, a.e. = almost everywhere
11It is also called the characteristic function of E.
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• We also would like to know that the value of the integral

∫

E

f

does not depend on the choice of the cube Q ⊃ E and on the values of
f on Q \ E.

Exercise 8.17. Check this!

Now, we define the class of Riemann-integrable functionsR(E) on bounded
subsets E ⊂ Rn with negligible boundary ∂E ∈ N . The bounded function
f : E → R1 is Riemann- integrable on E, if the function f · 1lE is integrable
on some cube Q ⊃ E. This definition does not depend on the choice of the
brick Q.

Exercise 8.18. If E is a compact null-set, then any bounded function on E
is integrable, and ∫

E

f = 0 .

Next, for any bounded set E,

∫

int(E)

f =

∫

E

f =

∫

Ē

f .

Exercise 8.19. Let f be a non-negative Riemann integrable function on a
cube Q. If ∫

Q

f = 0 ,

then f = 0 a.e. .

Hint: if x is a continuity point of f , then f(x) = 0.

All the properties of Riemann integrals given in the previous section per-
sist for integrals over bounded sets E with ∂E ∈ N . (Check!)

8.5 Jordan volume

Definition 8.20. The bounded set E ⊂ Rn is called Jordan-measurable
(E ∈ J ) if ∂E is a null-set. In this case, the volume (or content) of E is

v(E) =

∫

E

1l .
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This definition is rather restricted. For example, there are open sets and
even domains which are not Jordan-measurable.

Exercise 8.21. Give example of a domain and a compact set which are not
Jordan-masurable.

You will learn in the courses “Functions of real variables” and “Measure
theory”, how Lebesgue fixed that problem. There is another drawback: our
definition, at least formally, depends on the choice of coordinates (since we
started with the bricks). This will be fixed quite soon.

Exercise 8.22. Check that if v(E) = 0, then E is a null-set. The converse
statement is wrong.

It follows from Exercise 8.18 that if the set E is Jordan-measurable, then
the sets E and intE are also Jordan-measurable and

v(int(E)) = v(E) = v(Ē) .

Exercise 8.23. A bounded set E is Jordan measurable, iff given ε > 0 there
exists a partition Π of a cube Q ⊃ E such that

∑
S∈Π+

v(S)−
∑

S∈Π−

v(S) < ε,

where Π+ = {S ∈ Π: S ∩ E 6= ∅}, Π− = {S ∈ Π: S ⊂ E}.
That is, the Jordan sets are exactly those sets whose volume can be well
approximated from “inside” and from “outside” by volumes of elementary
sets, that is by volumes of finite unions of bricks:12

v(E) = sup
S∈Π−

v(S) = inf
S∈Π+

v(S) .

Note that if E1 and E2 are the Jordan sets, then the sets E1 ∩ E2 and
E1 ∪ E2 are Jordan as well, and

v(E1 ∪ E2) + v(E1 ∩ E2) = v(E1) + v(E2) .

12In the Lebesgue theory, all open sets and all compact sets are measurable. If the set
Ω is open, then

v(Ω)
def
= sup{v(S) : S ⊂ Ω},

where S is a finite union of bricks, and if the set K is compact, then

v(K)
def
= inf{v(Ω): Ω ⊃ K} ,

where Ω is open.
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This follows from the identity

1lE1∪E2 + 1lE1∩E2 = 1lE1 + 1lE2 ,

and linearity of the Riemann integral. Thus, the Jordan volume is a finitely
additive set-function: if the Jordan sets E1, ..., EN are disjoint (or, at least,
have disjoint interiours), then

v

(
N⋃

j=1

Ej

)
=

N∑
j=1

v(Ej) .

Another property of the Jordan volume is its invariance with respect to the
translations of Rn: if E ∈ J , then, for any c ∈ Rn, E + c ∈ J (why?)
and v(E + c) = v(E). Note (this is very important!), that the Jordan
volume is determined (up to a positive multiplicative constant) by these two
properties:

Theorem 8.24 (uniqueness of the Jordan volume). The n-dimensional Jor-
dan volume is the only function v : J → R1

+ satisfying the following condi-
tions:

(i) finite additivity;

(ii) translation invariance;

(iii) normalization v(Q) = 1, where Q = [0, 1]n is the unite cube in Rn.

Proof: of this remarkable fact is fairly easy. Let v∗ be another function
with the properties (i)—(iii). Then on “dyadic cubes” with the side length
2m (m ∈ Z) the function v∗ takes the same value (property (ii)), and hence
coincides with v (property (i)). Thereby, v∗ coincides with v on all bricks in
Rn (since any brick in Rn can be approximated by a finite union of dyadic
cubes), and hence on the whole J . ¤

The theorem we proved yields another very important fact: invariance of
the volume with respect to orthogonal transformations.

Theorem 8.25. Let O ∈ L(Rn,Rn) be an orthogonal transformation. Then
for any Jordan set E, the set OE is Jordan as well, and v(OE) = v(E).

Proof: First, note that if E is a Jordan set, and O is an orthogonal trans-
formation of Rn, then OE is also a Jordan set. Indeed, the transformation
x 7→ Ox maps the boundary to the boundary (since this is an open map)
and preserves the class of null-sets (since this map is a Lipschitz one).

Then we consider the function vO : J → R+ acting as follows: vO(E) =
v(OE). This is a finitely-additive and translation invariant function. Hence,

57



by the previous theorem, there is a non-negative constant c such that, for
any E ∈ J , vO(E) = cv(E). It remains to check that c = 1.

To this end, consider the unit ball B ⊂ Rn. Clearly, this is a Jordan set
since its boundary (the unit sphere) is a union of two graphs of continuous
functions. Obviously, OB = B, whence cv(B) = vO(B) = v(B). Since B is
not a null-set, this yields c = 1. ¤

We finish this lecture with another useful and simple theorem:

Theorem 8.26 (MeanValueTheorem). If G is a domain with negligible bound-
ary ∂G ∈ N , and f ∈ C(G,R1) and bounded, then ∃ξ ∈ G such that

∫

G

f = f(ξ)v(G) .

Indeed, we know that

inf
G

f · v(G) ≤
∫

G

f ≤ sup
G

f · v(G) .

Since the function f is continuous, for any c ∈ (infU f, supU f) there exists
ξ ∈ U such that f(ξ) = c. In particular, this holds for c =

∫
G

f . ¤
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9 Fubini Theorem

In this part, we learn how to reduce multiple integrals to iterated one-
dimensional integrals. Start with heuristics. Let f be a continuous function
on a rectangle Q = [a, b]× [c, d]. Then
(9.1)∫∫

Q

f(x, y) dxdy =

∫ b

a

{∫ d

c

f(x, y) dy

}
dx =

∫ d

c

{∫ b

a

f(x, y) dx

}
dy .

The integrals on the RHS are called the iterated integrals. The idea is simple:
consider the Riemann sums with the special choice of points ξij = (xi, yj),
ξi,j ∈ Qi,j = Ai ×Bj, Then

∑
i,j

f(xi, yj)|Ai||Bj| =
∑

i

|Ai|
(∑

j

f(xi, yj)|Bj|
)

=
∑

j

|Bj|
(∑

i

f(xi, yj)|Ai|
)

.

In the limit, we get (9.1).

9.1 The statement

Let A ⊂ Rn, B ⊂ Rm be bricks, f ∈ R(A×B), that is the multiple integral

(9.2)

∫∫

A×B

f(x, y) dxdy

exists.

Theorem 9.3 (Fubini). The iterated integrals

∫

A

dx

(∫

B

f(x, y) dy

)
,

∫

B

dy

(∫

A

f(x, y) dx

)

exists and equal the multiple integral (9.2).

The following example shows that one needs some vigilance applying
Fubini’s theorem:

Example 9.4.

∫ 1

0

{∫ 1

0

x− y

(x + y)3
dy

}
dx =

1

2
, but

∫ 1

0

{∫ 1

0

x− y

(x + y)3
dx

}
dy = −1

2
.

59



Let Q be a brick, and g a bounded function on Q. Introduce the upper
and lower Darboux integrals

∫

Q

g = inf
Π

U(g, Π) ,

∫

Q

g = sup
Π

L(g, Π) .

Of course,
∫

Q
g ≤ ∫

Q
g, and g is integrable iff the upper and the lower integrals

coincide and equal the regular one.
Now, we define the function

F (x) =

∫

B

f(x, y) dy.

If for some x ∈ A the integral
∫

B
f(x, y) dy does not exist, then we define

F (x) to be any number between
∫

B
f(x, y) dy and

∫
B
f(x, y) dy. In the course

of the proof, we shall see that that

{
x ∈ A :

∫

B

f(x, y) 6=
∫

B

f(x, y) dy

}

is a null-set, so, in fact, it is not important how F (x) was defined on that
set.

9.2 Proof of Fubini’s theorem

Choose partitions ΠA of A and ΠB of B, and denote the corresponding par-
tition of A× B by Π = ΠA × ΠB. If S is a brick from Π, then S = Ai × Bj

(Aj ⊂ A, Bj ⊂ B are bricks), and vn+m(S) = vn(Ai) · vm(Bj).
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Now, we have

L(f, Π) =
∑
i,j

(
inf

Ai×Bj

f

)
vn(Ai)vm(Bj)

=
∑

i

(∑
j

inf
x∈Ai, y∈Bj

f(x, y)vm(Bj)

)
vn(Ai)

≤
∑

i

inf
x∈Ai

(∑
j

inf
y∈Bj

f(x, y)vm(Bj)

)
vn(Ai)

≤
∑

i

inf
x∈Ai

(∫

B

f(x, y) dy

)
vn(Ai)

≤
∑

i

mF (Ai)vn(Ai) ≤
∑

i

MF (Ai)vn(Ai)

≤
∑

i

sup
x∈Ai

(∫

B

f(x, y) dy

)
vn(Ai)

≤
∑

i

sup
x∈Ai

(∑
j

sup
y∈Bj

f(x, y)vm(Bj)

)
vn(Ai)

≤
∑
i,j

sup
Ai×Bj

f(x, y)vm(Bj)vn(Ai) = U(f, Π) .

Thus

L(f, Π) ≤
∑

i

mF (Ai)vn(Ai) ≤
∑

i

MF (Ai)vn(Ai) ≤ U(f, Π) .

Hence, F ∈ R(A), and

∫

A

F dx =

∫∫

A×B

f(x, y) dxdy .

We are done. 2

9.3 Remarks

9.5. If f ∈ R(A×B), then the sets

{
x ∈ A :

∫

B

f(x, y) dy doesn’t exist

}
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and {
y ∈ B :

∫

A

f(x, y) dx doesn’t exist

}

are the null-sets.

Proof: Consider the function

x 7→
∫

B

f(x, y) dy −
∫

B

f(x, y) dy .

These function is integrable (as the difference of two integrable functions),
non-negative, and has zero integral over A. Hence, the function vanishes
everywhere on A, except of a null-set. 2

9.6. Suppose f(x, y) = ϕ(x) · ψ(y), where ϕ ∈ R(A), ψ ∈ R(B). Then
f ∈ R(A×B), and ∫∫

A×B

f =

∫

A

ϕ ·
∫

B

ψ .

Proof: The integrability of f follows from the Lebesgue theorem, the rest
follows from the Fubini theorem. 2

In many cases, the domain D of multiple integration can be represented
as

D = {(x, y) ∈ Rn+1 : x ∈ E, f1(x) ≤ y ≤ f2(x)} ,

where E ⊂ Rn is a Jordan set, and f1, f2 are continuous functions on E,
f1 ≤ f2.

9.7. In these assumptions, the set D is Jordan, and for any continuous func-
tion g on D, ∫

D

g =

∫

E

dx

(∫ f2(x)

f1(x)

g(x, y) dy

)
.

Proof: To check that D is Jordan, we look at its boundary ∂D. It is the
union of three sets:

∂D = {(x, y) : x ∈ ∂E, f1(x) ≤ y ≤ f2(x)} ⋃ {(x, f1(x)) : x ∈ E}⋃ {(x, f2(x)) : x ∈ E} .

All three sets are null-sets, thus D is the null-sets as well.
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We take a closed interval I ⊃ f1(E)
⋃

f2(E). Then E × I ⊃ D. Set
h = g1lD, and apply Fubini’s theorem:

∫

D

g =

∫∫

E×I

h =

∫

E

dx

(∫

I

h(x, y) dy

)

=

∫

E

dx

(∫ f2(x)

f1(x)

g(x, y) dy

)
.

2

Exercise 9.8. Compute the integral
∫ ∫ ∫

T

(x2
1 + x2

2 + x2
3) dx1dx2dx3 ,

where T is the “simplex” in R3 bounded by the planes {x1 + x2 + x3 = a},
{xi = 0}, 1 ≤ i ≤ 3.
Answer: a5/20.

Exercise 9.9. Find the volume of
(i) the intersection of two solid cylinders in R3: {x2

1 +x2
2 ≤ 1} and {x2

1 +x2
3 ≤

1};
Answer: 16/3.

(ii) the solid in R3 under paraboloid {x2
1 +x2

2−x3 = 0} and above the square
[0, 1]2.
Answer: 2/3.

Exercise 9.10. Find the integrals
∫

[0,1]n
(x2

1 + ... + x2
n) dx1 ... dxn ,

∫

[0,1]n
(x1 + ... + xn)2 dx1 ... dxn .

Exercise 9.11. Let f : R1 → R1 be a continuous function. Prove that
∫ x

0

dx1

∫ x1

0

dx2 ...

∫ xn−1

0

dxnf(xn) =

∫ x

0

f(t)
(x− t)n−1

(n− 1)!
dt .

Example 9.12. Compute the integral
∫

[0,1]n
max(x1, ..., xn) dx1...dxn .

First of all, by symmetry, we assume that 1 ≥ x1 ≥ x2 ≥ ... ≥ xn ≥ 0, and
multiply the answer by n!. Then max(x1, ..., xn) = x1, and we get

n!

∫ 1

0

x1 dx1

∫ x1

0

dx2 ...

∫ xn−1

0

dxn = n!

∫ 1

0

xn
1 dx1

(n− 1)!
=

n

n + 1
.
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Exercise 9.13. Compute the integral

∫

[0,1]n
min(x1, ..., xn) dx1...dxn.

Answer: 1
n+1

.

9.4 The Cavalieri principle

Intuitively clear, that we can recover the volume of three-dimensional body,
integrating the areas of its two-dimensional slices. The next theorem gives
the precise statement.

Let S ⊂ Rn be a closed brick, I ⊂ R1 closed interval, Q = S × I,
and let E ⊂ Q be a Jordan set. We denote its n-dimensional sections by
E(y) = {x ∈ S : (x, y) ∈ E}.
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Theorem 9.14. For a.e. y ∈ I, the n-dimensional slice E(y) is a Jordan
set, and

vn+1(E) =

∫

I

vn(E(y)) dy .

Proof: Note that 1lE(x, y) = 1lE(y)(x). By Remark 9.5, we know that for a.e.
y ∈ I there exists the integral

∫

S

1lE(x, y) dx =

∫

S

1lE(y)(x) dx =: vn(E(y)) .

Again, by Fubini,

vn+1(E) =

∫∫

S×I

1lE(x, y) dxdy =

∫

I

dy

(∫

S

1lE(y)(x) dx

)
=

∫

I

vn(E(y)) dy .

Done! 2

Corollary 9.15 (Cavalieri). Let P,Q ⊂ R3 be Jordan sets, and

P (c) := {(x, y, z) ∈ P : z = c} ,

Q(c) := {(x, y, z) ∈ Q : z = c} ,

be their two-dimensional horizontal slices. If, for almost every c ∈ R1,

area(P (c)) = area(Q(c)) ,

then v(P ) = v(Q).

Example 9.16 (volume of the unit ball in R3). Inspecting the figure we see
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that

vol(B) =

∫ 1

−1

area(D(
√

1− x2) dx) .

Here Dρ is the disc of radius ρ. The latter integral equals

π

∫ 1

−1

(1− x2) dx = π

(
2− 2

3

)
=

4π

3
.

Of course, volume of the ball of radius r in R3 equals 4πr3/3.

Exercise 9.17 (Archimedes). The volumes of an inscribed cone, the half-
ball, and a circumscribed cylinder with the same base plane and radius, are
in the ratios 1 : 2 : 3.

Exercise 9.18. Show that the volume of the ball of radius r in Rn equals
vnrn. Compute the constant v4.

In the same way one can compute the volume of the unit ball in Rn. The
answer differs in the cases of even and odd dimensions:

v2k+1 = v2k+1(B) = 2
(2π)k

(2k + 1)!!
, v2k = v2k(B) =

(2π)k

(2k)!!
.

We skip the computation since later we’ll find a simpler way to do this.

Example 9.19 (volume of truncated cone). Let G ∈ R2 be a bounded open
set with negligible boundary. Consider the truncated cone with apex (0, 0, t)
and height h ≤ t:

C =
{((

1− s

t

)
x, s

)
: x ∈ G, 0 ≤ s ≤ h

}
.
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Then, by Cavalieri’s principle,

vol(C) =

∫ h

0

area(G)
(
1− s

t

)2

ds

= area(G)

(
h− h2

t
+

h3

3t2

)
= area(G) · h ·

(
1− h

t
+

h2

3t2

)
.

Exercise 9.20. Find the volume of the n-dimensional simplex

T = {x : x1, ..., xn ≥ 0, x1 + ... + xn ≤ 1} .

Answer: 1
n!

.

Exercise 9.21. Suppose the function f depends only on the first coordinate.
Then ∫

B
f(x1) dx = vn−1

∫ 1

−1

f(x1)(1− x2
1)

(n−1)/2 dx1 ,

where B is the unit ball in Rn, and vn−1 is the volume of the unit ball in
Rn−1.

The next two exercises deal with a very interesting phenomenon of “con-
centration of high-dimensional volume”.

Exercise 9.22. 1. Let Br be a ball of radius r in Rn. Compute

vn(Br \B0.99r)

vn(Br)

67



for n = 3, n = 10, and n = 100.
2. Given ε > 0, the quotient

vn(Br \B(1−ε)r)

vn(Br)

decays as e−εn when n →∞.

Exercise 9.23. 1. Let B be the unit ball in Rn, and P = {x ∈ B : |xn| <
0.01}. What is larger vn(P ) or vn(B \ P ) if n is sufficiently large?
2. Given ε > 0, show that the quotient

vn({x ∈ B : |xn| > ε})
vn(B)

tends to zero as n →∞.

Hint: the quotient equals

∫ 1

ε
(1− t2)(n−1)/2 dt∫ 1

0
(1− t2)(n−1)/2 dt

3*. Find the asymptotic behaviour of that quotient as n →∞.
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10 Change of variables

10.1 The theorem

Recall the change of variables in one-dimensional Riemann integrals: suppose
ϕ : [a, b] → R1 is a C1-injection and f : [ϕ(a), ϕ(b)] → R1 is a continuous
function. Then

(10.1)

∫ ϕ(b)

ϕ(a)

f =

∫ b

a

(f ◦ ϕ)ϕ′ .

Before writing the n-dimensional counterpart of this formula, let us observe a
subtle difference in definition of the Riemann integral you’ve learnt in Hedva-
2 and the new one. In Hedva-2, the integral

∫ β

α

g

was defined as the limit of Riemann sums

∑
g(ξj)(αj+1 − αj) ,

where α = α0 < α1 < ... < αN = β is a partition of the interval I = [α, β].
Our new definition starts with the Riemann sums13

∑
g(ξj)|Ij| =

∑
g(ξj)|αj+1 − αj| .

Therefore, the change of the ‘orientation’ I → −I changes the sign of the
‘old’ integral, and does not affect the new one14.

Now it is not difficult to guess that in our situation the counterpart of
(10.1) looks as follows:

∫

ϕ(I)

f =

∫

I

(f ◦ ϕ)|ϕ′| .

Definition 10.2. A (C1-) diffeomorphism is a bijection T such that both T
and T−1 are C1-mapping.

Definition 10.3. The determinant JT = det DT of the linear operator DT

is called the Jacobian of the mapping T .

13We have not mentioned Riemann sums at all, and worked with the Darboux sums,
but let us discard such a ‘detail’.

14Later, we’ll return to the idea of “oriented integration”
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Theorem 10.4. Let U ⊂ Rn be a bounded domain, T : U → TU a diffeo-
morphism, f bounded continuous function on TU . Then for any Jordan set
Ω, Ω ⊂ U , ∫

TΩ

f =

∫

Ω

(f ◦ T )|JT | .

Since the proof of this theorem is not short, we have not tried to “opti-
mize” the assumptions. Here is the plan we will follow:

1. First, we will show that for any linear transformation L ∈ L(Rn,Rn)
and any Jordan set Ω ⊂ Rn,

v(LΩ) = | det L|v(Ω) .

2. On the next step, we prove the “infinitesimal version” of the theorem
which says that

lim
Q→x

v(TQ)

v(Q)
= |JT (x)| .

3. On the last step, we introduce the additive set-functions and complete
the proof of the theorem.

Exercise 10.5. If the set Ω ⊂ U is Jordan, Ω̄ ⊂ U , and T : U → Rn is a
diffeomorphism, then the set T (Ω) is Jordan as well.

10.2 v(LΩ) = | det L|v(Ω)

First of all, note that it suffices to prove this only for the standard unit cube
Q in Rn. Indeed, define a set-function vL(Ω) = v(LΩ). It is finitely additive
and translation invariant. Thus, to show that vL = | det L|v, it suffices to
check this on the unit cube Q.

We give two proofs of the identity v(LQ) = | det L|v(Q).

10.2.1 Polar decomposition of non-singular operators

The 1-st proof is based on the “polar decomposition” of non-singular (i.e.,
invertible) linear operators, you’ve probably learnt in Linear Algebra.

First, assume that the operator L is singular (i.e., is not invertible). Then
the image LQ lies in a proper linear subspace of Rn, hence v(LQ) = 0. Since
det(L) = 0, there is nothing to prove in this case.

Now, assume that L is not singular. We use the following

Claim 10.6 (Linear Algebra). Any nonsingular linear transformation L ∈
L(Rn,Rn) is a product of a self-adjoint one and the orthogonal one.
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Question: why this decomposition 15 is called the polar one?

Now, we are ready to prove the identity v(LQ) = | det L|v(Q) in the case
when the operator L is non-singular. In view of the the polar decomposi-
tion, it suffices to check it only for orthogonal and positive operators. For
orthogonal operators U , we already know that v(UQ) = v(Q), and since
the absolute value of the determinant of U is one, again, there is nothing
to prove. If L is a positive operator, then, without lost of generality, we
assume that it is already diagonal (otherwise, we just change the orthogo-
nal basis in Rn, we know that the volume does not depend on the choice of
the basis. Then LQ = [0, λ1] × ... × [0, λn], where λi > 0 are the eigenval-
ues of L (recall that all of them are positive, since L is positive). Thereby,

v(LQ) =
n∏

i=1

λi = det(L)v(Q). 2

10.2.2 Volume of the parallelepiped in Rn.
Gram determinants

The second proof is based on the computation of the volume of an arbitrary
non-degenerate parallelepiped in Rn.

Let u1, ..., um be vectors in Rn. They generate the parallelepiped

P = P (u1, ... um) = {x =
m∑

j=1

tjuj : tj ∈ [0, 1]} .

It is a subset of the linear subspace Em spanned by the vectors u1, ..., um.
Here, we shall compute the m-dimensional volume vm(P (u1, ..., um)) based
on the following rule: if P (u1, . . . um−1) is the ‘base’ of P (u1, ..., um), then

vm(P (u1, ... um) = |y| · vm−1 (P (u1, ... um−1)) ,

where y is the orthogonal projection of the vector um on the one-dimensional
subspace Em ªEm−1 (that is the ‘height’ of P (u1, ..., um): Thus, we need to
find the length of the vector y. In fact, you’ve learnt how to do this in the
Linear Algebra course.

Claim 10.7.

|y|2 =
Γ(u1, ... um)

Γ(u1, ... um−1)
,

15For the sake of completeness, we recall the proof: Consider the operator LL∗. This
is a positive operator: for any x ∈ Rn \ {0}, 〈LL∗x, x〉 = |Lx|2 > 0. Hence, there exists
a (unique) positive square root P =

√
LL∗. Set U = P−1L, then UU∗ = P−1LL∗P−1 =

P−1P 2P−1 = I. That is, the operator U is orthogonal, and L = PU is the decomposition
we were looking for. 2
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where

Γ(u1, ... um) =

∣∣∣∣∣∣∣∣∣

〈u1, u1〉 〈u1, u2〉 . . . 〈u1, um〉
〈u2, u1〉 〈u2, u2〉 . . . 〈u2, um〉

...
...

. . .
...

〈um, u1〉 〈um, u2〉 ... 〈um, um〉

∣∣∣∣∣∣∣∣∣
.

is the Gram determinant.

Note that Γ(u1, ..., um) = det (U∗U), where

U =




u11 . . . um1
...

. . .
...

u1n . . . umn




is the matrix whose j-th column consists of the coordinates of the vector uj

in the chosen orthonormal basis {ei} in Rn. In other words, U is the matrix
of the linear operator L such that ui = Lei.

Corollary 10.8.

vm (P (u1, ... um)) =
√

Γ(u1, ... um) .
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Indeed, by the claim,

v2
m (P (u1, ... um)) =

Γ(u1, ... um)

Γ(u1, ... um−1)
· v2

m−1 (P (u1, ... um−1))

= · · · = Γ(u1, ... um)

Γ(u1, u1)
· v2

1 (P (u1))

=
Γ(u1, ... um)

|u1|2 · |u1|2 = Γ(u1, ... um) .

Proof of the Claim: Let

um =
m−1∑
j=1

αjuj + y .

Then

〈ui, um〉 =
m−1∑
i=1

αi〈ui, uj〉+ 〈ui, y〉 .

Thus the last column of the determinant is the linear combination of the first
m− 1 columns (with the coefficient αi) and the column




〈u1, y〉
...

〈um−1, um〉
〈um, y〉


 =




0
...
0
|y|2


 .

Putting this column on the m=th place instead of the original one, we get
the claim. 2

Note 10.9. The proof of the claim also gives the properties of the Gram
matrix which we will use later:

Γ(u1, ... um) ≥ 0 ,

and
Γ(u1, ... um) = 0

if and only if the vectors u1, ..., um are linearly dependent.

Note 10.10. The proof also reveals the geometric meaning of the claim:
assume, we have the vectors u1, ..., um and we want to approximate the
vector v by the linear combination of these vectors. In other words, we are
looking for

min
α1,...,αm

∥∥∥∥∥v −
m∑

j=1

αjuj

∥∥∥∥∥ .
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Then this minimum (i.e. the distance between v and the linear span of u1,
..., um) equals

Γ(u1, ... um, v)

Γ(u1, ... um)
.

Exercise 10.11. 1. Γ(u1, ... um) ≤ Γ(u1, ... uk) · Γ(uk+1, ... um), 1 ≤ k ≤
m− 1.

Hint: first, show that for 1 ≤ j ≤ k − 1,

Γ(uj, uj+1, ... um)

Γ(uj+1, ... um)
≤ Γ(uj, uj+1, ... uk)

Γ(uj+1, ... uk)

2. Γ(u1, ... um) ≤ |u1|2 · ... · |um|2; that is the volume of the P (u1, ... um)
never exceeds the volume of the brick with the length-sides |u1|, ..., |um|.

3. When the equality sign attains in these inequalities?

4. (Hadamard’s inequality) Let

A =

∣∣∣∣∣∣∣

a11 a21 . . . an1
...

...
. . .

...
a1n a2n . . . ann

∣∣∣∣∣∣∣
.

Then

A2 ≤
n∑
1

a2
1k ·

n∑
1

a2
2k · ...

n∑
1

a2
nk .

In particular, if |aij| ≤ 1 for all i and j, we get A ≤ nn/2.

Return to the volume of LQ, Q the unit cube in Rn, L ∈ L(Rn,Rn). Let
e1, ..., en be the orthonormal basis in Rn, uj = Lej. Then

〈uj, uk〉 = 〈Lej, Lek〉 = 〈L∗Lej, ek〉 ,
that is, Γ(u1, ... , um) = det(L∗L), and v2(LQ) = (det(L))2. Thus we got the
second proof that v(LQ) = |det(L)|.

10.3 The infinitesimal version

Let T be a C1 diffeomorphism of an open set U . Intuitively, if a cube Q ⊂
U is small, then the mapping T on Q is lose to its linear part, i.e. to
T (x) + DT (x)(x − x0), x ∈ Q, and v(TQ) ≈ | det DT (x)|v(Q). Recall that
the determinant det DT (x) is called the Jacobian of T at x.

We use notation Q ↓ x which means that cubes Q contain the point x
and diam(Q) → 0.
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Theorem 10.12. Let T be a C1-diffeomorphism of an open set U . Then,
for each x ∈ U ,

lim
Q↓x

v(TQ)

v(Q)
= |JT (x)| .

Proof: The idea is straightforward. Given ε > 0, choose δ > 0 so small that
if the diameter of Q is = δ, and y ∈ Q, then

(10.13) |T (y)− T (x)−DT (x)(y − x)| < ε|y − x| ≤ εδ

If y fills the whole cube Q, then the vector T (x) + DT (x)(y − x) fills a
parallelepiped P of volume |JT (x)|v(Q). Next, by (10.13),

P−εδ ⊂ T (Q) ⊂ P+εδ .

Here we use the following notations: A+η = {x : dist(x,A) ≤ η} is the η-
neighbourhood of the set A, and A−η = {x : dist(x,Rn \ A) ≥ η}. It re-

mains to estimate the volumes of the thin layer P+εδ \ P−εδ. The volume of
this layer is majorized by the sum of the volumes of the εδ-neighbourhoods
of the faces of P . The volume of such a neighbourhood is bounded from
above by 2ε · δ times the n− 1-dimensional volume of the n− 1-dimensional
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εδ-neigbourhood of the face. The length-sides of the parallelepiped P are
bounded by C(DT )δ, thus this n − 1-dimensional εδ-neigbourhood is con-
tained in an n− 1-dimensional parallelepiped with the length-sides bounded
by C(DT , n)δ, and hence the volume of this neighbourhood is

≤ C(DT , n)δn−1 .

We get the estimate for the volume of the thin layer:

C(DT , n)εδ · δn−1 = C(DT , n)ε · δn .

Thus
|v(TQ)− v(P )| ≤ C(DT , n)ε · δn ,

or
|v(TQ)− |JT (x)|v(Q) | ≤ C(DT , n)ε · δn .

Recall that the diameter of Q is = δ, that is, v(Q) ≥ c(n)δn. We get

∣∣∣∣
v(TQ)

v(Q)
− |JT (x)|

∣∣∣∣ ≤ C(DT , n)ε .

This completes the proof. 2

10.4 The additive set-functions

We denote by J the collection of all Jordan-measurable subsets of Rn; by
J (U) we denote the collection of all Jordan-measurable subsets of the open
set U .

Definition 10.14. The function µ : J (U) → R1 is called an additive set-
function if it satisfies the following conditions:

• additivity:

µ(Ω1 ∪ Ω2) = µ(Ω1) + µ(Ω2), Ω1, Ω2 ∈ J (U), Ω1 ∩ Ω2 = ∅ ;

• continuity from below: if Ωj ↑ Ω, then µ(Ωj) → µ(Ω);

• differentiability with respect to the cubes: there exists the “derivative”

µ′(x) = lim
Q↓x

µ(Q)

v(Q)
.
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Example:

µf (Ω) =

∫

Ω

f ,

where f is a bounded continuous function on U .

The additivity is obvious. The continuity from below follows from the bound-
edness of f :

∣∣∣∣∣
∫

Ω

f −
∫

Ωj

f

∣∣∣∣∣ ≤ ||f ||∞
∫

Ω\Ωj

1l = ||f ||∞ (v(Ω)− v(Ωj) ) .

To see that the RHS tends to zero we use the following

Claim 10.15. Let Ωj ↑ Ω be an exhaustion of Ω by Jordan subsets. Then

lim
j→∞

v(Ωj) = v(Ω) .

Proof of the claim: Given ε > 0, choose a finite union of open cubes U ⊃ ∂Ω
such that v(U) < ε. If j is large enough, then Ω \ Ωj ⊂ U (why?). Then

v(Ω)− v(Ωj) = v(Ω \ Ωj) ≤ v(U) < ε .

2

The differentiability of the set-function µf follows by the mean value
theorem: for each cube Q there exists ξ ∈ Q such that

µf (Q) = f(ξ)v(Q) .

2

Apparently, this example is “generic”:

Theorem 10.16. Let µ be an additive set-function, such that µ′(x) is bounded
and continuous. Then, for any Ω ∈ J (U),

µ(Ω) =

∫

Ω

µ′(x) dx .

Proof: it suffices to prove the theorem in the case µ′(x) ≡ 0 (then we can
apply this special case to the set-function µ−µf , f = µ′). WLOG, we assume
that Ω is a cube, having the result for the cubes, we easily get the general
case by approximating the Jordan sets from below by finite unions of the
cubes. We need to show that µ(Q) = 0 for any cube Q.

Let the result be wrong; i.e. there exists the cube Q0 such that µ(Q0) 6= 0,
then, for some λ > 0, |µ(Q0)| ≥ λv(Q0). Then, using the bisections, we get a
nested sequence of cubes Qj such that the length sides of Qj are twice smaller
than those of Qj−1, and |µ(Qj)| ≥ λv(Qj). Clearly, Qj ↓ x, and µ′(x) 6= 0.
Contradiction. 2
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10.5 Proof of the change of variables theorem:

Assume that Ω ⊂ U and set

µ(Ω)
def
=

∫

T (Ω)

f .

This is the additive set-function. Indeed, the additivity is obvious. Also, the
continuity from below:

µ(Ω)− µ(Ωj) =

∫

T (Ω)\T (Ωj)

f ,

the sets T (Ωj) are Jordan (why?) and they exhaust the whole set T (Ω). As
above, the differentiability follows by the mean value theorem: for any cube
Q, there exists ξ ∈ Q such that

µ(Q) = f(T (ξ) )v(TQ) ,

thus
µ(Q)

v(Q)
= f(T (ξ) )

v(TQ)

v(Q)
→ f(T (x) )|JT (x)|

when Q ↓ x. Thus, µ′(x) = f(x)|JT (x)|, and we apply the previous theorem.
2

10.6 Examples and exercises

Exercise 10.17 (spherical coordinates in R3). Consider the map F : R3 →
R3,

F (r, ϕ, θ) = r(cos ϕ sin θ, sin ϕ sin θ, cos θ) .

(i) Find and draw the images of the planes

r = const, ϕ = const, θ = const,

and of the lines

(ϕ, θ) = const, (r, θ) = const, (r, ϕ) = const .

(ii) Prove that F is surjective but not injective.

(iii) Show that JF = r2 sin θ. Find the points (r, ϕ, θ), where F is regular.

(iv) Let V = R+ × (−π, π) × (0, π). Prove that F
∣∣
V

is injective. Find
U = F (V ).

(v) Compute (find the formula) the inverse map F−1 on U .
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Exercise 10.18. Compute the integral

∫∫

[0,1]2
cos2(π(x + y)) dxdy .

Exercise 10.19. Compute the integrals
1. ∫ ∫ ∫

x2+y2+z2≤1

dxdydz

x2 + y2 + (z − 2)2
,

2. ∫ ∫ ∫

x2+y2+z2≤1

dxdydz

x2 + y2 + (z − 1/2)2
.

Answers: π
(
2− 3

2
log 3

)
, π

(
2 + 3

2
log 3

)
.

Exercise 10.20. Compute the integral

∫∫
dxdy

(1 + x2 + y2)2

taken
(i) over one loop of the lemniscate (x2 + y2)2 = (x2 − y2);
(ii) over the triangle with vertices at (0, 0), (2, 0), (1,

√
3).

Hint: use polar coordinates.

Exercise 10.21. Compute the integral over the four-dimensional unit ball:

∫ ∫ ∫ ∫

x2+y2+u2+v2≤1

ex2+y2−u2−v2

dxdydudv .

Hint: The integral equals

∫∫

x2+y2≤1

ex2+y2

(∫∫

u2+v2≤1−(x2+y2)

e−(u2+v2) dudv

)
dxdy .

Then use the polar coordinates.

10.6.1 Volume of the ellipsoid in Rn

We start with a special case, and find the volume of the ellipsoid

{
x :

n∑
j=1

x2
j

a2
j

≤ 1

}
.
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Changing the variables xj = ajyj, we easily find that the volume of this
ellipsoid equals a1 · · · · · anv(B), where B is the unit ball in Rn (we already
know its volume).

In particular, if n = 2, we get that the area of the ellipse
{

x2

a2 + y2

b2
≤ 1

}

is abπ, and if n = 3, then the volume of the ellipsoid
{

x2

a2 + y2

b2
+ z2

c2
≤ 1

}
is

4π
3

abc.
Now, consider a general n-dimensional ellipsoid in Rn given by

{x : 〈Ax, x〉 ≤ 1},
where A ≥ 0 is a non-negative linear transformation. We make an orthogonal
transformation x = Oy which reduces the matrix of A to the diagonal form.
This transformation does not change the volume of the ellipsoid, and applying
the special case considered above, we get the answer:

v(B)√
λ1(A) . . . λn(A)

,

where λ1(A), ..., λn(A) are the eigenvalues of A.

Exercise 10.22. Compute the integral
∫ ∫ ∫

|xyz| dxdydz

taken over the ellipsoid {x2/a2 + y2/b2 + z2/c2 ≤ 1}.
Answer: a2b2c2

6
.

Exercise 10.23. Find the volume cut off from the unit ball by the plane
lx + my + nz = p.

10.6.2 Volume of the body of revolution in R3

Take a plane domain Ω that lies in the right half-plane of the (ρ, z)-plane,
and consider a body of revolution obtained by rotation of the domain Ω in
R3 around the z-axis; i.e.

Ω̃ = {(ρ cos θ, ρ sin θ, z) : (ρ, z) ∈ Ω, 0 ≤ θ ≤ 2π} .

Introduce the cylindric coordinates: x = ρ cos θ, y = ρ sin θ, z = z. Then
dxdydz = ρ dρdθdz, and

v(Ω̃) =

∫ 2π

0

dθ

∫∫

Ω

ρ dρdz = 2π

∫∫

Ω

ρ dρdz .
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Often, Ω is defined as {(ρ, z) : a < z < b, 0 < ρ < ρ(z)}. Then

∫∫

Ω

ρ dρdz =

∫ b

a

dz

∫ ρ(z)

0

ρ dρ =
1

2

∫ b

a

ρ2(z) dz ,

and we get

v(Ω̃) = π

∫ b

a

ρ2(z) dz .

10.6.3 Center of masses and Pappus’ theorem

Suppose we have a system of N material points (Pi,mi), 1 ≤ i ≤ N , in R2,
Pi = (Xi, Yi) are the points, and mi are the masses. The center of mass of
this system is located at the point

P =

∑
miPi∑
mi

.
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If we have a continuous distribution p of masses in a plane domain Ω, then
the total mass of Ω is

m(Ω) =

∫∫

Ω

p ,

and the coordinates of the center of masses are

X =

∫∫
Ω

xp(x, y) dxdy

m(Ω)
, Y =

∫∫
Ω

yp(x, y) dxdy

m(Ω)
.

The integrals in the numerator are called the 1-st order moments of the
distribution p. The same formulas hold in R3 (and, more generally, in Rn).

Exercise 10.24. Show that

1. the mass of the ball of radius r centered at the origin with density
distribution p(x, y, z) = x2y2z2 is

M =
4πr9

945
,

2. the mass of the ellipsoid {x2/a2 + y2/b2 + z2/c2 ≤ 1} with density
distribution p(x, y, z) = x2 + y2 + z2 is

M =
4πabc

15

(
a2 + b2 + c2

)
.

The distribution of masses is homogenenous if p is a constant function.
Sometimes, the center of masses of a homogeneous distribution is called cen-
troid. In this case, we always the use normalization p ≡ 1 which, of course,
does not affect the position of the centroid.

Exercise 10.25. (a) Prove that the centroid of the triangle lies in the inter-
section of its medians.
(b) Suppose that Ω is a finite union of triangles ∆i, and Pi are the centroids
of ∆i. Prove that the centroid P of Ω coincides with the centroid of the
system of points Pi with masses mi = area(∆i).

Of course, we can define the center of masses and centroid also for 3- (or
n-) dimensional bodies.

Exercise 10.26. Find the centroids of the following bodies in R3:

1. The cone built over the unit disc, the height of the cone is h.
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2. The tetrahedron bounded by the three coordinate planes and the plane
x
a

+ y
b

+ z
c

= 1.

3. The hemispherical shell {a2 ≤ x2 + y2 + z2 ≤ b2, z ≥ 0}.
4. The octant of the ellipsoid {x2/a2 + y2/b2 + z2/c2 ≤ 1, x, y, z ≥ 0}.

We conclude with a beautiful ancient

Theorem 10.27 (Pappus). The volume of the body of revolution Ω̃ obtained
by rotation of the plane domain Ω equals the area of Ω times the length of
the circle described by the centroid of Ω.

Proof: As we know,

v(Ω̃) = 2π

∫∫

Ω

ρ dρdz = 2π

∫∫
Ω

ρ dρdz

area(Ω)
· area(Ω) .
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Observe that the centroid of Ω describes the circle of the radius

R =

∫∫
Ω

ρ dρdz

area(Ω)
.

2

Example 10.28. Consider the solid torus T in R3 obtained by rotation of
the disc {(ρ, z) : (ρ− c)2 + z2 ≤ r} around the z-axis. Its volume is

v(T ) = 2πc · πr2 = 2π2cr2 .
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11 Improper Integrals

The definition of the Riemann integral we gave above has several drawbacks.
For instance, it does not allow us to integrate unbounded functions, or con-
sider unbounded domains of integrations. In this lecture, we fix this.

11.1 Definition

Let Ωm ↑ Ω be an exhaustion of an open set Ω by Jordan sets Ωm. We
already know that

1. if Ω ∈ J , then v(Ωm) ↑ v(Ω);

2. if Ω ∈ J and f ∈ R(Ω), then
∫

Ωm

f →
∫

Ω

f .

We want to accept the second property as the definition of the integral
∫
Ω

f in
the cases when the function f is unbounded, or the domain Ω is unbounded16

The problem is that the different exhaustions can give the different answers,
but we look for the definition of the integral which does not depend on the
exhaustion. For example, consider

∫ ∞

−∞

1 + x

1 + x2
dx .

Then

lim
n→∞

∫ n

−n

1 + x

1 + x2
dx = lim

n→∞
arctan x

∣∣∣
n

−n
+

1

2
log(1 + x2)

∣∣∣
n

−n
= π ,

but

lim
n→∞

∫ 2n

−n

1 + x

1 + x2
dx = lim

n→∞
arctan x

∣∣∣
2n

−n
+

1

2
log(1 + x2)

∣∣∣
2n

−n
= π + log 2 .

The good news is the following

Claim 11.1. If f ≥ 0, and Ωm ↑ Ω, Ω′
k ↑ Ω are two exhaustions of an open

set Ω, then the following limits are equal:

lim
m→∞

∫

Ωm

f = lim
k→∞

∫

Ω′k

f .

16One can use the same approach in the case when the domain Ω is not Jordan.
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Proof: Let

∫

Ωm

f → A,

∫

Ω′k

f → B, A,B ∈ [0, +∞].

Then ∫

Ω′k

f
(ii)
= lim

m→+∞

∫

Ω′k∩Ωm

f ≤ lim
m→∞

∫

Ωm

f = A.

Hence, B ≤ A. By symmetry, A ≤ B. Done. 2.

Example 11.2 (Poisson). Consider the integral

∫∫

R2

e−(x2+y2) dxdy .

First, let us exhaust the plane by the discs Ωm = {x2 + y2 ≤ m2}. In this
case,

∫∫

Ωm

e−(x2+y2) dxdy =

∫ 2π

0

dθ

∫ m

0

e−r2

r dr = π(1− e−m2

) → π .

Now, consider the exhaustion by the squares Ω′
k = {|x|, |y| ≤ k}. We get

∫∫

Ω′k

e−(x2+y2) dxdy =

∫ k

−k

e−x2

dx ·
∫ k

−k

e−y2

dy →
(∫ ∞

−∞
e−x2

dx

)2

.

Juxtaposing the answers, we obtain the celebrated Poisson formula:

∫ ∞

−∞
e−x2

dx =
√

π .

2

The corresponding n-dimensional integral equals:

(11.3)

∫

Rn

e−(Ax,x) dx =
πn/2

√
det A

,

here A is a positive linear transformation.
First, observe that

(11.4)

∫

Rn

e−|x|
2

dx =

(∫ ∞

−∞
e−t2 dt

)n

= πn/2 .
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Also observe that

(11.5)

∫ ∞

−∞
e−at2 dt =

√
π

a
.

If the matrix of A is diagonal, then (11.3) follows from (11.4) and (11.5).
If the matrix is not diagonal, we make the orthogonal transformation x → Ox
which reduced the matrix of A to the diagonal one. 2

Example 11.6. Let f(x) = |x|−α, α > 0. We consider separately two cases:
Ω1 = B, and Ω2 = Rn \ B.

First, suppose that we integrate over the unit ball B. We split the ball
into the layers Cn = 2−k ≤ |x| ≤ 21−k, k ≥ 1. If x ∈ Ck, then integrand is
between 2α(k−1) and 2αk. Also, c12

−kn ≤ vol(Ck) ≤ c22
−kn (the constants c1

and c2 depend on the dimension n only). Hence the integral

∫

B

dx

|x|α converges

and diverges simulteneously with the series
∑

k≥1 2(α−n)k. We see that the
integral converges if α < n, and diverges otherwise.

In the second case, we use a similar decomposition into the layers {2k ≤
|x| ≤ 2k+1} and obtain the series

∑
k≥1 2(n−α)k. Hence, the second integral

converges iff α > n. In particular, the both integrals never converge simul-
teneously.

One more

Example 11.7.

∫∫

x2+y2<1

dxdy

(1− x2 − y2)α
=

∫ 2π

0

dθ

∫ 1

0

rdr

(1− r2)α

= 2π · 1

2

∫ 1

0

ds

(1− s)α
= π

∫ 1

0

dt

tα
=

π

1− α
.

Of course, the computation has a sense only if α < 1.

Definition 11.8. If for any exhaustion Ωm ↑ Ω, f ∈ R(Ωm), there exists the
limit

lim
m→∞

∫

Ωm

f,

that does not depend on the choice of the exhaustion, then we say that the
integral ∫

Ω

f

converges and equals to this limit.
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Now we give a very useful majorant sufficient condition for convergence:

Claim 11.9. Suppose that |f | ≤ g on Ω and that the integral
∫

Ω
g converges.

Also suppose that for any exhaustion Ωm ↑ Ω by Jordan sets, f ∈ R(Ωm).
Then the integrals

∫
Ω

f and
∫

Ω
|f | converge.

Proof: Since f ∈ R(Ωm), |f | ∈ R(Ωm) (the Lebesgue criterium). Fix ε > 0,
and choose large m, k, m > k. Then

0 ≤
∫

Ωm

|f | −
∫

Ωk

|f | =
∫

Ωm\Ωk

|f | ≤
∫

Ωm\Ωk

g =

∫

Ωm

g −
∫

Ωk

g < ε ,

if k is sufficiently large. Thus the sequence of integrals
{∫

Ωm
|f |

}
converges,

and the integral
∫
Ω
|f | exists.

Now, set f+ = max(f, 0), f− = (−f)+ = max(−f, 0), and observe that
|f | = f+ − f−, where 0 ≤ f−, f+ ≤ |f |. Hence, there exist the integrals

∫

Ω

f± ,

and therefore there exists the integral

∫

Ω

f =

∫

Ω

f+ −
∫

Ω

f− .

The proof is complete. 2

Exercise 11.10. Compute the integral

∫

Q

dx

|x| ,

where Q = [0, 1]2 is the unit square in R2.

Exercise 11.11. Compute

1. ∫∫

R2

|ax + by|e−(x2+y2)/2 dxdy ,

2. ∫

Rn

|〈x, a〉|p e−|x|
2

dx , a ∈ Rn, p > −1.
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Hints:
1. Rotating the plane, introduce new coordinates (x′, y′) such that x′ =
ax+by√
a2+b2

.

2. The general case is reduced to a = (0, ..., 0, |a|).
Exercise 11.12. Prove that

∫

R3

dξ

|x− ξ|2|y − ξ|2 =
c

|x− y| .

Try to find the positive constant c.

Exercise 11.13. For which values of p and q the integral

∫∫

|x|+|y|≥1

dxdy

|x|p + |y|q .

converges?

Exercise 11.14. Find the sign of the integral

∫∫

max(|x|,|y|)≤1

log(x2 + y2) dxdy .

Exercise 11.15. Verify if the integrals

∫∫

R2

dxdy

1 + x10y10

∫∫

R2

e−(x+y)4 dxdy

converge or diverge?

11.2 Useful inequalities

Here are the integral versions of the classical inequalities of Cauchy-Schwarz,
Hölder and Minkowski. By Lp(Rn) we denote the class of Riemann-integrable
functions in Rn such that

||f ||p def
=

(∫

Rn

|f |
)1/p

< ∞ .

Exercise 11.16 (Cauchy-Schwarz, Hölder). 1. Suppose f, g ∈ L2(Rn). Then

∣∣∣∣
∫

Rn

f · g
∣∣∣∣
2

≤
∫

Rn

|f |2 ·
∫

Rn

|g|2 .
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2. Suppose f ∈ Lp(Rn), g ∈ Lq(Rn), 1
p

+ 1
q

= 1. Then

∣∣∣∣
∫

Rn

f · g
∣∣∣∣ ≤

(∫

Rn

|f |p
)1/p

·
(∫

Rn

|g|q
)1/q

.

Hint: use the inequality ab ≤ ap

p
+ bq

q
, a, b ∈ R+.

Exercise 11.17 (Minkowski). If f, g ∈ Lp(Rn), 1 ≤ p < ∞, then

||f + g||p ≤ ||f ||p + ||g||p , 1 ≤ p < ∞ .

Hint: start with |a + b|p ≤ |a||a + b|p−1 + |b||a + b|p−1, then use Hölder’s
inequality.

11.3 The Newton potential

The gravitational force F exerted by the particle of mass µ at point ξ on a
particle of mass m at point x is

F = − γmµ

|x− ξ|3 (x− ξ) = γm∇ µ

|x− ξ| ,

γ is the gravitational constant. This is the celebrated Newton law of grav-
itation. The function U : x 7→ µ

|x−ξ| is called the Newton (or gravitational)
potential. The reason to replace the force F by the potential U is simple: it
is easier to work with scalar functions than with the vector ones. If the force
F is known, then one can write down the differential equations of motion of
the particle (Newton’s second law) mẍ = F , or

ẍ = γ∇ µ

|x− ξ| .

Then one hopes to integrate these equations and to find out where is the
particle at time t.

What happens if we have a system of point masses µ1, ..., µN at points
ξ1, ..., ξN? The forces are to be added, and the corresponding potential is

U(x) =
N∑

j=1

µj

|x− ξj| .

Now, suppose that the gravitational masses are distributed with contin-
uous density µ(ξ) over a portion Ω of the space. Then the Newton potential
is defined as

U(x) =

∫

Ω

µ(ξ) dξ

|ξ − x|
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(the integral is a triple one, of course), and the corresponding gravitational
force (after normalization γ = 1, m = 1) is again F = ∇U .

Let us compute the Newton potential of the homogeneous mass distribu-
tion (i.e., µ(ξ) ≡ 1 within the ball BR of radius R centered at the origin:

U(x) =

∫

BR

dξ

|x− ξ| .

By symmetry, U is a radial function, that is it depends only on |x|.
Exercise 11.18. Check this!

Thus, it suffices to compute U at the point x = (0, 0, z), z ≥ 0. We use the
spherical coordinates: ξ1 = r sin θ cos ϕ, ξ2 = r sin θ sin ϕ, ξ3 = r cos θ. Then

U =

∫ R

0

dr 2π

∫ π

0

r2 sin θ dθ√
(z − r cos θ)2 + r2 sin2 θ

=

∫ R

0

dr 2π

∫ π

0

r2 sin θ dθ√
z2 − 2zr cos θ + r2︸ ︷︷ ︸

V

.

The underbraced expression V is the Newton potential of the homogeneous
sphere of radius r. We compute V using the variable

t2 = z2 − 2zr cos θ + r2 .

Then |z − r| < t < |z + r|, and t dt = zr sin θ dθ. We get

V = 2πr2

∫ |z+r|

|z−r|

t dt

zr · t =
2πr

z
(|z + r| − |z − r|) = 4π min

(
r2

z
, r

)
.

Now, we easily find U by integration:

U =

∫ R

0

V dr .

If x is an external point, i.e., z ≥ R, then

U = 4π

∫ R

0

r2

z
dr =

4πR3

3z
.

If x is located inside the ball, i.e., z < R, then

U = 4π

(∫ z

0

r2

z
dr +

∫ R

z

r dr

)
= 4π

(
z2

3
+

R2

2
− z2

2

)
=

2π

3

(
3R2 − z2

)
.
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Thus,

U(x) =





4πR3

|x| if |x| ≥ R,

2π
3

(3R2 − |x|2) if |x| < R .

Done! 2

Observe that 4πR3/3 is exactly the total mass of the ball BR. That is,
together with Newton, we arrived at the conclusion that the gravitational
potential, and hence the gravitational force exerted by the homogeneous ball
on a particle is the same as if the whole mass of the ball were all concentrated
at its center, if the point is outside the ball. Of course, you heard about this
already in the high-school.

Another important conclusion is that the potential V of the homogeneous
sphere does not depend on the point x when x is inside the sphere! Hence,
the gravitational force is zero inside the sphere. The same is true for the
homogeneous shell {ξ : a < |ξ| < b}: there is no gravitational force inside the
shell.

Exercise 11.19. Check that all the conclusions are true when the mass
distribution µ(ξ) is radial: µ(ξ) = µ(ξ′) if |ξ| = |ξ′|. I.e., compute the mass
of the ball BR, the potential of the ball BR, and the potential of the shell
{x : R1 < |x| < R2}.
Exercise 11.20. 1. Find the potential of the homogeneous solid ellipsoid
(x2 + y2)/b2 + z2/c2 ≤ 1 at its center.
2. Find the potential of the homogeneous solid cone of height h and radius
of the base r at its vertex.

Problem 11.21. Show that at sufficiently large distances the potential of a
solid S is approximated by the potential of a point with the same total mass
located at the center of mass of S with an error less than a constant divided
by the square of the distance. The potential itself decays as the distance, so
the approximation is good17 .

11.4 The Euler Gamma-function

Definition 11.22.

Γ(s) =

∫ ∞

0

ts−1e−t dt , s > 0 .

17This estimate is rather straightforward. A more accurate argument shows that the
error is of order constant divided by the cube of the distance.
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We know that Γ(s + 1) = sΓ(s), Γ(n) = (n − 1)! (start with Γ(1) = 1),
and

Γ(1
2
) =

∫ ∞

0

t−1/2e−t dt = 2

∫ ∞

0

e−x2

dx =
√

π .

Exercise 11.23. Find the limits lim
s→0

sΓ(s) and lim
s→0

Γ(αs)

Γ(s)
.

There are two remarkable properties of the Γ-function which we’d like to
mention here without proof. The first one is the identity

Γ(s)Γ(1− s) =
π

sin πs

that extends the Γ-function to the negative non-integer values of s. The
second one is the celebrated Stirling’s asymptotic formula

Γ(s) =
√

2πss−1/2e−seθ(s), 0 < θ <
1

12s

The Gamma-function is very useful in computation of integrals.

Claim 11.24.
∫ 1

0

xα−1(1− x)β−1 dx =
Γ(α)Γ(β)

Γ(α + β)
, α, β > 0 .

The left hand side is called the Beta-function, and denoted by by B(α, β).

Proof:

Γ(α) · Γ(β) =

∫ ∞

0

∫ ∞

0

tα−1
1 tβ−1

2 e−(t1+t2) dt1dt2 .

We introduce the new variables (u, v):
{

t1 = u(1− v)

t2 = uv .

This is a one-to-one mapping of the 1-st quadrant {t1, t2 > 0} onto the semi-
strip {u > 0, 0 < v < 1}. This can be seen, for example, from the formulas

{
t1 + t2 = u

t1/t2 = 1
v
− 1 .

The Jacobian equals
∣∣∣∣
1− v −u

v u

∣∣∣∣ = u− uv + uv = u .
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We obtain

Γ(α) · Γ(β) =

∫ ∞

0

u du

∫ 1

0

dv uα−1+β−1(1− v)α−1vβ−1e−u

=

∫ ∞

0

uα+β−1e−u du ·
∫ 1

0

(1− v)α−1vβ−1 dv = Γ(α + β)B(α, β) .

2

There are many definite integrals that can be expressed via the Gamma-
function.

Example 11.25. Consider the integral

∫ π/2

0

sinα−1 θ cosβ−1 θ dθ .

We rewrite it in the form
∫ π/2

0

(
sin2 θ

)α/2−1 (
cos2 θ

)β/2−1
sin θ cos θ dθ ,

and change the variable:

sin2 θ = x, dx = 2 sin θ cos θ dθ .

We get
1

2
B

(
α

2
,
β

2

)
=

1

2

Γ
(

α
2

)
Γ

(
β
2

)

Γ
(

α+β
2

) .

2

A special case of this formula says that

∫ π/2

0

sinα−1 θ dθ =

∫ π/2

0

cosα−1 θ dθ

=
1

2

Γ
(

α
2

)
Γ

(
1
2

)

Γ
(

α+1
2

) =

√
π

2

Γ
(

α
2

)

Γ
(

α+1
2

) .

Exercise 11.26. 1. Check that

B(x, x) = 21−2xB(x,
1

2
) .

2. Deduce the duplication formula:

Γ(2x) =
22x−1

√
π

Γ(x) Γ(x +
1

2
) .
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Exercise 11.27. Show that
∫ 1

0

x4
√

1− x2 dx =
π

32
,

∫ ∞

0

xme−xn

dx =
1

n
Γ

(
m + 1

n

)
,

∫ 1

0

xm(log x)n dx =
(−1)nn!

(m + 1)n+1
, n ∈ N,

∫ π/2

0

dx√
cos x

=
Γ2(1/4)

2
√

2π
.

We mention without proof another very useful formula
∫ ∞

0

xp−1

1 + x
dx =

π

sin πp
, 0 < p < 1 .

There is a simple proof that that uses the residues theorem from the complex
analysis course. This formula yields that Γ(s)Γ(1 − s) = π

sin πs
(note that∫ 1

0
tp−1(1− t)−p dt =

∫∞
0

xp−1

1+x
dx).

11.4.1 The Dirichlet formula

We start with the Dirichlet formula:

11.28.
∫

. . .

∫
x1,...,xn≥0,

x1+ ...+xn≤1

xp1−1
1 ... xpn−1

n dx1 ... dxn =
Γ(p1) ... Γ(pn)

Γ(p1 + ... + pn + 1)
, p1, ... pn > 0 .

Proof: we use induction with respect to the dimension n. For n = 1 the
formula is obvious:

∫ 1

0

xp1−1
1 dx1 =

1

p1

=
Γ(p1)

Γ(p1 + 1)
.

Now, denote the n-dimensional integral by In, and assume that the result is
valid for n− 1. Then

In =

∫ 1

0

xpn−1
n dxn

n−1︷ ︸︸ ︷∫
. . .

∫

x1, ... xn−1≥0
x1+ ... +xn−1≤1−xn

xp1−1
1 ... x

pn−1−1
n−1 dx1 ... dxn−1 .
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To compute the inner integral, we introduce the new variables x1 = (1−xn)ξ1,
..., xn−1 = (1− xn)ξn−1. Then the inner integral equals

(1− xn)n−1+(p1−1)+ ... +(pn−1−1) ·
∫

. . .

∫
ξ1, ... ξn−1≥0

ξ1+ ... +ξn−1≤1

ξp1−1
1 ... ξ

pn−1−1
n−1 dξ1 ... dξn−1

= (1− xn)p1+ ...+pn−1 In−1 .

Thus,

In = In−1

∫ 1

0

(1− xn)p1+ ... +pn−1xpn−1
n dxn

=
Γ(p1) ... Γ(pn−1)

Γ(p1 + ... + pn−1 + 1)
· Γ(p1 + ... + pn−1 + 1)Γ(pn)

Γ(p1 + ... + pn + 1)
=

Γ(p1) ... Γ(pn)

Γ(p1 + ... + pn + 1)
.

2

There is a seemingly more general formula:

11.29.

∫
. . .

∫
x1,...,xn≥0,

x
γ1
1 + ...+xγn

n ≤1

xp1−1
1 ... xpn−1

n dx1 ... dxn =
1

γ1 ... γn

·
Γ

(
p1

γ1

)
... Γ

(
pn

γn

)

Γ
(

p1

γ1
+ ... + pn

γn
+ 1

) .

It is easily obtained from the previous one by the change of variables
yj = x

γj

j .

There is a special case which is worth mentioning: p1 = ... = pn = 1,
γ1 = ... = γn = p:

∫
. . .

∫
x1,...,xn≥0

xp
1+...+xp

n≤1

dx1 ... dxn =
Γn

(
1
p

)

pnΓ
(

n
p

+ 1
) .

We’ve found the volume of the unit ball in the metric lp:

vn (Bp(1)) =
2nΓn

(
1
p

)

pnΓ
(

n
p

+ 1
) .

Of course, if p = 2, the formula gives us the volume of the standard unit ball:

vn = vn(B) =
2πn/2

nΓ
(

n
2

) .

We also see that the volume of the unit ball in the L1-metric equals 2n

n!
.

Question: what the formula gives us in the “p →∞ limit”?
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Exercise 11.30.
∫

. . .

∫
x1+...+xn≤1
x1,...,xn≥0

ϕ(x1 + ... + xn)xp1−1
1 ...xpn−1

n dx1...dxn

=
Γ(p1)...Γ(pn)

Γ(p1 + ... + pn)

∫ 1

0

ϕ(u)up1+...pn−1 du.
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12 Smooth surfaces

We start with smooth (two-dimensional) surfaces in R3 and their tangent
planes. Then we define and briefly discuss smooth k-dimensional surfaces in
Rn, 0 ≤ k ≤ n. The cases k = 1 and k = n − 1 correspond to the lines
and hyper-surfaces in Rn, the extreme cases k = 0 and k = n correspond to
points and domains in Rn. In the case k = 2, n = 3, we get (two-dimensional)
surfaces in R3. We finish with discussion of normal vectors to hyper-surfaces.

12.1 Surfaces in R3

There are three definitions of smooth surfaces in R3.

12.1.1 Graph of function

The surface M ⊂ R3 is a graph of function z = f(x, y). The class of smooth-
ness of the surface M is defined according to the class of smoothness of f .

12.1.2 Zero set of a smooth function

The surface M ⊂ R3 can be defined as the zero set of a smooth function:
M = {(x, y, z) : F (x, y, z) = 0}.

Locally, this definition is equivalent to the previous one. Obviously, graph
of the function z = f(x, y) can be viewed as the zero set of the function
z − f(x, y) = 0. To move in the opposite direction, we say that he point
P (x0, y0, z0) ∈ M is called regular, if F (P ) = 0, but ∇F (P ) 6= 0. Wlog,
suppose Fz(P ) 6= 0. Then, by Implicit Function Theorem, we can solve
equation F (x, y, z) = 0 near the point P , i.e., we find the function z = f(x, y)
such that z0 = f(x0, y0), and F (x, y, f(x, y)) ≡ 0 in a neighbourhood of
(x0, y0).

12.1.3 Parametric surfaces

are defined as the image in R3 of a ‘nice’ domain G ⊂ R2 under a C1-injection
r : G → R3. The variables (u, v) are called the local parameters on the surface
M . Let, in the coordinates,

r(u, v) =




x(u, v)
y(u, v)
z(u, v)


 .
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The point P (r(u0, v0)) ∈ M is called regular if the matrix of the derivative
Dr has rank two, i.e.

rank

(
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

)
(u0, v0) = 2 .

Claim 12.1. If P ∈ M is a regular point, then in a neighbourhood of P the
surface M is graph of a function.

Proof: Suppose, for instance, that

∣∣∣∣
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣ 6= 0 ,

i.e. Jacobian of the mapping

(12.2)

{
x = x(u, v)

y = y(u, v)

does not vanish at (u0, v0). Then by the Inverse Function Theorem the
mapping (12.2) can be inverted in a neighbourhood of (u0, v0):

{
u = u(x, y) u0 = u(x0, y0) ,

v = v(x, y) v0 = v(x0, y0) .

Substituting this into expression for z, we get

z = f(x, y)
def
= z (u(x, y), v(x, y)) , z0 = f(x0, y0) = z(u0, v0) .

2

Thus, near regular points all three definitions of surfaces coincide!

12.1.4 The tangent plane

Let M be a parametric surface, G domain of the local coordinates (u, v), the
point r(u0, v0) be regular. Consider a curve γ(t) = (u(t), v(t)) ⊂ G passing
through the point (u0, v0) and its image, the curve r(t) = r(u(t), v(t)) ⊂ M
passing through the point P0: The tangent ( = velocity) vector of the curve
r(t) is

ṙ(t) = ruu̇ + rvv̇ .

Since (u0, v0) is a regular point, the vectors ru = (xu, yu, zu) and rv =
(xv, yv, zv) are linearly independent. Thus any tangent vector to M
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at P0 is a linear combination of ru and rv (with coefficients u̇
and v̇), and the tangent plane TP0M is a two dimensional linear
space spanned by the vectors ru and rv.

If M was defined as the zero set of a function F , then equation of a curve
on M is F (x(t), y(t), z(t)) = 0. Differentiation by t, we get

Fxẋ + Fyẏ + Fz ż = 0 .

If ∇F 6= 0, that is, the point is regular, we get equation for the coordinates
(ξ, η, ζ) of the tangent vector:

Fx(x0, y0, z0)ξ + Fy(x0, y0, z0)η + Fz(x0, y0, z0)ζ = 0 .

If we want to think about tangent vectors as of vectors that start at the point
(x0, y0, z0) ∈ M , then we get the affine plane in R3, its equation is

Fx(x0, y0, z0)(ξ − x0) + Fy(x0, y0, z0)(η − y0) + Fz(x0, y0, z0)(ζ − z0) = 0.
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Exercise 12.3. Let Σ be the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1 .

in R3. Find the distance p(x, y, z) from the origin to the tangent plane of Σ
at (x, y, z).

12.1.5 Examples of surfaces in R3

Ellipsoid in R3 is defined by equation

x2

a2
+

y2

b2
+

z2

c2
= 1 ,

that is, this is the zero set of the quadratic polynomial F (x, y, z) = x2

a2 + y2

b2
+

z2

c2
− 1. All points of the ellipsoid are regular. Globally, it cannot be defined

as a graph of a function or by only one coordinate map (why?).
The ellipsoid is parameterized by the local coordinates x = a cos ϕ cos θ,

y = b sin ϕ cos θ, z = c sin θ, where 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π.

One sheet hyperboloid is defined by equation

x2

a2
+

y2

b2
− z2

c2
= 1 .

All points of this surface are regular. It is defined parametrically as x =

a
√

1 + z2

c2
cos ϕ, y = b

√
1 + z2

c2
sin ϕ, z = z, where 0 ≤ ϕ ≤ 2π and −∞ <

z < ∞.

Double-sheet hyperboloid (or, elliptic paraboloid) is defined by equa-
tion

−x2

a2
− y2

b2
+

z2

c2
= 1 .

All points of this surface are regular. Each sheet is the graph of the function

z = ±c
√

1− x2

a2 − y2

b2
.

Cone C is defined by equation

x2

a2
+

y2

b2
− z2

c2
= 0 .

It has a singular point (0, 0, 0). C \ {0} is a smooth surface.
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Cylinder is defined by equation x2

a2 + y2

b2
= 1. All points of the cylinder are

regular. It’s parametric description is x = a cos ϕ, y = b sin ϕ, z = z, where
0 ≤ ϕ ≤ 2π, −∞ < z < ∞.

Exercise 12.4. Build a smooth one-to-one map from the punctured plane
{(x, y) : 0 < x2 + y2 < ∞} onto the cylinder.

Surface of revolution Given a curve γ : I → R3 lying in the half-plane
{x > 0, y = 0} we can built the “surface of revolution” Σ ⊂ R3 revolving
γ around the z-axis. If γ(s) = (γ1(s), 0, γ3(s)), then Σ is defined by the
mapping

r(s, t) = (γ1(s) cos t, γ1(s) sin t, γ3(s)) .

The most popular example of surface of revolution is
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Torus obtained by rotation of the circle of radius a centered at (b, 0, 0),
a < b. The parametric equations of the torus are x = (b + a cos s) cos t,
y = (b + a cos s) sin t, and z = a sin s.

Helix and helicoid The helix (or, spiral) is a curve in R3 defined by
t 7→ (cos t, sin t, t), −∞ < t < ∞. The helicoid is a surface in R3 defined by
(s, t) 7→ (s cos t, s sin t, t), s > 0, −∞ < t < ∞.

Exercise 12.5. Draw the pictures of helix and helicoid.

12.2 Equivalent definitions of k-surfaces in Rn

We give three equivalent definitions of k-surfaces: as graphs, as zero sets, and
as images of open sets. The equivalence will again follow from the Implicit
and Inverse Function Theorems.
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12.2.1 Graphs of functions

A subset M ⊂ Rn (M 6= ∅) is a smooth k-dimensional surface if for any
x ∈ M there is a neighbourhood U of x such that M ∩ U is the graph of a
smooth mapping f of an open subset W ⊂ Rk into Rn−k:

M ∩ U =
{
(w, f(w) : w ∈ W ⊂ Rk

}
.

Here, we are free to choose which n − k coordinates in Rn are functions of
the other k coordinates. For simplicity, we usually assume that the first k
coordinates are “free” and the last n − k coordinates are the functions of
them.

Observe that the mapping r : W → Rn, r(w) = (w, f(w)) is a bijection
between W and r(W ) = M ∩ U . The inverse mapping r−1 : M ∩ U → W is
the projection (w, f(w)) 7→ w.

According to the class of smoothness of f , we define the class of smooth-
ness of the surface M .

Examples:
1. Any open set X ⊂ Rn is a C∞-surface. We take W = X, f : X → R0 =
{0}, that is f(x) = 0 for all x ∈ X, and identify x ∈ X with (x, f(x)).

2. Any point x ∈ Rn is also a C∞-surface. Why?

12.2.2 Zero sets

Let U ⊂ Rn be an open set, F : U → Rp smooth function, 0 ≤ p ≤ n,
0 ∈ F (U). Consider the zero set

ZF
def
= {x ∈ U : F (x) = 0} .

The point z ∈ Zf is regular if rankDF (z) = p, i.e., is maximal18. If z is
a regular point of ZF , then there exists a neighbourhood U of z such that
ZF ∩ U is a smooth k-dimensional surface, k = n− p.

Indeed, since rankDF (z) = p, we can choose p coordinates, say, xn−p+1,
...., xn, such that the derivative of F with respect to these variables is in-
vertible. Then we apply the Implicit Function Theorem and conclude that
locally the coordinates xn−p+1, ..., xn are the functions of x1, ..., xn−p. 2

Example 12.6. The unit sphere Sn−1 ⊂ Rn is the zero set of the function
F (x) = |x|2 − 1. Since ∇F = 2x 6= 0 on Sn−1, all points of the sphere are
regular.

18Otherwise, z is a singular point of ZF .
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12.2.3 Parametric surfaces

Suppose r : V → Rn is a smooth mapping, V ⊂ Rk, 0 ≤ k ≤ n, is an open
set. The mapping r is regular if rankDr(v) = k at every point v ∈ V .

Exercise 12.7. If rankDr(v0) = k, then rankDr(v) = k in a neighbourhood
of v0.
(Of course, this is just a special case of the Exercise 4.9.)

We say that M ⊂ Rn is a smooth k-dimensional surface if for any x ∈ M
there exist a neighbourhood U of x, an open set V ⊂ Rk, and a regular
bijection r : V → M ∩ U .

Formally, this definition is more general than the first one, that uses
graphs. Let us check that they are actually coincide. Fix a point a = r(b).
Since Dr has maximal rank k, we can choose k coordinate functions, say

r1(v), ..., rk(v), such that the corresponding mapping r∗ =




r1
...
rk


 of V into

Rk has the invertible derivative Dr∗(v). Then, applying the Inverse Function

Theorem, we get a neighbourhood W of the point a∗ =




a1
...

ak


, and the

inverse mapping h = (r∗)−1 : W → V . Substituting this mapping into the

functions rk+1(v), ..., rn(v), we get the mapping f =




rk+1
...
rn


 ◦ h : W → Rn

such that locally, in a neighbourhood of the point a, M is the graph of f .
(Why?) 2

The coordinates v1, ..., vk are called the local (curvilinear) coordinates on
M ∩ U , the function r is called the coordinate patch, or the map. The maps
can “overlap”: suppose that there are two maps r1 and r2 such that r1(V1)∩
r2(V2) 6= ∅. Then we can define the function r−1

2 ◦ r1.

Exercise 12.8. The composition map r−1
2 ◦ r1 is a C1-diffeomorphism be-

tween the open sets r−1
1 (r1(V1) ∩ r2(V2)) and r−1

2 (r1(V1) ∩ r2(V2)).

Question 12.9. What is the minimal number of coordinate maps needed to
define the unit sphere Sn−1 ⊂ Rn? Justify your answer.
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12.3 The tangent space

Definition 12.10. Suppose γ : I → Rn is a C1-curve in Rn. Then the vector

γ̇(t) =




γ̇1(t)
...

γ̇n(t)




is called the tangent (or velocity) vector of γ at the point x = γ(t).

Definition 12.11. Suppose M is a C1-smooth k-surface. Then the vector
v ∈ Rn is called a tangent vector to M at the point x ∈ M if there exists a
C1-curve γ : I → M and t ∈ I such that γ(t) = x, and γ̇(t) = v. The set
of all tangent vectors to M at x is called the tangent space of M at x and
denoted by TxM .

Geometrically, we think about elements of the tangent space TxM as of
vectors that start at the point x.

To better understand this definition, assume first that M is an open set
in Rn, and x ∈ M . Then a minute reflection shows that TxM = TxRn ' Rn.
We know that the derivative of a smooth mapping f : M → Rm at the
point x ∈ M is a linear operator Df (x) ∈ L(Rn,Rm). Now, we understand

that it acts on the tangent spaces: Df (x) : TxM → Tf(x)f(M) . Indeed,

if γ : I → M is a curve in M passing through the point x = γ(t), then
f ◦ γ : I → Rm is a curve in Rm passing through the point f(x), and by the
chain rule

d(f ◦ γ)

dt
= Df (x)γ̇ .

Now, let us return to tangent spaces of k-surfaces. Since we have three
equivalent definitions of k-surfaces, we get three different ways to find the
tangent space.

First, we assume that M is defined parametrically. Fix x ∈ M . Then
we can find a neighbourhood U of x, an open set V ∈ Rk and C1-bijection
r : V → M ∩ U , x = r(b). This establishes a one-to-one correspondence
between C1-curves x(t) in M ∩ U passing through x, and C1-curves v(t) in
V passing through b: x(t) = (r ◦ v)(t). Differentiating this relation, we get

ẋ(t) = Dr(v(t)) v̇(t) =
k∑

i=1

v̇i(t)rvi
(b) .

In other words, Dr(b) maps TbV bijectively onto TxM . In particular, TxM is a
linear subspace of Rn of dimension k generated by k vectors rv1(b), ..., rvk

(b).
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If M ∩ U is the zero set of the C1-mapping F : U → Rn−k, we have
F (x(t)) ≡ 0 for any curve x(t) in M . Differentiating this by t, we get
DF (x)ẋ(t) = 0, that is ẋ(t) ∈ kerDF (x), or TxM ⊂ kerDF (x). Since the
both are linear subspaces of Rn of dimension k, we get

TxM = kerDF (x) .

For instance, if M is a hypersurface (i.e., k = n− 1, and F is a scalar-valued
function, then the tangent space TxM is the orthogonal complement to the
gradient ∇F (x).

12.4 Normal vectors to hypersurfaces

Suppose M ⊂ Rn is a hypersurface, then dimTxM = n−1 and dim(TxM)⊥ =
1.

Definition 12.12. The unit normal N(x) to M at x is a vector from (TxM)⊥

such that |N(x)| = 1.

Clearly, N(x) is defined up to its sign19. Sometimes, the vector N(x) is
written in the form (cos θ1, ..., cos θn). The angles θ1, ..., θn ∈ [0, π] are called
the directional cosines.

Now, let us look how to find the normal vector.

First, suppose that M is the zero set of a smooth function F . Then, as
we already know, the gradient of F is orthogonal to any tangent vector, that
is

N(x) = ± ∇F (x)

|∇F (x)| .

If M is a graph of a scalar function f(x1, ..., xn−1), we define F (x) =
xn − f(x1, ..., xn−1). Then M is the zero set of F . Notice that

∇F (x) =




−fx1

...
−fxn−1

1


 ,

and
|∇F (x)| =

√
1 + |∇f(x)|2 .

The case when M is defined parametrically is the most involved. Suppose,
locally, M is defined by equation x = r(v). The tangent hyperplane TxM is

19Later we shall use this to orient the hypersurface M .
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spanned by n− 1 vectors rv1 , ..., rvn−1 , and we need to learn how to compute
the normal vector to this linear span. For this, we need to extend an idea of
the vector product from the case of two vectors in R3 to the case of n − 1
vectors in Rn.

Cross product of n− 1 vectors in Rn Given n− 1 linearly independent
vectors R1, ..., Rn−1 in Rn consider the determinant det(R, R1, ... , Rn−1)

20.
This is a linear functional on R, thus there exists a vector Y that represents
this functional: det(R, R1, ... , Rn−1) = 〈Y, R〉. The vector Y is called the
cross product of the vectors R1, ..., Rn−1, and is denoted by Y = R1× ... Rn−1.
It follows from the definition of Y that 〈Y, Ri〉 = det(Ri, R1, ..., Rn−1) = 0,
1 ≤ i ≤ n− 1.

Fix an orthonormal basis {Ei}1≤i≤n in Rn. The coordinates of Y in this
basis are

Yi = 〈Y, Ei〉 = det(Ei, R1, ..., Rn−1) ,

and

Y =
n∑

i=1

YiEi =
n∑

i=1

det(Ei, R1, ..., Rn−1)Ei.

Thus

R1 × ... ×Rn−1 =

∣∣∣∣∣∣∣∣∣

E1 E2 . . . En

R1,1 R1,2 . . . R1,n
...

...
. . .

...
Rn−1,1 Rn−1,2 . . . Rn−1,n

∣∣∣∣∣∣∣∣∣
where Ri,j = (Ri, Ej) is the j-th coordinate of Ri. Note that the first column
of the determinant consists of vectors whilst the other columns consist of
scalars.

In particular, when n = 3, we arrive to the vector product formula

A×B =

∣∣∣∣∣∣

E1 E2 E3

A1 A2 A2

B1 B2 B3

∣∣∣∣∣∣
.

It remains to compute the norm of the cross-product. In fact, we already
know how to do this:

Claim 12.13 (linear algebra).

|Y | =
√

Γ(R1, ..., Rn−1) ,

where Γ(R1, ..., Rn−1) is the Gram determinant of the vectors R1, ..., Rn−1.

20That is the determinant of the matric which columns consist of these vectors.
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Proof: We have

|Y |4 = 〈Y, Y 〉2 = det2(Y,R1, ..., Rn−1) .

The RHS is the square of the volume of the parallelepiped P (Y, R1, ..., Rn−1)
spanned by the vectors Y, R1, ..., Rn−1. We know that it equals to Γ(Y, R1, ..., Rn−1).
Since Y is orthogonal to the rest of the vectors,

Γ(Y, R1, ..., Rn−1) = |Y |2Γ(R1, ..., Rn−1) .

We are done! 2

Returning to our problem, we get the useful formula for unit normal
vectors N(x) to parametric surfaces:

N(x) = ± rv1 × ...× rvn−1√
Γ(rv1 , ..., rvn−1)

.

If n = 3 and r = r(u, v), then

|ru × rv|2 = Γ(ru, rv) = |ru|2|rv|2 − (ru, rv)
2 .

In differential geometry there are special notations for the quantities that
enter the right-hand side: E = |ru|2, F = (ru, rv), and G = |rv|2. Then

√
Γ(ru, rv) =

√
E ·G− F 2 .

12.4.1 Juxtaposing two computations

If in a neighbourhood of the point ξ ∈ M the hyper-surface M is defined as
the graph of the function: M ∩ Uξ = {(x, f(x)) : x ∈ G ⊂ Rn−1}, then

r(x) =




x1

x2
...

xn−1

f(x1, ..., xn−1)




and

r1 =




1
0
...
0

fx1




, r2 =




0
1
...
0

fx2




, ... , rn−1 =




0
0
...
1

fxn−1




.
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We know that the vectors r1× ... × rn−1 and




−fx1

...
−fxn−1

1


 belong to the same

one dimensional vector space (TξM)⊥, that is

r1 × ... × rn−1 = C




−fx1

...
−fxn−1

1


 .

It is not difficult to check that C = (−1)n−1. Indeed, comparing the n-th
components of these two vectors, we see that C is the n-th component of the
vector r1 × ... × rn−1; i.e.

C = (−)n−1

∣∣∣∣∣∣∣∣∣

1 0 . . . 0
0 1 . . . 0
...

...
...

. . .

0 0 . . . 1

∣∣∣∣∣∣∣∣∣
= (−1)n−1 .

We arrive at the useful corollary:

Corollary 12.14. In the notations as above,

Γ(r1, ..., rn−1) = 1 + |∇f |2 .
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13 Surface area and surface integrals

To avoid technicalities, we shall tacitly assume that M is an “elementary
surface” defined by one patch M = r(U), U ⊂ Rk, is a good bounded
domain (usually, U is a brick or a ball), r is a C1-bijection. In the “practical
computations”, sometimes, we’ll need to consider the surfaces that are not
elementary, like the unit sphere in Rn. In these cases, we just split the domain
of integration into finitely many “elementary parts”, requiring additivity of
the area and integrals.21

13.1 Fundamental definitions

We want to define the k-area on M and the integrals of “good” functions
on M over the k-area. First, let us look at the tangent spaces TuRk and
TxM , x = r(u) ∈ M . We know that Dr : TuRk → TxM is a linear bijection,
and

√
Γ(r1, ..., rk) =

√
det(D∗

r(u)Dr(u)) is the volume distortion coefficient
under the mapping Dr. (Here, rj = ∂r

∂uj
, 1 ≤ j ≤ k, are k vectors that

span TxM .) Thus, if Ω ⊂ U is a sufficiently small cube centered at u, then
we expect that the k-dimensional area of the “distorted cube” r(Ω) ⊂ M is
≈

√
Γ(r1, ..., rk) volk(Ω). Moreover, the smaller Ω is, the closer

areak (r(Ω))

volk(Ω)

is to
√

Γ(r1, ..., rk). Since the k-area on M is supposed to be set-additive,
we naturally arrive to the following definition

Definition 13.1 (k-dimensional area).

Ak(r(Ω)) =

∫

Ω

√
Γ(r1, ..., rk) =

∫

Ω

√
det(D∗

rDr) .

Definition 13.2 (k-dimensional surface integral). Suppose f is a continuous
function on M vanishing outside a compact subset of M . 22 Then

∫

M

f dS =

∫

U

(f ◦ r)
√

Γ(r1, ..., rk) =

∫

U

(f ◦ r)
√

det(D∗
rDr)

21Formally, this case is treated by the “partition of unity”. We will come later to its
construction.

22Of course, we require too much. If M is parameterized by a finite brick or ball U ,
then it suffices to require that the function f ◦ r is continuous on U .
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These definitions do not depend on the choice of parameterization of M .
Suppose ρ : V → M is another C1-parameterization. Then ϕ = r−1 ◦ρ : V →
U is a C1-diffeomorphism, and

∫

U

(f ◦ r)
√

det(D∗
rDr) =

∫

V

(f ◦ r) ◦ ϕ︸ ︷︷ ︸
=f◦ρ

√
det(D∗

rDr) ◦ ϕ | det(Dϕ)|︸ ︷︷ ︸
=
√

det(D∗ϕ) det(Dϕ)

.

Since
(Dr ◦ ϕ) · Dϕ = Dρ

(the chain rule), we get

∫

V

(f ◦ ρ)
√

det(D∗
ρDρ) ,

as expected. 2

In the case k = n our definition coincides with our previous definitions of
multiple integral and the volume. Now, we examine the cases k = 1 (length
and integrals over the curves), k = 2 and n = 3 (surface area and surface
integrals in R3), and k = n− 1 (“hyperarea” in Rn).

Exercise 13.3. Suppose u = ϕ(v); i.e. the ‘old’ local coordinates u1, ..., uk

are C1-functions of the ‘new’ local coordinates v1, ..., vk. Let ρ = r◦ϕ. Then

Γ(ρv1 , ..., ρvk
) = Γ(ru1 , ..., ruk

) · J2
ϕ ,

where

Jϕ = det Dϕ =

∣∣∣∣
∂(u1, ..., uk)

∂(v1, ..., vk)

∣∣∣∣
is the Jacobian of ϕ.

13.2 Length and integrals over the curves

Let γ : I → Rn be a C1-curve, Γ = γ(I). Then the length of Γ is

L(Γ) =

∫

I

|γ̇| .

If f : Γ → R1 is a “good function”, then

∫

Γ

f ds =

∫

I

(f ◦ γ)(t)|γ̇(t)| dt .
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This definition of length is consistent with the geometric one. Let for
time being γ be a continuous curve, and let Π be a partition of the segment
I = [a, b]: a = t0 < t1 < ... < tN = b. By ΓΠ we denote the corresponding
polygonal line inscribed in Γ. It consists of N segments [γ(tj), γ(tj+1)], 0 ≤
j ≤ N − 1. Its length equals

L(ΓΠ) =
N−1∑
j=0

|γ(tj+1)− γ(tj)| .

Definition 13.4 (length of the curve).

L(Γ) = sup
Π
L(ΓΠ) .

If L(Γ) < ∞, then the curve Γ is called rectifiable.

Theorem 13.5 (equivalence of the length definitions). If Γ is a piece-wise
C1-curve, then Γ is rectifiable, and L(Γ) =

∫
I
|γ̇|.

Proof: We split the proof into several simple claims.

1. If a partition Π′ is finer than Π, then L(ΓΠ′) ≥ L(ΓΠ). It suffices to check
what happens when we add one new point to the partition. In this case, the
result follows from the triangle inequality.

2. Additivity of the length: Let c ∈ (a, b) be an inner point of I. Set γ1 =
γ
∣∣
[a,c]

, γ2 = γ
∣∣
[c,b]

. Then L(Γ) = L(Γ1) + L(Γ2).

Indeed, let Π1 be a partition of [a, c], and Π2 be a partition of [c, b]. We
denote by Π = (Π1, Π2) the corresponding partition of [a, b]. Then

L(Γ1,Π1) + L(Γ2,Π2) = L(ΓΠ) ≤ L(Γ) .

In the opposite direction, let Π be any partition of [a, b]. We choose partitions
Π1 of [a, c] and Π2 of [c, b] such that (Π1, Π2) is finer than Π. Then

L(ΓΠ) ≤ L(Γ1,Π1) + L(Γ2,Π2) ≤ L(Γ1) + L(Γ2) .

Remark: the argument shows that Γ is rectifiable if and only if the both
curves Γ1 and Γ2 are rectifiable.

3. If f : I → Rn is a continuous function, then
∣∣∣∣
∫

I

f

∣∣∣∣ ≤
∫

I

|f | .

This we already know (and used in the proof of the inverse function theorem).
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4. If Γ is a C1-curve, then

L(Γ) ≤
∫

I

|γ̇| .

Indeed, for each partition Π,

L(ΓΠ) =
N−1∑
j=0

|γ(tj+1)− γ(tj)| =
N−1∑
j=0

∣∣∣∣∣
∫ tj+1

tj

γ̇

∣∣∣∣∣ ≤
N−1∑
j=0

∫ tj+1

tj

|γ̇| =
∫

I

|γ̇| .

5. Due to additivity, it suffices to prove the result for C1-curves. Given
t ∈ [a, b], we set l(t) = L(γ

∣∣
[a,t]

). Then l(t
′′
)− l(t′) = L(γ

∣∣
[t′,t′′ ]),

|γ(t′′)− γ(t′)| ≤ l(t
′′
)− l(t′) ≤

∫ t′′

t′
|γ̇| ,

and
|γ(t′′)− γ(t′)|

t′′ − t′
≤ l(t′′)− l(t′)

t′′ − t′
≤ 1

t′′ − t′

∫ t′′

t′
|γ̇| .

Letting t′′− t′ → 0, we see that the function l(t) is differentiable with respect
to t, and l̇(t) = |γ̇(t)| (and hence l̇ is continuous). Since l(a) = 0, we get

l(t) =

∫ t

a

l̇ =

∫ t

a

|γ̇| .

In particular,

L(Γ) = l(b) =

∫ b

a

|γ̇| ,

completing the proof of the theorem. 2

Example 13.6. 1. If the curve Γ ⊂ R2 is the graph of the function y = f(x),
a ≤ x ≤ b, then

L(Γ) =

∫ b

a

√
1 + f ′2(x) dx .

2. If the curve Γ ⊂ R2 is defined by polar coordinates r = r(θ), α ≤ θ ≤ β,
then its length is

L(Γ) =

∫ β

α

√
r2(θ) + r′2(θ) dθ .

Exercise 13.7. Compute the length of the cardioid r = 2(1 + cos θ), 0 ≤
θ ≤ 2π.
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Exercise 13.8. Compute ∫

Γ

xy ds ,

where Γ = {(x, y) : x2

a2 + y2

b2
= 1, x, y ≥ 0} is the 1-st quarter of the ellipse.

Answer: ab
3

a2+ab+b2

a+b
.

Exercise 13.9. Suppose γ : I → S2 is a curve on the unit sphere:

γ1(t) = sin ϕ(t) cos θ(t), γ2(t) = sin ϕ(t) sin θ(t), γ3(t) = cos ϕ(t).

Show that

L(γ) =

∫

I

√
ϕ̇2 + θ̇2 sin2 ϕ

Exercise 13.10. Find the coordinates of the center of masses of the homo-
geneous curves:
(a) arc of the cycloid:

x = a(t− sin t), y = a(1− cos t), 0 ≤ t ≤ 2π .

(b) the boundary of the spherical triangle

x2 + y2 + z2 = a2, x > 0, y > 0, z > 0 .

The gravitational force F induced by the curve Γ ⊂ R3 with the density
distribution µ on a particle with the unit mass at the point x is

F (x) =

∫

Γ

ξ − x

|ξ − x|3µ(ξ) dξ

(for simplicity we equal the gravitational constant γ to one).

Exercise 13.11. Find the gravitational force exerted by the homogeneous
infinite line in R3 (µ ≡ 1) on the particle of unit mass at the distance h from
the line.
Hint: choose convenient coordinate system.

13.3 Surface area and surface integrals in R3

Suppose M ⊂ R3 is a C1 surface defined by the patch r : Ω → R3, Ω is either
the square or the disc. Then, according to our general definition,

A(M) =

∫∫

Ω

√
Γ(ru, rv) dudv =

∫∫

Ω

|ru × rv| dudv .
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If we wish to integrate the function f : M → R1 over M , we set

∫∫

M

f dS =

∫∫

Ω

(f ◦ r)|ru × rv| dudv .

If the surface M is defined as the graph of the function z = f(x, y), then

|rx × ry| =
√

1 + |∇f |2 .

If the surface M is defined by the equation F (x, y, z) = 0, and z can be
expressed as a function of x and y: z = f(x, y), then

√
1 + |∇f |2 =

|∇F |
|Fz| .

13.3.1 Examples

Example 13.12 (area of the unit sphere in R3). It is very easy to guess the
answer:

A(S2) =
d

dr
vol(Br)

∣∣
r=1

=

(
4πr3

3

)′

r=1

= 4π .

This computation can be justified. However, instead, we shall compute the
area directly. The unit sphere is defined by equation F (x, y, z) = 0, where
F (x, y, z) = x2 + y2 + z2 − 1. We’ll deal with the upper hemi-sphere. Then
Fz = 2z = 2

√
1− (x2 + y2), |∇F |2 = (2x)2 + (2y)2 + (2z)2 = 4, and

A(S2) = 2

∫∫

x2+y2<1

2 dxdy

2
√

1− (x2 + y2)
= 2

∫ 2π

0

dθ

∫ 1

0

r dr√
1− r2

= 2π

∫ 1

0

ds√
1− s

= 2π

∫ 1

0

dt√
t

= 4π .

Now, we extend a little bit the previous computation:

Example 13.13 (area of the spherical cap and the kissing number). Consider
the spherical cap

Sψ = {(cos ϕ sin θ, sin ϕ sin θ, cos θ) : 0 ≤ ϕ < 2π, 0 < θ < ψ} .

Then r(ϕ, θ) = (cos ϕ sin θ, sin ϕ sin θ, cos θ), rϕ = (− sin ϕ sin θ, cos ϕ sin θ, 0),
rθ = (cos ϕ cos θ, sin ϕ cos θ,− sin θ), and |rϕ × rθ| = sin θ. Thus

A(Sψ) = 2π

∫ ψ

0

sin θ dθ = 2π(1− cos ψ) .
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Using this computation, we estimate the kissing number of the unit spheres
in R3, that is the maximal number of the unit spheres that touch a given
unit sphere.

Let us start with the plane case: If the circle S ′ of radius one touches the
circle S of radius one, that the angle it is seen from the center of S equals π

3
.

If N(2) unit circles touch the unit circle S, then the sum of the angles they
are seen from the center of S cannot be larger than 2π. Hence, the number
N(2) of the circles is ≤ 6. The next figure shows that this bound is sharp.

Now consider the three-dimensional case. If the unit sphere S ′ touches
the unit sphere S, then S ′ can be placed inside the cone with vertex at the
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center of S and of angle π/3 and the area of the spherical cap on S located
inside this cone equals 2π(1−cos π/6) = π(2−√3). If N(3) unit spheres kiss
the given unit sphere S, then the corresponding spherical caps are disjoint.
Thus

N(3)π(2−
√

3) ≤ 4π ,

or
N(3) ≤ 4(2 +

√
3) < 15 .

This estimate is not sharp. The sharp bound is N(3) = 12. It was known
already to Newton, though the accurate proof was given only in the 20th
Century.23

Exercise 13.14. Find
∫∫

S2
x2

i dS , 1 ≤ i ≤ 3 ,

without ANY actual computation.
Hint: the integrals do not depend on i.

Exercise 13.15 (area surface of the intersection of two cylinders). Compute
A(∂K), where K = {x ∈ R3 : x2

1 + x2
2 ≤ 1, x2

1 + x3
3 ≤ 1}.

Hint: ∂K = {x2
1 + x2

2 ≤ 1, x2
1 + x2

3 = 1}⋃{x2
1 + x2

3 ≤ 1, x2
1 + x2

2 = 1}.
Answer: 16.

Exercise 13.16. Find the area of the part of the sphere {x2 +y2 + z2 = R2}
located inside the cylinder {x2 + y2 = Rx}. Find the area of the part of the
cylinder {x2 + y2 = Rx} located inside the sphere {x2 + y2 + z2 = R2}.
Example 13.17 (Guldin’s rule: area of the surface of revolution in R3).
Consider the surface of revolution Σ in R3 obtained by rotation of the curve
z = ϕ(ρ), α ≤ ρ ≤ β (α > 0) around the z-axis. Parametric equations of the
surface Σ are 




x = ρ cos θ ,

y = ρ sin θ ,

z = ϕ(ρ) .

Here 0 ≤ θ < 2π, and α ≤ ρ ≤ β. Then

rθ = (−ρ sin θ, ρ cos θ, 0), |rθ|2 = ρ2,

rρ = (cos θ, sin θ, ϕ′(ρ)), |rρ|2 = 1 + ϕ′ 2(ρ),

(rθ, rρ) = 0 .

23Try Google.
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Hence,

A(Σ) = 2π

∫ β

α

ρ
√

1 + ϕ′ 2(ρ) dρ .

Exercise 13.18. Find the area of the surface Σ obtained by rotation of the
curve ρ = ρ(z), a ≤ z ≤ b around the z-axis.

It is convenient to introduce the arc length, as the new parameter on the
curve: ds =

√
1 + ϕ′ 2(ρ) dρ, and denote by

L =

∫ β

α

√
1 + ϕ′ 2(ρ) dρ

the total length of the curve. Let ρ(s) be the distance from the z-axis to the
point on the curve that cut the length s from the beginning of the curve:
Then

A(Σ) = 2π

∫ L

0

ρ(s) ds .

Example 13.19 (area of the surface of the torus). The torus is obtained by
rotation of the circle z2 + (ρ− a)2 = b2 (a ≥ b) around the z-axis. If θ is the
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polar angle on that circle, then θ = s/b, and ρ(s) = a + b cos(s/b). Then

A = 2π

∫ 2πb

0

(a + b cos(s/b)) ds = 2πa · 2πb .

Remarkably enough, the surface area of the torus equals the product of the
lengths of two circles that generate the torus.

Exercise 13.20 (Archimedus). Area of the “spherical belt” of height h on
the unit sphere

{x ∈ R3 : x2
1 + x2

2 + x2
3 = 1, c < x3 < c + h}, −1 ≤ c ≤ 1− h,

equals 2πh (and thus does not depend on the position of the belt on the
sphere!).

Exercise 13.21. Find the volume and the surface area of the solid obtained
by rotation of the triangle ∆ABC around the side AB. The length sides
a = |BC|, b = |AC|, and the distance h from the vertex C to the side AB
are given.
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Exercise 13.22. The density of the sphere of radius R is proportional to
the distance to the vertical diameter. Find the mass of the sphere, and the
center of masses of the upper hemi-sphere.

Answer: the mass equals π2R3, the coordinates of the center of masses are
(0, 0, 3

8
R).

Exercise 13.23. Find the centroid of the homogeneous conic surface z =√
x2 + y2, 0 < x2 + y2 < 1.

Answer: (0, 0, 2
3
).

13.4 Hyperarea in Rn

13.4.1 Some useful formulae

If the hypersurface M ⊂ Rn is defined as graph of the function: M =
{x : xn = ϕ(x1, ..., xn−1), (x1, ..., xn−1) ∈ G}, then, according to our compu-
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tation, the Gram determinant Γ equals 1 + |∇ϕ|2. Thus

An−1(M) =

∫

G

√
1 + |∇ϕ|2 =

∫

G

1

cos ψ
,

where ψ is the angle between the vectors




0
...
0
1


 and




−ϕx1

...
−ϕxn−1

1


 .

Exercise 13.24. Suppose Σn−1 = {x ∈ Rn : xi ≥ 0,
∑

i xi = 1} is a standard
n− 1-simplex in Rn. Then

An−1(Σ
n−1) =

√
n

(n− 1)!
.

Similarly, if the hypersurface M is defined by the equation Φ(x1, ..., xn) =
0, Φxn 6= 0, then ∫

M

f dS =

∫

G

f
|∇Φ|
|Φxn |

dx1...dxn−1 .

Here G is the “projection” of M onto the hyperplane xn = 0.
Now, suppose that the domain V ⊂ Rn is “covered” by a family of hy-

persurfaces Mc defined by

Φ(x1, ..., xn) = c , a < c < b ,

in such a way that through each point x ∈ V there passes one and only one
hypersurface Mc. Suppose that ∇Φ 6= 0 in V . Then

(13.25)

∫

V

f(x) dx =

∫ b

a

dc

∫

Mc

f(x)

|∇Φ(x)| dS .

We also assume for simplicity that Φxn 6= 0 everywhere in V (the general case
can be reduced to this one). Then we replace the coordinates x1, ..., xn by
new coordinates x1, ..., xn−1, c = Φ(x1, ..., xn). The corresponding Jacobian
is ∣∣∣∣

∂(x1, ..., xn−1, xn)

∂(x1, ..., xn−1, c)

∣∣∣∣ =
1

|Φxn |
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(it’s faster to compute the Jacobian of the inverse mapping!). Thus,
∫

V

f(x) dx =

∫ b

a

dc

∫

Mc

f(x1, ..., xn)

|Φxn|
dx1...dxn−1

=

∫ b

a

dc

∫

Mc

f(x1, ..., xn)

|∇Φ|
|∇Φ|
|Φxn |

dx1...dxn−1

︸ ︷︷ ︸
=dS

.

proving (13.25). 2

13.4.2 Integration over spheres

The formula (13.25) is very useful. We apply it to the case when Mρ = ρSn−1

is the sphere of radius ρ in Rn. In this case

Φ(x1, ..., xn) =
√

x2
1 + ... + x2

n , Φxi
=

xi

ρ
, |∇Φ| = 1 .

A minute thought shows that
∫

ρSn−1

f(x) dS(x) =

∫

Sn−1

f(ρy)ρn−1 dS(y) .

Exercise 13.26. Check this!

Thus (13.25) gives us

(13.27)

∫

rB
f(x) dx =

∫ r

0

ρn−1dρ

∫

Sn−1

f(ρy) dS(y)

Differentiating by r, we arrive at

d

dr

∫

rB
f(x) dx = rn−1

∫

Sn−1

f(ry) dS(y) .

In particular we find the relation between the volume vn of the unit ball in
Rn and the hyper-area ωn of the unit sphere in Rn:

d

dr
(vnr

n) = rn−1ωn ,

or

vn =
ωn

n

Now, suppose that f is the radial function; i.e. f(x) = h(|x|). Then
formula (13.27) gives us

(13.28)

∫

rB
h(|x|) dx = ωn

∫ r

0

h(ρ)ρn−1 dρ , 0 < r ≤ ∞ .
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13.4.3 n− 1-area of the unit sphere in Rn

Making use the latter relation, we easily compute the area of the unit sphere
and the volume of the unit ball in Rn. First, we use (13.28) with h(ρ) = e−ρ2

and r = ∞. The left-hand side equals

∫

Rn

e−|x|
2

dx =

(∫

R1

e−t2 dt

)n

= πn/2 .

The integral on the right-hand side equals
∫ ∞

0

ρn−1e−ρ2

dρ =
1

2

∫ ∞

0

t(n/2−1e−t dt =
1

2
Γ

(n

2

)
.

Thus

ωn =
2πn/2

Γ
(

n
2

) .

That is, ω1 = 2 (explain the meaning!), ω2 = 2π, ω3 = 4π, ω4 = 2π2, ... etc.
From here, we once more find the volume vn of the unit ball:

vn(B) =
ωn

n
=

2(π)n/2

nΓ
(

n
2

) =
(
√

π)
n

Γ
(

n
2

+ 1
) .

Exercise 13.29. ∫

Rn

dx

(1 + |x|2)p
= πn/2 Γ

(
p− n

2

)

Γ(p)

In the next two exercises we use the following notations:

Rn
+ = {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n} , Sn−1

+ = {x ∈ Sn−1 : xi ≥ 0, 1 ≤ i ≤ n} .

Exercise 13.30. Compute the integral
∫

Sn−1
+

yp1

1 ... ypn
n dS(y) .

Hint: integrate the function f(x) = e−|x|
2
xp1

1 ... xpn
n over Rn

+. Check your
answer in the special case p1 = ... = pn = 0.

Exercise 13.31. Suppose a ∈ Rn
+. Then

∫

Sn−1
+

dS(y)

〈a, y〉n−1
=

1

(n− 1)! a1 ... an

.

Hint: integrate e−〈a,x〉 over Rn
+.
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Exercise 13.32 (Poisson). Suppose f is a continuous function of one vari-
able. Then

∫

Sn−1

f( 〈x, y〉 ) dS(y) = ωn−1

∫ 1

−1

f(|x|t)(1− t2)
n−3

2 dt .

Hint: due to the symmetry with respect to x, it suffices to consider the case
x = (0, . . . 0, |x|).
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14 The Divergence Theorem

14.1 Vector fields and their fluxes

Definition 14.1 (Vector fields). Let U ⊂ Rn be an open set. The vector
field F on U is the mapping

point x ∈ U 7→ tangent vector F (x) ∈ Tx(Rn) .

14.2. Examples:

• the gradient field F = ∇f ;

• the velocity field of a flow of fluid or gas: ẋ(t) = F (x(t)) (‘stationary
field’), or more generally, ẋ(t) = F (t, x(t)) (‘non-stationary field’); the
solution x(t) is called trajectory of the field;

• the force field (gravitational, Coulomb, magnetic)

Definition 14.3 (the flux form).

ωF (ξ1, ..., ξn−1) = det(F (x), ξ1, ..., ξn−1), ξ1, ..., ξn−1 ∈ Tx(Rn),

that is, the ‘oriented volume’ of the parallelepiped P (F (x), ξ1, ..., ξn−1) gen-
erated by the vectors F (x), ξ1, ..., ξn−1.

The flux can be written as 〈F (x), N〉voln−1P(ξ1, ..., ξn−1), where N is the
oriented unit normal vector to the parallelepiped P (ξ1, ..., ξn−1):

N =
ξ1 × ...× ξn−1√
Γ(ξ1, ..., ξn−1)

.

If F is the velocity field of a flow of liquid in R3, then the flux form equals the
volume of the liquid that runs through the ‘oriented parallelogram’ P (ξ1, ξ2)
in the unit time.

To define the flux of the vector field through the hyper-surface, we need
to choose the unit normal N(x) at x ∈ M , that depends continuously on x24.
Sometimes, this is impossible, for instance, for the Möbius strip in R3. Such
surfaces are called ‘non- orientable’ and we shall not consider them. From
now on, we always assume that there exists a continuous normal vector field
N(x) on M , it defines the orientation of M .

24If this choice is possible, then there are exactly two choices of continuous normal field.
Prove this!
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Definition 14.4 (flux through the hyper-surface). Suppose M is a hyper-
surface in Rn, N(x) is the unit normal to M at x that depends continuously
on x ∈ M , F is a continuous vector field on M . The flux of F through M
equals

fluxF(M) =

∫

M

〈F, N〉 dS .

If M = ∂G is a boundary of a ‘good open set’ G ∈ Rn, then we always
choose the unit outward normal N(x), that corresponds to the ‘outward flux
through M ’.

How to decide which normal is the ‘outward’ one? If G is defined as the
sublevel set of a C1-function, i.e., G = {x : F (x) < c}, then the outward
normal to M = ∂G coincides with the normalized gradient: N = ∇F

|∇F | . If

locally M = ∂G is the graph of a C1-function, for instance, M ∩ U = {x ∈
U : xn = f(x1, ..., xn−1)}, then either G∩U = {x ∈ U : xn < f(x1, ..., xn)}, or
G ∩ U = {x ∈ U : xn > f(x1, ..., xn)}. In the first case, the n-th component
of the outward normal is positive, in the second case, it is negative.

Exercise 14.5. Find the flux of the vector field F =




yz
xz
xy


 through the

following surfaces M :

(a) M = {x2 + y2 = a2, 0 < z < h}, the boundary surface of the cylinder,
the normal N looks ‘outward’ with respect to the cylinder.

(b) M = {x2 + y2 < a2, z = h}, the top of the same cylinder. The normal
N looks in the z-direction.

(c) M = {x2 + y2 + z2 = a2, x, y, z > 0}. The normal N looks ‘outward’
with respect to the ball.

(d) M = {x + y + z = a, x, y, z > 0}, the z-component of the normal is
positive.

The problem we want to look at is as follows: Suppose G ⊂ Rn is a domain
with ‘good boundary’, F (x) is a C1-vector field on G. How to compute the
outward flux of F through ∂G? There are two key observations which will
allow us to guess the right answer.

First, notice that the fluxF (∂G) is the set-additive functions of G: if
G = G1

⋃
G2, G1

⋂
G2 = ∅, then

outward fluxF (∂G) = outward fluxF (∂G1) + outward fluxF (∂G2)

(the integral over ∂G1

⋂
∂G2 is cancelled). Of course, this set-additive func-

tion is defined on a rather restrictive class of sets G.
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Now, our intuition25 suggests us to look at the ‘density’ of this set-additive
function.

Definition 14.6 (divergence of the vector field). Density of fluxF with re-
spect to the cubes is called divergence of the vector field F :

div F (x) = lim
Q↓x

1

vn(Q)

∫

∂Q

〈F, N〉 dS .

Lemma 14.7.

divF =
n∑

i=1

∂Fi

∂xi

.

Exercise 14.8. Check that div (hF ) = hdiv F + 〈∇h, F 〉 (h is a scalar func-
tion), and div(∇f) = ∆f ( =

∑n
i=1 ∂2

iif , the Laplacian of f).

Notations: For x = (x1, ..., xn) ∈ Rn, we set x̂i = (x1, ..., xi−1, xi+1, ...xn)
(the i-th coordinate is missing).

Proof of the Lemma: This will be a straightforward computation. Fix a =
(a1, . . . an), and consider the cube Q =

∏n
i=1[ai, ai + ε]. The boundary ∂Q is

the union of 2n faces:

E−
i = {x : xi = ai, x̂i ∈ Q̂i}, E+

i = {x : xi = ai + ε, x̂i ∈ Q̂i} ,

where Q̂i =
∏

k 6=i[ak, ak + ε]. Then

〈F,N〉
∣∣
E−i

= −Fi

∣∣
E−i

, 〈F, N〉
∣∣
E+

i
= Fi

∣∣
E+

i
,

and

1

vn(Q)

∫

∂Q

〈F, N〉 dS =
1

εn

n∑
i=1

∫

Q̂i

[Fi(x̂i, ai + ε)− Fi(x̂i, ai)] dx̂i

=
n∑

i=1

1

vn−1(Q̂i)

∫

Q̂i

Fi(x̂i, ai + ε)− Fi(x̂i, ai)

ε
dx̂i .

We hope that the RHS converges to
∑n

i=1
∂Fi

∂xi
(a) as ε ↓ 0. To justify the limit

transition, we use the fact that F is a C1-vector field:

Fi(x̂i, ai + ε)− Fi(x̂i, ai)

ε
=

∂Fi

∂xi

(x̂i, ai + εθi) =
∂Fi

∂xi

(a) + o(1) ,

25worked out during the proof of the change of variables theorem
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where o(1) tends to zero uniformly in G when ε ↓ 0. Integrating over Q̂i and
taking the sum over i, we get the result. 2

Warning: Our computation works only in the Cartesian coordinates. In
the Differential Geometry course, you’ll learn how to compute the divergence
(and other differential operators, like gradient and Laplacian) in other coor-
dinate systems. Meanwhile, we’ll use the divergence only in the Cartesian
coordinates.

Combining these observations, we expect to get the celebrated result:

Theorem 14.9 (Lagrange-Gauss-Ostrogradskii). Suppose G ⊂ Rn is an ‘ad-
missible’ bounded domain, F is a C1-vector field in G continuous in G, N is
the outward unit normal on ∂G. Then

∫

∂G

〈F, N〉 dS = outward fluxF (∂G) =

∫

G

div F =

∫

G

n∑
i=1

∂Fi

∂xi

We will not reveal the formal definition of the class of ‘admissible’ domains
now, it will be given later, when we come to the proof. Right now, we only
mention that this class is sufficiently large for all practical purposes. It
contains domains defined as the level sets of C1-functions {x : F (x) < c},
where F ∈ C1(Rn,R1), ∇F 6= 0. More generally, this class contains all
domains with C1-smooth regular boundary. It also contains domains which
are the unions of finitely many cubes. In the plane case, any bounded domain
whose boundary is a piece-wise smooth regular curve is admissible.

From the divergence theorem we immediately obtain the formula for in-
tegration by parts in Rn.

Corollary 14.10. Suppose f and g are C1-functions on an admissible do-
main G. Then, for each i, 1 ≤ i ≤ n,

∫

G

uxi
v dx =

∫

∂G

uvNi dS −
∫

G

uvxi
dx

Here, Ni is the i-th component of the unit outward normal N to ∂G.

Proof: follows at once from the divergence theorem:
∫

∂G

uv ·Ni dS =

∫

G

(uv)xi
dS .

Exercise 14.11. Prove: ∫

G

∇f dx =

∫

∂G

fN dS .

(The both integrands are vector-fields).
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Exercise 14.12. Find the flux of the vector field




x
y
z


 through the boundary

surface of the cone {x2 + y2 = z2, 0 < z < h}, the normal looks outside of
the cone, i.e., its z-component is negative.

Hint: It is simpler, to find the flux through the top {x2 + y2 = h2} of the
cone, and then to use the Divergence Theorem.

Exercise 14.13. Let E = {x2/a2 + y2/b2 + z2/c2 ≤ 1} be the solid ellipse,
p(x, y, z) be the distance from the origin to the tangent plane to ∂E at the
point (x, y, z). Compute the integrals

∫∫

∂E

p dS ,

∫∫

∂E

dS

p
.

Answer: 4πabc, 4
3
πabc

(
1
a2 + 1

b2
+ 1

c2

)
.

Hint: one can compute these integrals directly, though the divergence theo-
rem makes the computations much shorter. First, compute p and N :

p =
1√

x2/a4 + y2/b4 + z2/c4
, N = p




x/a2

y/b2

z/c2


 .

Then observe that 1
p

= 〈V,N〉, V =




x/a2

y/b2

z/c2


, and p = 〈W,N〉, W =




x
y
z


.

Exercise 14.14. Let F =




0
0
z


 be the vector field in R3. Show that for any

admissible domain G the flux of F through ∂G equals the volume of G.

Exercise 14.15. Let G ⊂ R3 be an admissible domain. Find the surface
integrals ∫∫

∂G

N dS ,

∫∫

∂G

R×N dS .

Here R(x, y, z) =




x
y
z


 is the ‘radius-vector’. (The both integrand are vector-

functions!).
Answer: the both integrals vanish.
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Exercise 14.16. Let H be a homogeneous polynomial in R3 of degree k,
that is, H(r . ) = rkH( . ). Prove that

∫∫

S2
H dS =

1

k

∫ ∫ ∫

B
∆H .

Hint: use the Euler identity: kH = xHx + yHy + zHz.

Exercise 14.17. Compute the outward flux of the vector field F =




xk

yk

zk




(k ≥ −1 is an integer) through the unit sphere.
Answer: {

0, k = 2m
12π
k+2

k = 2m− 1 .

14.2 The Gauss Integral

Consider the vector field

E(x) =
1

|x|3 x , x ∈ R3 \ {0} .

This is the potential field: E = ∇U , U(x) = 1
|x| is the potential of the field

E. The field E has zero divergence:

div E =
3∑

i=1

∂

∂xi

(
xi

|x|3
)

=
3∑

i=1

(
1

|x|3 − 3
x2

i

|x|5
)

= 0 .

(Alternatively, one can check that ∆U = 0, i.e., the function U is harmonic.)
What the divergence theorem tells us about the flux of E?

Let G be an admissible domain, 0 /∈ ∂G. If 0 /∈ G, then

∫∫

∂G

〈E,N〉 dS = 0 .

Now, suppose that 0 ∈ G. Remove from G a small ball Bε = {|x| ≤ ε},
Gε = G \Bε. Then ∫∫

∂Gε

〈E, N〉 dS = 0 ,

or ∫∫

∂G

〈E, N〉 dS =

∫∫

Sε

〈E, N〉 dS ,
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Sε = ∂Bε.
In our case,

〈E, N〉 =
cos < (x, N)

|x|2
(< (x,N) is the angle between the vectors x and N .) On Sε:

〈E, N〉 =
1

|x|2 =
1

ε2
.

Thus ∫∫

Sε

〈E, N〉 dS =
1

ε2
Area(Sε) = 4π ,

and we obtain

∫∫

∂G

cos < (x,N)

|x|2 dS(x) =

{
4π, 0 ∈ G

0, 0 /∈ G .

What actually did we compute together with Gauss? Suppose Σ is a
smooth surface in R3 that does not contain the origin. Then the integral

∫∫

Σ

cos < (x,N)

|x|2 dS

represents the solid angle subtended by Σ. Indeed, let

π : Σ → S2
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be the radial projection of Σ on the unit sphere S2. We suppose that π is a
one-to-one mapping. Consider the solid body K bounded by Σ, πΣ and the
“conic part”. On the conic part of ∂K, the vectors x and N are orthogonal.
Thus, the flux of E through the conic part is zero, and by the divergence
theorem, the fluxes through Σ and πΣ are equal. On πΣ, 〈E, N〉 = 1 (see
above), hence, the flux of E through πΣ equals the area of πΣ.

14.3 The Green’s formulas and harmonic functions

The three celebrated Green’s formulas follows at once from the divergence
theorem:

The 1-st Green formula

∫

G

∆u dx =

∫

∂G

∂u

∂n
dS

Here ∂u
∂n

= 〈∇u,N〉 is the (outward) normal derivative of u.

Proof: ∆u = div(∇u). 2

The 2-nd Green formula:

∫

G

〈∇u,∇v〉 dx = −
∫

G

u∆v dx +

∫

∂G

u
∂v

∂n
dS

Proof: u ∂v
∂n

= 〈u∇v,N〉, and div(u∇v) = 〈∇u,∇v〉+ u∆v . 2

If u = 1, we get the first formula (for v); if v = u we get

∫

G

|∇u|2 dx = −
∫

G

u∆u dx +

∫

∂G

u
∂u

∂n
ds .

The LHS of this formula is called the Dirichlet integral of u.

The 3-rd Green formula is the symmetrized form of the 2-nd one:

∫

G

(u∆v − v∆u) dx =

∫

∂G

(
u

∂v

∂n
− v

∂u

∂n

)
dS

Properties of harmonic functions. A C2-function u is called harmonic
if ∆u = 0. In the two-dimensional case, harmonic functions are intimately
linked with analytic functions. Namely, if u is harmonic in a domain G ∈ R2,
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then its complex gradient ux − iuy is the holomorphic function in G, i.e., its
real and imaginary parts satisfy the Cauchy-Riemann equations: (ux)x =
(−uy)y, and (ux)y = −(−uy)x. Many properties of harmonic function in
plane domains follow from those of analytic functions.

Now, we use the divergence theorem and Green’s formulas to prove several
fundamental properties of harmonic functions in Rn. Suppose G ⊂ Rn is an
admissible domain, u is harmonic in G with the gradient continuous in G.
Since ∆ = div∇, the gradient vector field ∇u has zero divergence. Hence

(i) The flux of the gradient flow of u across ∂G is zero:
∫

∂G

∂u

∂n
dS = 0 .

Now, from the second Green’s formula, we get

(ii) If ∂u
∂n

= 0 on ∂G, then u is a constant function.

and

(iii) If u = 0 on ∂G, then u is the zero function.

(iv) Mean-value property If u is harmonic in a ball B = B(x0, r) of
radius r centered at x0, then

u(x0) =
1

ωnrn−1

∫

∂B

u dS =
1

vnrn

∫

B

u .

First of all, we assume that x0 = 0. This will simplify the notations. We
apply the 3-rd Green identity to the functions u and v(x) = 1

|x|n−2 − 1
rn−2 in

the domain Gε = B \ {|x| ≤ ε}. Note that the function v is harmonic in
Gε (check this!), and vanishes on the “outer sphere” |x| = r. The apply the
Green’s identity we need to compute the normal derivative ∂v

∂n
= 〈∇v,N〉 on

the boundary spheres |x| = r and |x| = ε.

Since ∇v = −n−2
|x|n




x1
...

xn


, and N = 1

|x|




x1
...

xn


 (with the minus sign on the

small “inner sphere” |x| = ε), we have ∂v
∂n

= − n−2
|x|n−1 (with the plus sign on

the small “inner sphere” |x| = ε). Thus, the Green’s formula gives us

−n− 2

rn−1

∫

|x|=r

u dS +
n− 2

εn−1

∫

|x|=ε

u dS +

∫

|x|=ε

(
1

εn−2
− 1

rn−2

)
∂u

∂n
dS = 0 .

It remains to let ε → 0 and to check what happens with the second and third
surface integrals. Since u is continuous, the second integral converges to
(n− 2)ωnu(0) (as above, ωn is the hyper-area of the unit sphere Sn−1 ⊂ Rn).
Since ∂u

∂n
is bounded, the third integral converges to zero.
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Exercise 14.18. Fill the details!

Thus we get the first mean-value formula. The second formula follows
from the first one by spherical integration. 2

In the two-dimensional case n = 2, the same proof works with the function
v(x) = log r

|x−x0| , though you can deduce the same from the mean value
property of analytic functions.

Exercise 14.19. Fill the details!

(v) Maximum principle Harmonic functions have no local maxima or
minima. More precisely, if for some x0 ∈ G, u(x0) = maxG u, then u is the
constant function.

Exercise 14.20. Give the proof.
Hint: the set M = {x ∈ G : u(x) = maxG u} is closed and open. Hence, it
coincides with G.

(vi) Liouville Theorem If u is a harmonic function in Rn bounded from
above (or from below). Then it is a constant function.

Hint: Suppose u ≥ 0. Fix any two points x and y. Choose large r and
R > |x− y|+ r. Then by the mean-value property

u(x) =
1

vnrn

∫

B(x,r)

u <
1

vnrn

∫

B(y,R)

u

=

(
R

r

)n
1

vnRn

∫

B(y,R)

u =

(
R

r

)n

u(y) .

It remains to send r →∞ and R →∞ in such a way that R/r → 1. We get
u(x) ≤ u(y). By the symmetry, u(x) = u(y). 2

You will learn more about harmonic functions in the course of partial
differential equations.

Exercise 14.21 (solution of the Poisson equation). Let u be a C2-function
that vanishes outside of a compact set in Rn, n ≥ 3, f = ∆u. Show that

u(x) = cn

∫

Rn

f(ξ) dξ

|x− ξ|n−2
.

Compute cn. Guess how the corresponding formula looks for n = 2.

Hint: fix x, and apply the 3-rd Green formula in B(x,R) \B(x, ε), where R
is sufficiently large and ε is small, to the functions u(ξ) and v(ξ) = |x−ξ|2−n.
Then let ε → 0.
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15 Proof of the Divergence Theorem

Here, we’ll prove the Divergence Theorem. First, we consider the case when
the boundary is smooth. Then we prove a more general version which is suf-
ficient for most of the applications. In the course of the proof we’ll meet two
important constructions: ‘the partition of unity’ and ‘the cut-off function’.

15.1 Smooth boundary

Definition 15.1. Let G ⊂ Rn be a bounded domain. We say that G has a
smooth boundary Γ = ∂G, if

∀x ∈ Γ ∃ball Bx centered at x, and ∃C1-function g such that

Γ ∩Bx = {ξ ∈ Bx : ξn = g(ξ1, ..., ξn−1)} ,

G ∩Bx = {ξ ∈ Bx : ξn < g(ξ1, ..., ξn−1)}
(after possible re-numeration of the coordinates).

Note that at each boundary point x ∈ Γ the unit outward normal is
well-defined.

We fix a covering O of G by the balls Bx; if x ∈ Γ, then their radii ρx are
chosen as above, if x ∈ G, we always assume that ρx < dist(x, Γ).

15.1.1 Partition of unity

Suppose K ⊂ Rn is a compact set with a given covering O by balls:

K ⊂
⋃
x∈K

Bx .

Definition 15.2. Partition of unity on K subordinated to the covering O is
a finite collection of C1-functions {ϕj} such that

(i) ϕj ≥ 0;

(ii)
∑

j ϕj ≡ 1 in a neighbourhood of K;

(iii) ϕj vanishes outside of some ball 1
2
Bxj

.

It is not difficult to construct a partition of unity. Take

ψx(y) =

{
(ρ2

x − 4|x− y|2)2
, |x− y| ≤ 1

2
ρx

0 , otherwise
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(as above ρx is the radius of the ball Bx). Then consider the covering

K ⊂
⋃
x∈K

1

4
Bx ,

and choose a finite sub-covering. The centers of the balls from the sub-
covering are x1, ..., xM . Set

ϕj(y)
def
=

ψxj
(y)

ψx1(y) + ... + ψxM
(y)

(ϕj(y) = 0 if ψj vanishes at y). The properties (i)–(iii) hold. (Check them!)

In the same way, one builds Ck-partitions of unity.

Exercise 15.3. Construct a C∞-partition of unity subordinated to a given
covering of the compact set K.

Hint: use the function

h(t) =

{
exp(−1/t), t > 0

0, t ≤ 0

as the ‘building block’.

15.1.2 Integration over Γ

Recall, that we have not defined yet the integral over the whole Γ, only over
Γ∩Bx. Now, having at hands continuous partitions of unity on Γ, we readily
define the integral over Γ: for any f ∈ C(Γ), we set

∫

Γ

f dS
def
=

∑
j

∫

Γ

fϕj dS .

The integrals on the RHS are defined since on the RHS the integration is
local, it is taken only over Γ ∩ Bxj

. Of course, the continuity of f can be
replaced by a weaker assumption (after all, we have the Lebesgue criterium
of the Riemann-integrability), but we will not pursue this.

The definition does not depend on the choice of the partition of unity. In-
deed, if {ϕ′k} is another partition of unity, then, by additivity of the Riemann
integral, ∫

Γ

fϕj dS =
∑

k

∫

Γ

fϕjϕ
′
k dS ,

137



so that

∑
j

∫

Γ

fϕj dS =
∑

j,k

∫

Γ

fϕjϕ
′
k dS

=
∑

k

∫

Γ

fϕ′k

(∑
j

ϕj

)
dS =

∑

k

∫

Γ

fϕ′k dS .

2

15.1.3 The theorem and its proof

Now, we are ready to formulate and then to prove the divergence theorem in
the smooth case.

Theorem 15.4. Suppose G ⊂ Rn is a bounded domain with a smooth bound-
ary Γ, N is the outward unit normal to Γ, and F is a C1-vector field on G.
Then ∫

Γ

〈F,N〉 dS =

∫

G

divF dx .

First, observe that it suffices to prove the result in the special case when
the field F is ‘localized’; i.e. given a covering of G by balls

G ⊂
⋃

x∈G

Bx ,

we can always assume that F ≡ 0 outside of a ball Bx from this covering.
Indeed, we construct a C1-partition of unity {ϕj} on G subordinated to this
covering. Then we apply the special case to the vector fields ϕjF , and add
the results.

We consider separately two cases: x ∈ G and x ∈ Γ.

Assume, first, that x ∈ G, then Bx ⊂ G as well (this was our choice of the
radius ρx). Thus F vanishes on Γ, and we need to check that the integral of
the divergence also vanishes. For each i, we denote ŷi = (y1, ..., yi−1, yi+1, ..., yn),
the i-th coordinate is missing. Then

∫

G

∂Fi

∂yi

dy =

∫
dŷi

∫
∂Fi

∂yi

dyi ,

to avoid cumbersome notations, we skip the limits of integration.
The inner integral vanishes since Fi vanishes on the boundary of Bx, thus

∫

G

∂Fi/∂yi dy = 0 .
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Hence the divergence integral over G also vanishes.

Now, consider the second case x ∈ Γ. Then

Γ ∩Bx = {ξ ∈ Bx : ξn = g(ξ1, ..., ξn−1)} .

We assume that for any x ∈ Γ the outward normal N(x) is not parallel to any
of the coordinate axes, i.e., gxi

6= 0, 1 ≤ i ≤ n− 1 (otherwise, we just rotate
a bit the coordinate system). Then, for any i, Γ ∩Bx can be represented as

Γ ∩Bx = {ξ ∈ Bx : ξi = gi(ξ̂i)} , 1 ≤ i ≤ n .

Then ∫

Γ∩Bx

FiNi dS =

∫
Fi

(
ξ̂i, gi(ξ̂i)

)
dξ̂i .

On the other hand, using Fubini’s theorem, we get

∫

G∩Bx

∂Fi

∂ξi

dξ =

∫
dξ̂i

∫ gi(ξ̂i) ∂Fi

∂ξi

dξi

(the lower limit in the inner integral is inessential since anyway Fi vanishes

therein). Thus the inner integral equals Fi

(
ξ̂i, gi(ξ̂i)

)
, and

∫

Γ∩Bx

FiNi dS =

∫

G∩Bx

∂Fi

∂ξi

dξ .

Done! 2

15.2 ‘Piece-wise smooth’ boundary

Here, we assume that the boundary Γ = ∂G is decomposed into two parts:
a ‘smooth one’ which is large, and a ‘bad one’ which is small: Γ = Γ0 ∪K,
where Γ0 is a finite union (maybe, disconnected) of smooth ‘patches’, and
at each point x ∈ Γ0 condition 15.1 holds (in particular, the unit outward
normal to G is well-defined at these x’s), K is a ‘bad’ compact set such hat

(15.5) vn(K+ε) = o(ε) ,

as ε → 0. Here, K+ε is an open ε-neighbourhood of K. We shall call such sets
‘(n− 1)-negligible compacts’26. Note that a finite union of (n− 1)-negligible
compacts, is again an (n− 1)-negligible compact.

26Look at Google for the notion ‘Minkowski dimension’ (or ‘box dimension’).
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Example 15.6 (compact elementary (n − 2)-surface is (n − 1)-negligible).
Suppose

Σ = {(y, f1(y), f2(y)) : y ∈ Q} ,

where Q ⊂ Rn−2 is a closed cube. Then

Σ+ε ⊂ {(y, x1, x2) : y ∈ Q+ε, |xi − fi(y)| < ε, i = 1, 2}.

Hence,

vn(Σ+ε) ≤
∫

Q+ε

dy

∫ f1(y)+ε

f1(y)−ε

dx1

∫ f2(y)+ε

f2(y)−ε

dx2 = 4ε2vn−2(Q+ε) = o(ε) ,

as ε → 0.

Exercise 15.7. Show that if the compact K ⊂ Rn is (n−1)-negligible, then
for each ε > 0 it can be covered by cubes Qj such that

∑
j

l(Qj)
n−1 < ε , (?)

l(Qj) is the length-side of Qj.

Exercise 15.8. The packing number P (K, ε) of a compact set K ⊂ Rn is the
maximal cardinality of an ε-separated subset in K27. Show that the compact
K is (n− 1)-negligible iff P (K, ε) = o(ε1−n) for ε → 0.

The covering number C(K, ε) of K is the minimal cardinality of a set of
balls of radius ε that cover K (the centers of these balls, generally speaking,
do not belong to K). Show that the compact K is (n − 1)-negligible iff
C(K, ε) = o(ε1−n) for ε → 0.

Now, we formulate the version of the divergence theorem we mean to
prove:

Theorem 15.9. Suppose G ⊂ Rn is a bounded open set, Γ = ∂G can be
decomposed into a smooth part Γ0 and a bad part K which is (n−1)-negligible,
and F is a C1-vector field on G. Then

(15.10)

∫

G

divF dx =

∫

Γ0

〈F,N〉 dS

27The set {xi} is called ε-separated if |xi − xj | ≥ ε for i 6= j.
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15.2.1 The idea

First, suppose that the vector-field vanishes in a neighbourhood of a bad
compact set K. Then the proof given above works without any changes
and gives us (15.10). Now, we approximate the field F by another one that
vanishes in a neighbourhood of K.

For this, given ε > 0, we build a ‘C1-cut-off function’ ψ = ψε such that

(i) 0 ≤ ψ ≤ 1 everywhere;

(ii) ψ ≡ 1 in the ε-neighbourhood of K;

(iii) ψ vanishes outside of the 3ε-neighbourhood of K;

(iv) For ε → 0, ∫

Rn

ψ = o(ε),

∫

Rn

|∇ψ| = o(1) .

A bit later, we’ll build such a cut-off function for any compact (n −
1)-negligible set K and any ε > 0. Meanwhile, an instructive exercise, is
to consider the case when K is a point in R1 (then the cut-off with these
properties does not exist), and in R2 (when the cut-off does exist).

Having at hands the cut-off function ψ, we easily complete the proof as
follows. We apply the divergence theorem to the vector field (1 − ψ)F that
vanishes near the bad set K and get

∫

G

div [(1− ψ)F ] dx =

∫

Γ0

〈(1− ψ)F,N〉 dS .

Now, we let ε → 0. Since ψ vanishes at that limit, we expect to get
(15.10). First, look at the LHS. Since

div(1− ψ)F − divF = −〈∇ψ, F 〉 − ψdivF ,

we need to estimate two integrals over G. For this, we use that F ∈ C1(G)
and the property (iv) of the cut-off ψ:

∣∣∣∣
∫

G

〈∇ψ, F 〉 dx

∣∣∣∣ ≤ max
G
|F |

∫

Rn

|∇ψ| dx = o(1) ,

and ∣∣∣∣
∫

G

ψdivF dx

∣∣∣∣ ≤ max
G
|divF |

∫

Rn

ψ dx = o(ε) .

Now, look at the RHS. Here, the situation is even more simple: we can
think that Γ0 is an elementary ‘patch’. Since the 〈F,N〉 is a bounded function
on Γ0, ∫

Γ0

〈ψF,N〉 dS →
∫

Γ0

〈F,N〉 dS ,
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as ε → 0. This step does not need the property (iv) of the cut-off function.
(Fill the details!).

This proves the theorem modulo the construction of the cut-off function.

15.2.2 The cut-off function

We’ll smooth the indicator function 1lK+2ε . For this, we fix a C1-function χ
with the following properties:

(a) χ vanishes outside of the ball 1
2
B of radius 1

2
centered at the origin;

(b) χ is non-negative, and χ(0) > 0;

(c) ∫
χ = 1.

Clearly such a function exists.

Exercise 15.11. Construct a C∞-function with these properties.

We scale this function: χε(x) = ε−nχ(x/ε), and finally set

ψ(x) =

∫

Rn

1lK+2ε(y)χε(x− y) dy(15.12)

=

∫

Rn

1lK+2ε(x− y)χε(y) dy .(15.13)

We’ll readily checks that ψ satisfies the properties (i)-(iv) stated above.
Clearly, ψ is non-negative, and

ψ(x) ≤
∫

Rn

χε(x− y) dy =

∫

Rn

χ(y) dy = ε−n

∫

Rn

χ(y/ε) dy = 1 .

We get (i).
If x ∈ K+ε, then x− y ∈ K+2ε (remember that y ∈ εB in (15.13)). Hence,

for these x’s,

ψ(x) =

∫

Rn

χε(y) dy = 1 ,

that is, (ii).
If x /∈ K+3ε, then for the same reason, x − y /∈ K+2ε, and the integrand

vanishes. Thus ψ(x) = 0 fur such x’s.
The integral estimates in (iv) are also simple:

∫

Rn

ψ =

∫

Rn

1lK+2ε ·
∫

Rn

χε = o(ε) ,
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and ∫

Rn

|∇ψ| ≤
∫

Rn

1lK+2ε ·
∫

Rn

|∇χε|
︸ ︷︷ ︸
= 1

ε

∫
Rn |∇χ|

= o(ε) ·O(1/ε) = o(1) ,

completing the argument. 2
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16 Linear differential forms. Line integrals

16.1 Work (motivation)

We start with motivation: suppose F is a force field in R3, γ : I → R3 piece-
wise smooth path of motion of particle in the field F , that is
γ(t) is a position of the particle at time t,
γ̇(t) is a velocity of the particle at time t,
F (γ(t)) the force acting on the particle at time t.
We want to compute the amount of work W done by the field F moving the
particle along γ.

Let us recall how this problem was solved in the high-school physics.
First, suppose that the field F is constant. If we move the particle along the
segment [P, Q] ⊂ R3, then W = 〈F,Q− P 〉.

If the path is not straight and the field is not constant, we consider a
partition Π of the segment I = [a, b]: a = t0 < t1 < ... < tN = b, and use
the additivity of the work:

W (γ, F, Π) =
N∑

j=1

〈F (γ(tj)), γ(tj)− γ(tj−1)〉 .
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Rewriting the RHS as

N∑
j=1

〈
F (γ(tj)),

γ(tj)− γ(tj−1)

∆t

〉
∆t , ∆t = tj − tj−1 ,

we easily recognize the integral sum. Thus, in the limit ∆t → 0, we get

W =

∫

I

〈F (γ(t)), γ̇(t)〉 dt .

In the coordinates, F = (Fx, Fy, Fz), γ(t) = (x(t), y(t), z(t)), and

W =

∫

I

(
Fx

dx

dt
+ Fy

dy

dt
+ Fz

dz

dt

)
dt ,

or symbolically

W =

∫

γ

Fx dx + Fy dy + Fz dz .

The RHS is called the line integral over the curve γ of the linear differential
form Fxdx + Fydy + Fzdz. Note that it does not depend on the choice of
parameterization of γ!

16.2 Linear differential forms. Differentials

Let f be a C1-function in a neighbourhood of x ∈ Rn. Let us recall that its
differential28 dfx is a linear function on the tangent space TxRn. Indeed, if
γ is a smooth curve passing through x, γ(t) = x, then f(γ(t)) is a smooth
curve passing through f(x), and

d

dt
f(γ(t)) = dfx(γ̇(t))

(
=

n∑
i=1

∂f

∂xi

γ̇i(t)

)
.

Definition 16.1. The set of linear functionals on the tangent space is called
the co-tangent space, and denoted by (TxRn)∗.

Let us fix the orthonormal basis e1, ..., en in Rn, and hence, in all tangent
spaces TxRn. It induces the dual orthonormal basis in all co-tangent spaces
(TxRn)∗: consider the differential dxk of the k-th coordinate function x 7→ xk

in Rn, if ξ ∈ TxRn, then

dxk(ξ) =
n∑

i=1

∂xk

∂xi

ξi = ξk .

28For traditional reason, we say here ‘differential’, not ‘derivative’, and write df .
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That is, dx1, ..., dxn is the orthonormal basis in (TxRn)∗ dual to e1, ..., en.
Since

dfx(ξ) =
n∑

i=1

∂f

∂xi

ξi =
n∑

i=1

∂f

∂xi

dxi(ξ),

we see that the expansion of the differential dfx in this bases is

dfx =
n∑

i=1

∂f

∂xi

dxi .

Definition 16.2. The linear differential form is a mapping

x 7→ ωx ∈ (TxRn)∗ .

We usually assume that the linear form ωx is a C1-function of x.

In the coordinates,

ωx(ξ) = ωx

(
n∑

i=1

ξiei

)
=

n∑
i=1

ωx(ei)ξi .

Introduce the functions ai(x)
def
= ωx(ei) (the ‘coefficients’ of ωx); if ωx is a

C1-form, then the coefficients are C1-functions of x (and vice versa!). Thus

ωx =
n∑

i=1

ai(x) dxi .

If ω = df , then we call f the primitive function, and ω the differential. The
first natural question: does any differential form has a primitive function?

In the one-dimensional situation (n = 1) this is true: ωx(ξ) = a(x) · ξ,
that is ωx = df , where f ′ = a is a primitive function to a.

Consider the two-dimensional case. If ω = df = a(x, y)dx + b(x, y)dy,
then

∂a

∂y
=

∂2f

∂x∂y
=

∂b

∂x
.

That is, we get a necessary condition for the differential form to have a
primitive function:

∂a

∂y
=

∂b

∂x

We shall see a bit later, that generally speaking, this condition is not a
sufficient one, though in the discs and in the whole R2 it is sufficient.
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16.2.1 Examples

Compute the action of the linear forms ω1 = dx1, ω2 = x1dx2, ω3 = dr2

(r2 = x2 + y2) in R2 on the vectors ξ1 =

(
0
1

)
∈ T0R2, ξ2 =

(−1
−1

)
∈ T(2,2)R2,

and ξ3 =

(
1
−1

)
∈ T(2,2)R2.

The results are given in the following table

ξ1 ξ2 ξ3

ω1 0 -1 1
ω2 0 -2 -2
ω3 0 -8 0

Exercise 16.3. Compute ωx(ξ) if

1. ω = x2 dx1 is the differential form in R3, and ξ = (1, 2, 3) ∈ T(3,2,1)R3.
Answer: ω(ξ) = 2.

2. ω = df is the differential form in Rn, f = x1 + 2x2 + ... + nxn, ξ =
(+1,−1, +1, ..., (−1)n−1) ∈ TxRn, x = (1, 1, ..., 1).
Answer:

ω(ξ) =

{
−m n = 2m,

m + 1 n = 2m + 1 .

16.3 Line integrals

U ⊂ Rn domain,
ωx differential form on U ,
γ : I → U piece-wise C1 curve.

Definition 16.4 (line integral).

∫

γ

ω
def
=

∫

I

ωγ(t) (γ̇(t)) dt .

In the chosen coordinates, the integral equals

∫

I

(∑
ai (γ(t))

)
dt =

∫

γ

∑
ai(x) dxi .
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16.3.1 Examples

1. ω = z dx + x dy + y dz, γ(t) = (cos t, sin t, t), 0 ≤ t ≤ 2π spiral in R3,

γ̇(t) =



− sin t
cos t

1


. Then

ωγ(t) (γ̇(t)) = t · (− sin t) + cos t · cos t + sin t · 1 ,

and
∫

γ

ω =

∫ 2π

0

(−t sin t + cos2 t + sin t
)

dt

=

∫ 2π

0

t d cos t +

∫ 2π

0

1 + cos 2t

2
dt = 2π + 2π · 1

2
= 3π .

Exercise 16.5. Find
∫

γ
ω for ω = x dy − y dx, and ω = x dy + y dx. The

curve γ connects the origin O with the point (1, 1):
γ is a segment,
γ is a part of the parabola {y = x2 : 0 ≤ x ≤ 1},
γ is a union of two segments: the vertical one going from (0, 0) to (0, 1), and
the horizontal one going from (0, 1) to (1, 1).

Exercise 16.6. Compute

∫

γ

x dx + y dy + z dz√
x2 + y2 + z2

where the path γ starts at the sphere x2 + y2 + z2 = r2
1 and terminates at

the sphere x2 + y2 + z2 = r2
2.

Exercise 16.7. Find ∫
z dx + x dy + y dz

over the parabolic arc

x = a(1− t2), y = b(1− t2), z = t ,

starting at (0, 0, 1) and ending at (0, 0,−1).

2. Consider a smooth form on R2 \ {0}

ω =
−y dx + x dy

x2 + y2
,
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and integrate it over the unit circle: γ(t) = (cos t, sin t), 0 ≤ t ≤ 2π. In this
case,

ωγ(t) (γ̇(t)) = −(sin t) · (− sin t) + (cos t) · (cos t) = 1 ,

so that ∫

γ

ω =

∫ 2π

0

1 = 2π .

Let’s have a closer look at this example which is nothing but a two-
dimensional version of the Gauss integral (why?). Consider the polar angle
function

θ(x, y) = arctan
y

x
.

If (x, y) 6= 0, then

∂θ

∂x
=

1

1 + y2/x2

(
− y

x2

)
= − y

x2 + y2
,

∂θ

∂y
=

1

1 + y2/x2

(
1

x

)
=

x

x2 + y2
,

hence dθ = ω. Clearly, the function θ cannot be defined continuously in the
whole R2 \ {0}.

In this example, ω = a dx + b dy, and the necessary condition ay = bx for
the form to have a primitive function holds. On the other hand, ω does not
have a primitive in R2 \ {0} by the following version of the Newton-Leibnitz
formula: ∫

γ

df =

∫ b

a

d

dt
(f ◦ γ) (t) dt = f(γ(b))− f(γ(a)) .

In particular, if the curve γ is closed (i.e. γ(a) = γ(b)), then

∫

γ

df = 0.

In our case, we know that the integral of ω over the circle does not vanish!

16.3.2 Properties of line integrals

• The definition does not depend on the choice of parameterization of the
curve γ.

Indeed, suppose γ : I → Rn, µ = γ ◦ϕ another parameterization (ϕ : J →
I C1-smooth, orientation preserving bijection). Then, after the change of
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variables t = ϕ(s), we get

∫

γ

ω =

∫

I

ωγ(t) (γ̇(t)) dt =

∫

J

ωµ(s) (γ̇(ϕ(s))) ϕ̇(s) ds

=

∫

J

ωµ(s) (γ̇(ϕ(s))ϕ̇(s)) ds =

∫

J

ωµ(s) (µ̇(s)) ds .

• If −γ the curve traversed in the opposite direction, then

∫

−γ

ω = −
∫

γ

ω .

(Prove this!)

• Suppose the starting point of the curve γ2 coincides with the terminating
point of the curve γ1. Denote the ‘composite curve’ by γ1 + γ2. Then

∫

γ1+γ2

ω =

∫

γ1

ω +

∫

γ2

ω .

• Estimate of the line integral

Exercise 16.8. Suppose γ : [0, 1] → Rn is a piece-wise C1-path, ω is a con-
tinuous linear form on U ⊃ γ[0, 1]. Then

∣∣∣∣
∫

γ

ω

∣∣∣∣ ≤ sup
x∈γ[0,1]

‖ωx‖ · L(γ) .

• Polygonal approximation of line integrals.

Exercise 16.9. Suppose γ : [0, 1] → Rn is a piece-wise C1-path, ω is a con-
tinuous linear form on U ⊃ γ[0, 1]. Then, for any ε > 0, there exists a
polygonal line ν : [0, 1] → U , ν(0) = γ(0), ν(1) = γ(1), such that

max
t∈[0,1]

|ν(t)− γ(t)| < ε ,

and ∣∣∣∣
∫

γ

ω −
∫

ν

ω

∣∣∣∣ < ε .
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•
Claim 16.10. Suppose ω is a differential form in U ⊂ Rn with continuous
coefficients. Then TFAE:
(i) for any closed curve γ,

∫
γ
ω = 0;

(ii) if the curves γ and µ have the same beginning and the same end, then∫
γ
ω =

∫
µ
ω;

(iii) there exists a C1-function f ∈ C1(U) such that df = ω.

We shall prove only (ii) ⇒ (iii), the rest is obvious. Fix p ∈ U , and set

f(x) =

∫

γ

ω ,

where the path γ starts at p and terminates at x. The function f is well-
defined by (ii). Then

f(x1 + ε, x2, ..., xn)− f(x1, x2, ..., xn

ε
=

1

ε

∫ x1+ε

x1

a1(t, x2, ..., xn) dt

(ω =
∑

ai dxi). Thus, ∂x1f = a1, and similarly, for all i, ∂xi
f = ai. Clearly,

f ∈ C1(U). 2

The next statement is deeper than the previous ones:

• Poincaré Lemma If U ⊂ Rn is a ball (or the whole Rn), then condition

∂ai

∂xk

=
∂ak

∂xi

, 1 ≤ i, k ≤ n (?)

is equivalent to any of conditions (i)-(iii) from Claim 16.10.

The forms satisfying condition (?) are called closed. That is, in balls and
in the whole Rn any closed form is a differential of a function29. We will
prove later, that the same result holds in arbitrary simply connected domains
in Rn.

Proof: it is not difficult to guess the primitive function. WLOG, suppose
that ω =

∑
ai dxi is an exact form in the unit ball B ⊂ Rn. Set

g(x)
def
=

∫ 1

0

n∑
i=1

xiai(tx) dt =
n∑

i=1

xi

∫ 1

0

ai(tx) dt .

29such forms are called exact ones

151



Then

∂g

∂xk

=

∫ 1

0

ak(tx) dt +
n∑

i=1

xi

∫ 1

0

∂ai

∂xk

t dt

(?)
=

∫ 1

0

ak(tx) dt +
n∑

i=1

xi

∫ 1

0

t
∂ak

∂xi

dt

=

∫ 1

0

ak(tx) dt +

∫ 1

0

t
d

dt
ak(tx) dt

=

∫ 1

0

ak(tx) dt + tak(tx)
∣∣∣
t=1

t=0
−

∫ 1

0

ak(tx) dt = ak(x) .

2

If you start to feel that you’ve learnt something very similar in the Com-
plex Analysis course, then you are right. If f = u + iv is a complex-valued
function, then

f dz = u dx− v dy + i(v dx + u dy) .

Exercise 16.11. Deduce form the Poincaré lemma the Cauchy theorem: if
f = u + iv is analytic function in a disc D (that is, f is a C1-function, and
its real and imaginary parts u and v satisfy the Cauchy-Riemann equations
ux = vy, uy = −vx), then for any closed contour γ ⊂ D,

∫

γ

f(z) dz = 0 .

Hint: find out when the complex-valued differential form f dz is closed.

Given a closed form in a disc (or in Rn) it is easy to find its differential
by integration:

Example 16.12. Let ω = y dx + x dy + 4dz. Conditions (?) are satisfied.
We are looking for the primitive function f .

∂f

∂x
= y ⇒ f(x, y, z) = xy + f1(y, z),

∂f

∂y
= x ⇒ x +

∂f1

∂y
= x ⇒ f1 = f1(z),

∂f

∂z
= 4 ⇒ f1(z) = 4z + Const .

Thus the primitive function is

f(x, y, z) = xy + 4z + Const .
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Exercise 16.13. Check which of the following linear differential forms has
a primitive function. If the primitive exists, find it.

(4x3y3 − 2y2) dx + (3x4y2 − 2xy) dy ,

((x + y + 1)ex − ey) dx + (ex − (x + y + 1)ey) dy .

16.4 Vector fields and differential forms

There is a simple duality between the differential forms and the vector fields:
if F is a vector field in U ⊂ Rn, then the work form ωF is defined as ωF (ξ) =
〈F (x), ξ〉, ξ ∈ TxRn. Having the form ω, the same formula we recovers the
field F . The integral of ωF over the curve γ ⊂ U gives us expression for the
work done by the field F for transportation of a particle along γ:

∫

γ

ωF =

∫

I

〈F (γ(t)), γ̇(t)〉 dt .

The vector field F is called potential field or gradient field if there exists a
function U (called potential) such that F = ∇U . Equivalently, the work form
ωF = dU . For example, the Coulomb and gravitational fields are potential
ones. The field F is called conservative if the work done by F in moving a
particle along any loop γ ∈ U is zero. Equivalently, the work done by F in
moving a particle from the point x to the point y depends only on x and y,
and does not depend on the path. In virtue of Claim 16.10, the notions of
potential and conservative fields coincide.

Exercise 16.14. Check that the vector field in Rn F =




ex cos y + yz
xz − ex sin y

xy + z


 is

conservative, and find its potential.

Exercise 16.15. The vector field F is called central-symmetric (with respect
to the origin), if the size of the field is a radial function: |F (x)| = f(|x|), and
the direction of the field coincides with the one of the ‘point-vector’, i.e.

F (x) = f(|x|) x

|x| .

Prove that any central-symmetric field in Rn is a potential one. Find the
radial potential U(r), r = |x|, in terms of f .
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16.5 The ‘arc-length form’ ds

Now, we have two notions of integrals over the curves: we learnt ‘non-oriented
integrals’ of functions (as a special case of surface integrals) and ‘oriented
integrals’ of differential forms. How these two notions are related to each
other?

Suppose

γ : I → Rn smooth path,

T (x) = γ̇(t)
|γ̇(t)| unit tangent vector to γ at x = γ(t) (Check that it does not

depend on the choice of the parameterization of γ!)

Definition 16.16 (arc-length differential form).

dsx(ξ) = 〈T (x), ξ〉 , ξ ∈ TxRn .

Warning: in spite of (traditional) notation ds, this is not a differential!

If ρ is a continuous function on the curve γ, then we can define a new
form ρ ds which has a density ρ with respect to the form ds; i.e.

(ρ ds)(ξ) = ρ(x) dsx(ξ), x = γ(t) .

Then

‘oriented′
∫

γ

ρ ds =

∫

I

ρ(γ(t)) (ds)γ(t)(γ̇(t)) dt

=

∫

I

ρ(γ(t))〈T (γ(t)), γ̇(t)〉 dt

=

∫

I

ρ(γ(t))|γ̇(t)| dt = ‘non− oriented′
∫

γ

ρ ds ,

that is our definitions coincide!

Question 16.17. The definition of the integral of a function clearly does
not depend on the orientation of the curve, the definition of the integral of a
form does depend on the orientation. How this could happen?

To finish this discussion, observe that any line integral can be rewritten
as an ‘arc-length integral’: given a form ωx ∈ (TxRn)∗, take the vector field
F (x) ∈ TxRn such that ω = ωF . Then

∫

γ

ω =

∫

I

〈F (γ(t)), γ̇(t)〉 dt

=

∫

I

〈F (γ(t)), T (γ(t))〉|γ̇(t)| dt

=

∫

γ

〈F, T 〉 ds ,
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that is ∫

γ

ωF =

∫

γ

〈F, T 〉 ds .
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17 Green’s theorem

Theorem 17.1. Suppose G ⊂ R2 is a domain whose boundary Γ = ∂G
consists of finitely many piece-wise C1-curves, and is positively oriented30.
Suppose Pdx + Qdy is a C1-differential form on G. Then

∫

Γ

P dx + Qdy =

∫∫

G

(
∂Q

∂x
− ∂P

∂y

)
dxdy .

As in the Divergence Theorem, the integral on the left-hand side is an
additive set-function. It’s easy to compute its ‘density’:

Exercise 17.2. Let S be a square centered at the point (ξ, η), and Γ be its
boundary with the positive orientation. Check that

lim
S↓(ξ,η)

1

Area(S)

∫

Γ

P dx + Q dy =
∂Q

∂x
(ξ, η)− ∂P

∂y
(ξ, η) .

Then using the properties of the line integrals we know already, it is not
difficult to complete the proof Green’s Theorem, approximating ‘from inside’
the domain G by the connected union of the squares.

However, we shall not do this. We show that Green’s Theorem is a simply
corollary to the Divergence Theorem. To this end, consider the unit normal
field to a two-dimensional curve γ : I → R2:

N(γ(t)) =
1

|γ̇|
(

γ̇2

−γ̇1

)

(This definition does not depend on parameterization of γ. Check!)
With this definition, the normal N lies to the right to the tangent T .

Thus if Γ = γ(I) is the oriented boundary of G, then N is the outer normal
to Γ.

Now, let F =

(
F1

F2

)
be a smooth vector field on G. Consider the linear

form
ω = −F2 dx + F1 dy

(Warning: this is not ‘the work form’ we defined earlier!) Then
∫

γ

ω =

∫

I

[−F2(γ(t))γ̇1(t) + F1(γ(t))γ̇2(t)] dt

=

∫

I

〈F (γ(t)), N(γ(t))〉|γ̇(t)| dt =

∫

γ

〈F,N〉 ds .

30This means that if one traverses the boundary in the positive direction, then his/her
left foot is within the domain (‘The Law of the Left Foot’).
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We can go in the opposite direction: if ω = P dx+Qdy is a differential form

in R2, then F =

(
Q
−P

)
is the corresponding vector field. Thus

∫

Γ

P dx + Qdy =

∫

Γ

〈F, N〉 ds

Gauss
=

∫∫

G

div(F ) dxdy =

∫∫

G

(
∂Q

∂x
− ∂P

∂y

)
dxdy .

We see that Green’s Theorem is equivalent to the two-dimensional version
of the Divergence Theorem31.

Exercise 17.3. C is the unit circle with positive orientation. Find∫

C

ex2−y2

(cos 2xy dx + sin 2xy dy)

Exercise 17.4. Γ is the boundary of the square [0, π] × [0, π] with natural
orientation. Find∫

Γ

(
cos x cos y + 3x2

)
dx +

(
sin x sin y + (y4 + 1)1/4

)
dy .

31In fact, its proof for domains with piece-wise smooth boundaries is essentially simpler
than the proof of the Divergence Theorem we gave.
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Exercise 17.5. Suppose γ : [0, 1] → R2 be a closed non-constant regular C1

curve such that

(17.6)

∫

γ

x3 dy − y3 dx = 0 .

Show that the set Γ = γ([0, 1]) cannot be a boundary of a domain in R2.
Give an example of a closed regular non-constant curve γ satisfying (17.6).

17.1 Application: Area computation

Suppose ω is such a form that

∂Q

∂x
− ∂P

∂y
= 1 .

Then, by Green’s Theorem,

area(G) =

∫

∂G

ω .

The most popular examples of such forms are

−y dx , x dy ,
1

2
(−y dx + x dy) .

Example 17.7. Consider a closed polygonal line Γ = [z0, z1, ..., zN = z0],
zi = (xj, yj). Suppose Γ = ∂G. Then

area(G) =
1

2

N−1∑
j=0

(yj+1 − yj) (xj+1 + xj) .

Proof: We have

area(G) =
N−1∑
j=0

∫

γj

x dy ,

where γj(t) = zj(1− t) + zj+1t, 0 ≤ t ≤ 1. Then γ̇j = zj+1 − zj, and

∫

γj

x dy =

∫ 1

0

(xj(1− t) + xj+1t) (yj+1 − yj) dt =
1

2
(yj+1 − yj)(xj+1 + xj) .

2
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Exercise 17.8. Find the area of the domain bounded by the loop of the
Cartesian leaf x3 + y3 = 3xy.

Hint: set y = tx, then the leaf is parameterized as follows:

x(t) =
3t

1 + t3
, y(t) =

3t2

1 + t3
, 0 < t < ∞ .

To compute the area, use the area form ω = 1
2
(x dy − y dx) = 1

2
x2 (y/x)′ dt.

In our case, y/x = t, and the form equals 1
2
x2 dt.

Exercise 17.9. Find the length of the astroid {(x, y) : x2/3 + y2/3 = 1}, and
the area of the domain it bounds.

Answers: the length of the astroid equals 6, its area is 3π/8.

Exercise 17.10. Suppose (r, θ) are the polar coordinates in R2. Prove:

area (G) =
1

2

∫

Γ

r2 dθ = −
∫

Γ

rθ dr .

Here, Γ is the oriented boundary of ∂G. In the second formula we assume
that 0 /∈ Γ.

17.2 Application: Cauchy integral theorem for smooth
functions

Let f be a complex-valued C1-function in a plane domain G. Set

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

The function f is analytic in G if and only if ∂f/∂z̄ ≡ 0 in G. Indeed, let
f = u + iv, then

∂f

∂z̄
=

1

2
(ux + ivx + iuy − vy) .

We see that the equation fz̄ = 0 is equivalent to the Cauchy-Riemann system:

ux = vy, uy = −vx .

Exercise 17.11. 1. If f is a C2-function, then

∂2f

∂z∂z̄
=

1

4
∆f .

2. If u is a real-valued C2-function, then the complex derivative uz is analytic
if and only if u is harmonic.

159



Exercise 17.12. If f is a C1-function, and g is analytic, then

(f · g)z̄ = g · fz̄ .

Theorem 17.13 (Cauchy - Green). Suppose G ⊂ C is a bounded domain
with a piece-wise C1-boundary Γ, and suppose that f : G → C is a C1-
function in G. Then

f(w) =
1

2πi

∫

Γ

f(z)

z − w
dz − 1

π

∫∫

G

∂f/∂z̄

z − w
dxdy , w ∈ G .

Corollary 17.14 (Cauchy’s theorem). If, in the assumptions of the theorem
above, f is analytic in G, then

f(w) =
1

2πi

∫

Γ

f(z)

z − w
dz , w ∈ G .

Corollary 17.15. If a complex-valued function f ∈ C1(C) vanishes outside
of a compact subset of C, then

f(w) = − 1

π

∫∫

C

∂f/∂z̄

z − w
dxdy .

Proof of the Theorem: First, observe that for the complex-valued function f ,
the Green’s formula reads

(17.16)

∫

Γ

f dz = 2i

∫∫

G

∂f

∂z̄
dxdy

Indeed,
f dz = u dx− v dy + i(u dy + v dx) ,

2i
∂f

∂z̄
= i(ux + ivx + iuy − vy) = −(uy + vx) + i(ux − vy) ,

and (17.16) follows from Green’s theorem.
We apply (17.16) to the function z 7→ f(z)/(z − w) in the domain Gε =

{z ∈ G : |z−w| > ε}, ε < dist(w, ∂G). Since the function z 7→ 1
z−w

is analytic
in Gε,

∂

∂z̄

f(z)

z − w
=

∂z/∂z̄

z − w

(see the exercise above), and we get

2i

∫∫

Gε

∂f/∂z̄

z − w
dxdy =

∫

Γ

f(z)

z − w
dz −

∫ 2π

0

f(w + εeiθ)i dθ .

Letting ε → 0 and using continuity of f at w, and integrability of ∂f/∂z̄
z−w

, we
get the result. 2
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18 Poincaré Lemma

18.1 Homotopies. Simply connected domains

Definition 18.1 (homotopy). The curves γ0, γ1 : [0, 1] → Rn with common
starting and terminating points γ0(0) = γ1(0), γ0(1) = γ1(1) are homotopic
to each other, if there exists a continuous map γ : [0, 1] × [0, 1] → Rn such
that

γ( . , 0) = γ0, γ( . , 1) = γ1,

and
γ(0, . ) = γ0(0) = γ1(0), γ(1, . ) = γ0(1) = γ1(1) .

The mapping γ is called the homotopy of the curves γ0 and γ1.

The notion of homotopy formalizes the intuitive idea of continuous de-
formations of curves that keep fixed the beginning and the end. Clearly,
any two curves with common beginning and end are homotopic in Rn (Prove
this!). In particular, any closed curve in Rn is homotopic to the point, i.e.,
the trivial ‘constant curve’.

Given domain Ω ⊂ Rn and two curves in Ω, we can consider only those
homotopies γ that do not leave Ω. I.e., two curves in Ω with common be-
ginning and end, are homotopic in Ω if it is possible to deform continuously
one curve into another without leaving domain Ω. Now, the property to be
‘homotopic in Ω’ depends both on the pair of curves and Ω. For example, the
unit circle is homotopic to the point in R2, but in R2 \ {0} such a homotopy
does not exist. The circle (x − 2)2 + y2 = 1 is homotopic to the point in
R2 \ {0}.
Theorem 18.2 (integrals over homotopic curves are equal). Let ω =

∑
ai(x) dxi

be a C1-differential form in the domain Ω ⊂ Rn such that

(18.3)
∂ai

∂xk

=
∂ak

∂xi

, 1 ≤ i, k ≤ n ,

and let the piece-wise C1-curves γ0, γ1 : [0, 1] → Ω be homotopic in Ω. Then

∫

γ0

ω =

∫

γ1

ω .

Definition 18.4. The domain Ω ⊂ Rn is called simply-connected, if any
closed curve γ0 : [0, 1] → Ω, γ0(0) = γ0(1) = c, is homotopic in Ω to the
point.
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For example, any ball in Rn is simply connected, the half-space in Rn is
also simply connected. More generally, any convex domain in Rn is simply
connected. The punctured ball is not simply connected in R2, but is simply
connected in Rn for n ≥ 3. Of course, if Ω is simply-connected, and Ω1 is its
homeomorphic image (that is, ∃f : Ω → Ω1, f is one-to-one, f and f−1 are
continuous), then Ω1 is also simply-connected. (Prove!)

Corollary 18.5. Let ω be a C1 form in a simply-connected domain Ω satis-
fying (18.3). Then ω has a primitive.

18.2 Proof for smooth homotopies

First, we assume that the curves γ0 and γ1 are C1, and that the homotopy
γ : [0, 1]2 → Ω is a C1 mapping, such that the mixed derivative ∂2

∂t∂s
is con-

tinuous and does not depend on the order of differentiation. Then

(∫

γ1

−
∫

γ0

)
ω =

∫ 1

0

(
n∑

i=1

ai(γ1(t))γ̇1,i(t)−
n∑

i=1

ai(γ0(t))γ̇0,i(t)

)
dt .

The integrand on the RHS equals

n∑
i=1

ai(γ(t, s))γ̇i(t, s)
∣∣∣
s=1

s=0
=

∫ 1

0

d

ds

(
n∑

i=1

ai(γ(t, s))γ̇i(t, s)

)
ds

(here and henceforth, γi is the i-th coordinate component of the mapping γ).
Next,

d

ds

(
n∑

i=1

ai(γ(t, s))γ̇i(t, s)

)
=

n∑

i,k=1

(
∂ai

∂xk

◦ γ

)
∂γi

∂t

∂γk

∂s
+

n∑
i=1

(ai ◦ γ)
∂2γi

∂t∂s

(18.3)
=

d

dt

(
n∑

k=1

ak(γ(t, s))
∂γk

∂s
(t, s)

)
.

Thereby, ∫

γ1

ω −
∫

γ0

ω =

∫ 1

0

dt

∫ 1

0

ds
d

dt

n∑

k=1

(ak ◦ γ)
∂γk

∂s
.

The integrand is uniformly continuous and hence we can switch the order of
integration. We obtain

(18.6)

∫ 1

0

ds

n∑

k=1

(
ak(γ(1, s))

∂γk

∂s
(1, s)− ak(γ(0, s))

∂γk

∂s
(0, s)

)
.
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Since the end-points of the homotopy are fixed, the functions s 7→ ∂γk

∂s
(0, s),

s 7→ ∂γk

∂s
(1, s) are constant, and

∂γk

∂s
(0, s) =

∂γk

∂s
(1, s) = 0 ,

thus the RHS of (18.6) is zero.
It remains to explain how to smooth homotopies.

18.3 Smoothing

Suppose that γ0 and γ1 are homotopic C1-curves in Ω, and that γ : [0, 1]2 → Ω
is their homotopy. We’ll smooth it using the idea similar to that one we used
in the construction of the smooth cut-off function.

We extend by the mapping γ to a continuous mapping from a larger open
square Q ⊃ [0, 1]2 to Ω, and set

γε(t, s)
def
=

1

4ε2

∫ t+ε

t−ε

∫ s+ε

s−ε

γ(ξ, η) dξ dη

(ε is sufficiently small). Clearly, γε ∈ C1, and the mixed derivative ∂2γε

∂t∂s
is

continuous and does not depend on the order of differentiation.
Since

γε(t, s)− γ(t, s) =
1

4ε2

∫ t+ε

t−ε

∫ s+ε

s−ε

[γ(ξ, η)− γε(t, s)] dξ dη ,

we see that γε approximate γ as ε → 0 uniformly in t and s. In particular,
we can choose ε so small that γε ∈ Ω.

Now, we change a bit the smooth curve γε to recover the ‘boundary con-
ditions’ as t = 0, t = 1, s = 0 and s = 1. First, we replace γε(t, s) by

γε(t, s)− (1− s) [γε(t, 0)− γ0(t)]− s [γε(t, 1)− γ1(t)] .

We keep for the ‘perturbed function’ the same the notation γε. New function
is still uniformly close to the original function γ. Now it ‘connects’ the curves
γ − 0 and γ1:

γε(t, 0) = γ0(t) , γε(t, 1) = γ1(t) .

However, it still does not stay constant when t = 0 and t = 1. To mend this,
we replace γε by

γε(t, s)− (1− t) [γε(0, s)− γ0(0)]− t [γε(1, s)− γ0(1)] .
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The new function γε already satisfies

γε(0, s) = γ0(0) = γ1(0), γε(1, s) = γ0(1) = γ1(1) .

(Note that the conditions at s = 0 and s = 1 have not been changed!)
This completes the proof of the theorem in the case when the curves γ0

and γ1 are C1. If they are only piece-wise C1, then we approximate them
uniformly by C1-curves γ0,ε, γ1,ε with the same end-points. Clearly, the curves
γ0,ε and γ1,ε are still homotopic. (Why?) Thus

∫

γ0,ε

ω =

∫

γ1,ε

ω .

Letting ε → 0, we get the result. 2
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