
Preliminaries

Preparatory reading. These books are intended for high-school students
who like math. All three books are great, my personal favorite is the first one.

(1) R. Courant, H. Robbins, I. Stewart, What is mathematics, Oxford,
1996 (or earlier editions).

(2) T. W. Korner, The pleasures of counting, Cambridge U. Press, 1996.
(3) K. M. Ball, Strange curves, counting rabbits, and other mathematical

explorations, Princeton University Press, 2003.

Reading.

(1) V. A. Zorich, Mathematical analysis, vol.1, Springer, 2004.
(2) D. Maizler, Infinitesimal calculus (in Hebrew).
(3) R. Courant and F. John, Introduction to calculus and analysis, vol.1,

Springer, 1989 (or earlier editions).

You may also look at notes of Jon Aaronson who teaches this course in
parallel with me. You may find helpful informal discussions of various ideas
related to this course (as well to the other undergraduate courses) at the web
page of Timothy Gowers:

www.dpmms.cam.ac.uk/~wtg10/mathsindex.html

I suppose that the students attend in parallel with this course the course
“Introduction to the set theory”, or the course “Discrete Mathematics”. The
notes (in Hebrew) of Moshe Jarden might be useful:

www.math.tau.ac.il/~jarden/Courses/set.pdf

Additional reading.

(1) E. Hairer, G. Wanner, Analysis by its history, Springer, 1996.
(2) A. Browder, Mathematical analysis. An introduction. Undergraduate

Texts in Mathematics. Springer-Verlag, New York, 1996.
(3) W. Rudin, Principles of mathematical analysis, McGraw-Hill, 1976 (or

earlier edition).

The first book gives a very interesting and motivated exposition of the main
ideas of this course given in the historical order. Browder’s and Rudin’s books
are more advanced textbooks which I recommend to the students who want
to learn more.

Problem books. For those of you who are interested to try to solve more
difficult and interesting problems and exercises, I strongly recommend to look
at two excellent collections of problems:

(1) B. M. Makarov, M. G. Goluzina, A. A. Lodkin, A. N. Podkorytov,
Selected problems in real analysis, American Mathematical Society,
1992.

(2) G. Polya, G. Szegö, Problems and theorems in analysis (2 volumes)
Springer, 1972 (there are earlier editions).
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Basic notations.

Symbols from logic.

∨ or
∧ and
¬ negation
=⇒ yields
⇐⇒ is equivalent to

Example: (x2 − 3x + 2 = 0) ⇐⇒ ((x = 1) ∨ (x = 2))

Quantifiers:

∃ exists
∃! exists and unique (warning: this notation isn’t standard)
∀ for every

Set-theoretic notations.

∈ belongs
/∈ does not belong
⊂ subset
∅ empty set
∩ intersection of sets
∪ union of sets
#(X) cardinality of the set X
X \ Y = {x ∈ X : x /∈ Y } complement to Y in X

Example: (X ⊂ Y ) := ∀x ( (x ∈ X) =⇒ (x ∈ Y ) )

We shall freely operate with these notions during the course. Usually, the
sets we deal with are subsets of the set of real numbers R.

Subsets of reals:

N natural numbers (positive integers)
Z integers
Z+ non-negative integers
Q rational numbers
R real numbers
[a, b] := {x ∈ R : a ≤ x ≤ b} closed interval (one point sets are
closed intervals as well)
(a, b) := {x ∈ R : a < x < b} open interval
(a, b] and [a, b) semi-open intervals

Some abbreviations.

iff “if and only if”
wlog “without loss of generality”
RHS, LHS “right-hand side”, “left-hand side”
qed “ end of the proof”1. Often is replaced by the box like this one: 2

:= according to the definition (the same as
def
=)

1“quod erat demonstrandum” (in Latin), “which was to be demonstrated”
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Basic Greek letters.

α alpha
β beta
γ, Γ gamma
δ, ∆ delta
ε epsilon
ζ zeta
η eta
θ, Θ theta
ι iota
κ kappa
λ, Λ lambda
µ mu
ν nu
ξ, Ξ xi
π, Π pi
ρ rho
σ, Σ sigma
τ tau
υ, Υ upsilon
ϕ, Φ phi
χ chi
ψ, Ψ psi
ω, Ω omega

Exercise: Translate from the Greek the word µαθηµατικα.
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1. Real Numbers

1.1. Infinite decimal strings. All of you have an idea what are the real
numbers. For instance, we often think of the real numbers as strings of ele-
ments of the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} preceded by a sign (we write only a
minus sign, the absence of the sign means that the sign is positive). A finite
string of elements of this set followed by a decimal point followed by an infinite
string of elements of this set. If the string starts with zeroes, they can be re-
moved: 0142.35000... = 142.35, if the string has an infinite sequence of nines,
the last element which differs from nine should be increased by one, and then
the nines should be replaced by the zeroes: 13.4999999... = 13.5000... = 13.5.
We call such strings finite.

Then we can define what is the sum, the product and the quotient of two
such strings, and we can compare the strings. It is not completely obvious, but
you’ve certainly learnt this in the high-school how to do this for finite strings:

Exercise 1.1.1. Write down the “algorithms” for addition, multiplication and
comparison of two finite decimal strings.

One may prefer to operate with strings which consist of zeroes and ones
only. In other civilizations, people used to operate with expansions with a
different base, say {0, 1, 2, 3, 4, 5, 6, ..., 59} (this base goes back to Babylon).
Do they deal with the same set R of real numbers? How to formalize this
question? and how to answer it?

1.2. The axioms. We know that it is possible to add and multiply real num-
bers. So let us write down the customary rules:

Axioms of addition +.

(+1) ∃ the null element 0 such that ∀x ∈ R: x + 0 = 0 + x = x;
(+2) ∀x ∈ R ∃ an element −x such that x + (−x) = (−x) + x = 0;
(+3) associativity: ∀x, y, z ∈ R x + (y + z) = (x + y) + z;
(+4) commutativity: ∀x, y ∈ R x + y = y + x.

In “scientific words” these axioms mean that R is an abelian group.

Axioms of multiplication ·.
(·1) ∃ the unit element 1 ∈ R \ {0} such that ∀x ∈ R: x · 1 = 1 · x = x;
(·2) ∀x ∈ R \ {0} ∃ the inverse element x−1 such that x · x−1 = x−1 · x = 1;
(·3) associativity: ∀x, y, z ∈ R x · (y · z) = (x · y) · z
(·4) commutativity: ∀x, y ∈ R x · y = y · x.

This group of the axioms means that the set R \ {0} with the multiplication
is also an abelian group.

Relation between addition and multiplication is given by

Distributive axiom. ∀x, y, z ∈ R (x + y) · z = x · z + y · z.

Exercise 1.2.1. Prove that a · 0 = 0.
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Any set K with two operations satisfying all these axioms is called a field.
The fields are studied in the courses in algebra.

Exercise 1.2.2. Construct a finite field with more than two elements.

Axioms of order ≤. Real numbers are equipped with another important struc-
ture: the order relation. Having two real numbers x and y we can always
juxtapose them and tell whether they are equal or one of them is bigger than
the other one. To make this formal, we need to check that the reals satisfy
the third set of the axioms:

(≤1) ∀x ∈ R x ≤ x;
(≤2) if x ≤ y and y ≤ x, then x = y;
(≤3) if x ≤ y and y ≤ z, then x ≤ z;
(≤4) ∀x, y ∈ R either x ≤ y or y ≤ x.

These axioms say that R is a (linearly) ordered set. The next two axioms
relate the order with addition and multiplication on R:

(+,≤) if x ≤ y, then ∀z ∈ R x + z ≤ y + z;
(·,≤) if x ≥ 0 and y ≥ 0, then x · y ≥ 0.

Now, we can say that R is an ordered field.

Exercise 1.2.3. Let x ≥ y. Prove that x · z ≥ y · z if z > 0 and x · z ≤ y · z if
z < 0.

Exercise 1.2.4. Let x ≥ y > 0. Prove that x2 ≥ y2.

The axioms introduce above still are not enough to start the course of anal-
ysis.

Completeness axiom: if X and Y are non-empty subsets of R such that

∀x ∈ X ∀y ∈ Y x ≤ y

then ∃c ∈ R such that

∀x ∈ X ∀y ∈ Y x ≤ c ≤ y .

Intuitively, this should hold for reals, however, it would take some time to
check it for the infinite decimals. I will not do this verification in my lectures.
Later, we will learn several equivalent forms of this axiom, then the verification
will be much easier, see Exercise 2.1.8.

Why do we call all these rules the axioms? Let us say that a set F equipped
with two operations (call them “addition” and multiplication”) and with an
order relation is a complete ordered field if it satisfies all the axioms given
above. We know (or rather believe) that the reals give us an example of a
complete ordered field. This is a good point to turn things around (as we
often do in math), and accept the following

Definition 1.2.5. A field of real numbers R is a complete ordered field.
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I.e., from now on, we will allow ourselves to freely use the axioms introduced
above.

When we start with an abstract system of axioms two questions arise: First,
whether there exists an object which satisfies them? or maybe, the axioms from
our system contradict each other? Second, assuming that such an object exists,
whether it is unique? Imagine two different objects called “real numbers”! In
our case, the answers to the both questions are positive. Since the proofs are
too long for the first acquaintance with analysis, we’ll skip them.

To prove existence, it suffices to check, for instance, that the infinite decimal
strings satisfy these axioms. Note, that there are other constructions of the set of
reals (like Dedekind cuts and Cauchy sequences of rationals). Luckily, all of them
lead to the same object.

Suppose that we have two complete ordered fields, denote them R and R′. How
to say that they are equivalent? Some thought gives us the answer: we call R and
R′ equivalent if there exist a one-to-one correspondence f between R and R′ which
preserves the arithmetic operations and the order relation; i.e.

f(x + y) = f(x) + f(y),

f(x · y) = f(x) · f(y),
x ≤ y =⇒ f(x) ≤ f(y) .

It’s not very difficult to construct such a map f2. This construction leads to a
theorem which says that any two complete ordered field are equivalent.

Natural and integer numbers. Naively, the set of natural numbers is the set of
all real numbers of the form

1, 1 + 1, (1 + 1) + 1, ((1 + 1) + 1) + 1, ... .

A formal definitions is slightly more complicated.

Definition 1.2.6 (inductive sets). A set X ⊂ R is called inductive if(
x ∈ X

)
=⇒ (

x + 1 ∈ X
)

For instance, the set of all reals is inductive.

Definition 1.2.7 (natural numbers). The set of natural numbers N is the
intersection of all inductive sets that contains the element 1.

In other words, a real number x is natural if it belongs to each inductive set
that contains 1.

Claim 1.2.8. The set of natural numbers is inductive.

Proof: Suppose n ∈ N. Let X be an arbitrary inductive subset of R that
contains n. Since X is inductive, n + 1 is also in X. Hence, n + 1 belongs to
each inductive subset of R, whence, n + 1 ∈ N; i.e., the set N is inductive. 2

This definition provides a justification for the principle of mathematical
induction. Suppose there is a proposition P (n) whose truth depends on the

2I suggest to the students with curiosity to build such a map yourselves.
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natural numbers. The principle states that if we can prove the truth of P (1)
(“the base”), and that assuming the truth of P (n) we can prove the truth of
P (n + 1), then P (n) is true for all natural n.

Exercise 1.2.9. Prove that any natural number can be represented as a finite
sum of ones: 1 + 1 + ... + 1.

Example 1.2.10 (Bernoulli’s inequality). ∀x > −1 and ∀n ∈ N
(1 + x)n ≥ 1 + nx .

The equality sign is possible only when either n = 1 or x = 0.

Proof: Fix x > −1. For n = 1, the LHS and the RHS equal 1 + x. Hence,
we’ve checked the base of the induction.

Assume that we know that

(1 + x)n ≥ 1 + nx .

Since 1 + x is a positive number, we can multiply this inequality by 1 + x. We
get

(1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + (n + 1)x + nx2 .

If x 6= 0, the RHS is bigger than 1 + (n + 1)x, and we are done. 2

Exercise 1.2.11. Prove that
1

n
√

1 + m
+

1
m
√

1 + n
≥ 1 .

Hint: Use Bernoulli’s inequality.

Exercise 1.2.12. Suppose a1, ..., an are non-negative reals such that S =
a1 + ... + an < 1. Prove that

1 + S ≤ (1 + a1) · ... · (1 + an) ≤ 1

1− S

and

1− S ≤ (1− a1) · ... · (1− an) ≤ 1

1 + S
.

Exercise 1.2.13. Prove:

12 + 22 + ... + n2 =
n(n + 1)(2n + 1)

6
, n ∈ N .

Exercise 1.2.14. Prove that

2(
√

n− 1) < 1 +
1√
2

+
1√
3

+ ... +
1√
n

< 2
√

n .

Definition 1.2.15 (integers).

Z =
{

x ∈ R :
(
x ∈ N) ∨ (− x ∈ N) ∨ (

x = 0
)}

.

Remark: It is purely a matter of agreement that we start the set of natural
numbers with 1. In some textbooks the set N starts with 0.

In what follows, we denote the set of non-negative integers by Z+ = N∪{0}.
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Rational numbers.

Definition 1.2.16.

Q =
{

x =
m

n
: m,n ∈ Z, n 6= 0

}
.

Exercise 1.2.17. Whether the set of integers Z is a field? Whether the set
of rationals Q is a field?

Exercise 1.2.18. Check that the rationals Q form an ordered field.

Exercise 1.2.19. Prove that the equation s2 = 2 does not have a rational
solution.

Exercise 1.2.20. Check that the field of rationals Q doesn’t satisfy the com-
pleteness axiom.

1.3. Application: solution of equation sn = a.

Exercise 1.3.1. Prove that this equation cannot have more than two real
solutions.

Theorem 1.3.2. For each a > 0 and each natural n ∈ N, the equation sn = a
has a positive solution s.

Proof: Define the sets X := {x ∈ R : xn < a} and Y := {y ∈ R : yn > a},
both sets are not empty (why?). The completeness axiom can be applied to
these sets since

∀x ∈ X, y ∈ Y (xn < a < yn) =⇒ (x < y) .

By the axiom,

∃s ∀x ∈ X, ∀y ∈ Y x ≤ s ≤ y .

We claim that sn = a.
First, observe that X contains a positive number so that s is positive as

well. Indeed, take t = 1 + 1/a. Then tn ≥ t > 1/a, and (1/t)n < a. Therefore,
1/t ∈ X.

Now, assume that sn < a. Our aim is to find another value s1 which is
bigger than s but still sn

1 < a. Then s1 ∈ X, that is, X has an element which
is (strictly) bigger than s. Hence, contradiction.

To find such s1, we choose a small positive ε:

0 < ε <
a− sn

na
.

Then a− sn > εna, and

sn < (1− nε)a ≤ (1− ε)na .

In the second inequality we use the Bernoulli inequality in the form

1− εn ≤ (1− ε)n , 0 < ε ≤ 1, n ∈ N
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(this is legitimate since ε < 1). That is,(
s

1− ε

)n

< a ,

and by the definition of the set X the number s/(1− ε) must be in X. By the
choice of s, s > s/(1− ε) which is impossible. Therefore, sn ≥ a.

A similar argument shows that sn ≤ a. Now, we start with assumption that
sn > a. Then we should find small positive ε such that

0 < ε <
sn − a

nsn
.

We have sn−a > εnsn, and a < (1−εn)sn. Using again Bernoulli’s inequality,
we get

a ≤ (1− ε)nsn = [(1− ε)s]n .

This means that (1− ε)s ∈ Y which again contradicts the choice of s. There-
fore, sn = a proving the theorem. 2

1.4. The distance on R. We also know how to measure the distance between
two real numbers. Set

|x| =
{

x, x ≥ 0,

−x, x < 0

The value d(x, y) = |x − y| is the distance between x and y. It enjoys the
following properties:

positivity: d(x, y) ≥ 0 and d(x, y) = 0 iff x = y;
symmetry: d(x, y) = d(y, x);
triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) with the equality sign iff
the point z lies within the close segment with the end-points x and y.

The first two properties are obvious. Let’s prove the triangle inequality.

|y − z|

x

x

y

y

z

z

|x− y|

|x− y|

|x− z|

|x− z|

|y − z|

Figure 1. To the proof of triangle inequality

Let, say, x < y. If z ∈ [x, y], then

d(x, y) = y − x = (y − z)− (z − x) = d(y, z) + d(x, z) .

If z does not belong to the interval [x, y], say z > y, then

d(x, y) = y − x < z − x = d(x, z) < d(x, z) + d(y, z) .
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Done! 2

Question: How the triangle inequality got its name?

There are other versions of the triangle inequality which we’ll often use in
this course:

Exercise 1.4.1. Prove the following inequalities:

|x + y| ≤ |x|+ |y| ,
|x− y| ≥ | |x| − |y| | ,

and
|x1 + ... + xn| ≤ |x1|+ ... + |xn| .

In what follows, we apply the name “triangle inequality” to these inequalities
as well.
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2. Upper and lower bounds

2.1. Maximum/minimum supremum/infimum. The completeness axiom
has a number of important corollaries which will be of frequent use during the
whole course. We start with some definitions.

A subset X ⊂ R is upper bounded if ∃c such that ∀x ∈ X, x ≤ c. Any c with
this property is called an upper bound (or a majorant) of X. A subset X ⊂ R
is lower bounded if ∃c such that ∀x ∈ X, x ≥ c. Any c with this property is
called a lower bound (or a minorant) of X. A set X is bounded if it is upper-
and lower bounded.

Next, we define the maximum and minimum of a set X:

Definition 2.1.1 (maximum/minimum).

(a = max X) := (a ∈ X ∧ ∀x ∈ X (x ≤ a)) ,

that is, a is a majorant of X and belongs to X. Similarly,

(a = min X) := (a ∈ X ∧ ∀x ∈ X (x ≥ a)) ,

that is, a is a minorant of X and belongs to X.

If a set is unbounded from above, then certainly it does not have a maximum.
However, even if X is upper bounded, the maximum does not have to exists:
for example consider an open interval (0, 1).

Example 2.1.2. The open interval (0, 1) has nor maximum neither minimum.

Proof: Suppose that c is a majorant of (0, 1). Then c ≥ 1. Observe, that
(0, 1) ∩ [1,∞) = ∅, hence, c cannot belong to (0, 1). The proof that (0, 1) has
no minimum is similar. 2

Claim 2.1.3. If the maximum exists, then it is unique.

Proof: Suppose the set X has two different maxima: a 6= b. Then either
a < b or b < a. Assume, for instance, that a < b. Note that b ∈ X since b is a
maximum of X. Therefore, a does not majorize X. 2

Let X ⊂ R be an upper bounded set. Consider the set of all upper bounds
of X:

MX
def
= {c ∈ R : ∀x ∈ X x ≤ c} .

This set is not empty and is lower bounded (why?).

supXX

MX

Figure 2. Supremum of the set X
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Definition 2.1.4 (supremum). The supremum of X is the least upper bound
of X, that is the minimum of the set MX :

sup X := min MX .

An equivalent way to pronounce the same definition is

s = sup X iff (∀x ∈ X x ≤ s) ∧ (∀p < s ∃x′ ∈ X p < x′) .

We see from the previous exercise that if the supremum exists, then it is
unique.

Examples: sup[−1, 1] = max[−1, 1] = 1, sup[−1, 1) = 1. In the second case
the maximum does not exists.

Lemma 2.1.5 (existence of supremum). For every non-empty upper bounded
set X ⊂ R, the supremum exists.

Proof: Consider the set MX of all upper bounds of X. We have to show that
this set has a minimum.

Since X is upper bounded, MX 6= ∅. Condition of the completeness axiom
is fulfilled for the sets X and MX . Therefore,

∃s ∈ R ∀x ∈ X ∀c ∈ MX x ≤ s ≤ c .

That is, s is an upper bound of X, and hence belongs to MX . The same
relation shows that s is a minorant of MX . Therefore, s = min MX . 2

Now, let X ⊂ R be a lower bounded set. The infimum of X is the greatest
lower bound of X, that is

inf X := max{c ∈ R : ∀x ∈ X x ≥ c} .

If the infimum exists, it is unique.
Here is an equivalent way to word the same definition:

s = inf X iff (∀x ∈ X x ≥ s) ∧ (∀p > s ∃x′ ∈ X x′ < p) .

Exercise 2.1.6. Let X ⊂ R and let −X := {x ∈ R : −x ∈ X}. Show
inf X = sup(−X). Deduce that every lower bounded set has an infimum.

It is interesting to note that existence of the supremum of an upper bounded
set is equivalent to the completeness axiom:

Exercise 2.1.7. Let X and Y be non-empty subsets of R such that

∀x ∈ X ∀y ∈ Y x ≤ y .

Then the set X is bounded from above. Set c = sup X. Check that ∀x ∈ X
∀y ∈ Y one has x ≤ c ≤ y.

The meaning of the following exercise is to verify that any upper bounded
set of infinite decimals has a supremum. I.e., the infinite decimals satisfy the
completeness axiom.
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Exercise 2.1.8. For a non-negative decimal x, we denote by l(x) = min{n ∈
Z+ : x ≤ 10n}. In other words, this is the length of the part of the string left
to the decimal point.

i. Let X be a set of non-negative infinite decimals. Check that X is bounded
from above iff the set {l(x) : x ∈ X} is bounded from above.

ii. Work out an “algorithm” that finds one by one the digits in the decimal
expansion of sup X.

2.2. Some corollaries: Most of the corollaries given below are evident if we
define the reals using the infinite decimals. Here we deduce them from the
axioms of the complete ordered field.

Claim 2.2.1. Every bounded subset E of the set N of natural numbers has the
maximum.

Proof: Since E is upper bounded, there exists (a real) s = sup E. By the
definition of the supremum, there is an n ∈ E such that s − 1 < n ≤ s.
Suppose that there exists an m ∈ E such that m > n. Then m ≥ n + 1 > s.
Contradiction!

Hence, n = max E. 2

Exercise 2.2.2. Check that any (non-empty) subset of N has the minimum.

Claim 2.2.3. The set N is unbounded from above. The set of integers Z is
unbounded from above and from below.

Proof: If N is bounded, then according to the previous claim it has a maximal
element n. Since N is an inductive set, n + 1 is also a natural number, and
n + 1 > n. We obtain a natural number which is bigger than n. Hence, the
contradiction. 2

Claim 2.2.4 (Archimedes principle). For every h > 0 and every x ∈ R there
exists a unique k ∈ Z such that (k − 1)h ≤ x < kh.

(k-1)h0 h-h 2h-2h kh

x

Figure 3. Archimedes principle

Proof: Assume x/h /∈ Z, otherwise there is nothing to prove. Consider a
subset of the integers {n ∈ Z : x/h < n}. This is a non-empty set which is
lower bounded. Therefore, it has a minimum

k = min{n ∈ Z : x/h < n}
and this k satisfies k − 1 ≤ x/h < k. Done! 2

Applying this principle with h = 1 we obtain the following:

∀x ∈ R ∃!k ∈ Z such that k ≤ x < k + 1 .
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This number k is called an integer part of x and is denoted by [x]. Sometimes,
the same function is called a floor function and is denoted by bxc. The frac-
tional part of x is the number {x} : x− [x]. It is also defined uniquely and is
always in the semi-open interval [0, 1).

Exercise 2.2.5. Draw the graph of the function f(x) = {10x}.
Claim 2.2.6. Whatever small is a positive ε, there is a natural number n such
that 0 < 1/n < ε.

Proof: otherwise, ∀n ∈ N 1/n ≥ ε, or n ≤ 1/ε, that is the set of naturals N is
upper bounded which is impossible. 2

Claim 2.2.7. Let h ≥ 0 and ∀n ∈ N h ≤ 1/n. Then h = 0.

Proof: is the same as in in the previous claim: if h > 0, then ∀n ∈ N n ≤ 1/h
and as above we arrive at the contradiction. 2

Claim 2.2.8. Every open interval contains rationals:

∀(a, b) ⊂ R ∃r ∈ Q ∩ (a, b) .

Proof: Choose n ∈ N such that 0 < 1/n < b − a. Then choose m ∈ Z such

that
m− 1

n
≤ a <

m

n
. Set r =

m

n
. By construction, r > a.

If r ≥ b, then
m− 1

n
< a < b ≤ m

n
, and b − a <

1

n
which contradicts the

choice of n. 2

What about irrational numbers? Try to prove yourself that every open
interval contains at least one irrational number or wait till the next lecture.

It is worth mentioning that one really needs the completeness axiom for derivation
of these corollaries.

Consider a set of rational functions, that is functions represented as quotients of
two polynomials: r(x) = p(x)/q(x) (there could be points x where r is not defined.
Two functions r1 = p1/q1 and r2 = p2/q2 are equal if p1q2−p2q1 is a zero polynomial
(that is, identically equals zero). Show that these functions form a field with usual
addition and multiplication (that is, check the axioms). Now, introduce an order:
let r1 and r2 be two rational functions. We say that r1 < r2 if there is an x > 0
such that r1(t) < r2(t) for all t ∈ (0, x).

Exercise* 2.2.9. Show that this is an ordered field (i.e., check the axioms).

The integers in this field are rational functions which identically equal an integer
number. For example, the integer 7 is represented by a rational function r = (7q)/q
where q is an arbitrary polynomial.

Exercise* 2.2.10. Check that the rational function r = 1/x is a majorant for the
set of all integers in that field. In other words, the integers are bounded therein.
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3. Three basic lemmas:
Cantor, Heine-Borel, Bolzano-Weierstrass

In this lecture we prove three fundamental lemmas. The most of the proofs
in the rest of the course rely upon them.

3.1. The nested intervals principle.

Lemma 3.1.1 (Cantor). Any nested sequence of closed intervals I1 ⊃ I2 ⊃
... ⊃ In ⊃ In+1 ⊃ ... has a non-empty intersection:

⋂
n≥1

In 6= ∅ .

In other words, ∃c ∈ R such that ∀n ∈ N c ∈ In.

Proof: Let In = [an, bn]. Clearly, ∀m,n we have am ≤ bn (otherwise, Im∩In =
[am, bm] ∩ [an, bn] = ∅). Consider the sets

A := {am : m ∈ N} , B := {bn : n ∈ N} .

Any element from the set B is an upper bound for the set A, that is the
completeness axiom is applicable. It says:

∃c ∈ R : ∀m,n ∈ N am ≤ c ≤ bn .

In particular,
an ≤ c ≤ bn, ∀n ∈ N ,

proving the lemma. 2

Clearly, the lemma fails if the nester intervals are open. For instance,
∩n(0, 1/n) = ∅.
Question 3.1.2. Where in the proof of Cantor’s lemma we used that the
nested intervals are closed?

Exercise 3.1.3. Whether the lemma holds true for semi-open nested intervals?

Exercise 3.1.4. In the assumptions of the Cantor lemma,
⋂

n In is always a
closed interval.

Sometimes, the following complement to the Cantor lemma is useful: if,
additionally, in the assumptions of the lemma, the lengths of the intervals In

|In| = bn − an are getting closer and closer to zero (formally, ∀ε > 0 ∃k such
that |Ik|(= bk − ak) < ε,) then the intersection of Ij is a singleton:

⋂
j≥1

Ij = {c} .

Indeed, if there are two different points c1 and c2 in the intersection of Ij’s
(and, say, c1 < c2), then

an ≤ c1 < c2 ≤ bn, ∀n ∈ N,

whence |In| = bn − an ≥ c2 − c1 which contradicts to the assumption.
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3.2. The finite subcovering principle. To proceed further, we need several
new definitions. Let Y be a subset of R, and let S = {X} be a collection of
subsets of R. We say that S covers Y , if

Y ⊂
⋃

X∈S
X .

In other words, for every point x in Y there is a set X from the collection S
such that x ∈ X.

Examples:

1. Trivial coverings: let Y be an arbitrary subset of R. Consider S1 := {R},
that is, S1 consists of the one set R. We get a covering. Another example is
S2 := {y}y∈R, here S2 consists of all one-point sets, again we get a covering.

2. Let Y = (0, 1) and S = {X1, X2}, where X1 = [−1, 1/2] and X2 = [1/3, 2].

3. Let Y = [0, 1], S = {Ix}x∈[0,1], where Ix = (x− 1/4, x + 1/4).

Lemma 3.2.1 (Heine-Borel). For any system of open intervals S = {I} which
covers a closed interval J there is a finite subsystem which still covers J .

In this case, we say that there exists a finite subcovering. Before going to
the proof, we suggest to analyze the third example above and to choose a finite
subcovering in that case.

Proof: We use a “bisection method”. Assume that the lemma is wrong. Then
we construct inductively an infinite nested sequence of closed sub-intervals Jn

of J such that ∀n the intervals Jn cannot be covered by any finite subcollection
of S, and |Jn| = 2−n|J |.

Start with J0 = J and dissect it onto two equal closed subintervals. Since J0

has no finite subcovering, one of these two parts also has no finite subcovering.
Call this part J1. Then J1 ⊂ J0, |J1| = 2−1|J | and J1 has no finite subcovering.
Then we continue this dissection procedure.

According to the Cantor lemma (and its complement), the closed intervals
Jn have one point intersection:

⋂
n Jn = {c}. The point c belongs to J and

therefore is covered by an open interval I = (a, b) from the collection S, that
is a < c < b. Take ε = min(b − c, c − a). We know that for some n the
length of Jn (which is 2−n|J |) is less than ε, and that c ∈ Jn. Therefore,
Jn ⊂ (a, b) = I. Hence, Jn has a finite subcovering from our sub-collection,
in fact a subcovering by one open interval I. We arrive at the contradiction
which proves the lemma. 2

Exercise 3.2.2. Try to change assumptions of this lemma. Whether the result
persists if the intervals in the covering are closed? What about coverings of an
open interval by closed ones? or by open ones? Consider all three remaining
cases.

3.3. The accumulation principle. We start with some definitions. Let x be
a real number. Any open interval I 3 x is called a vicinity (or neighbourhood)
of x. The set I \ {x} is called a punctured vicinity of x.
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Let X ⊂ R. A point p is called an accumulation point of X if any vicinity of
p contains infinitely many points from X. Equivalently, any punctured vicinity
of p contains at least one point of X.

Exercise 3.3.1. Proof equivalence of these definitions.

Exercise 3.3.2. Find accumulation points of the following sets:

{1/n}n∈N, [a, b), (−2,−1) ∪ (1, 2), Z, Q, R \Q, R.

Lemma 3.3.3 (Bolzano-Weierstrass). Each infinite bounded set X ⊂ R has
an accumulation point.

Proof: Let X ⊂ [a, b] =: J . Assume the assertion is wrong, that is each
point x ∈ J has a neighbourhood U(x) which has a finitely many points in the
intersection with X. The open intervals {U(x)}x∈J obviously cover J and by
the Borel lemma we can chose a finite subcovering. That is,

X ⊂ J ⊂
N⋃

k=1

U(xk) ,

and therefore the set X is finite:

#(X) ≤
N∑

k=1

#( X ∩ U(xk) ) < ∞ .

This contradicts the assumption and proves the lemma. 2

Exercise 3.3.4. Starting with the Bolzano-Weierstrass lemma, derive the ex-
istence of the supremum for every upper bounded subset of R.

The meaning of this exercise is simple: the four principles (completeness,
existence of the supremum, Borel’s covering lemma, and Bolzano-Weierstrass’
lemma) appear to be equivalent to each other.

Exercise 3.3.5. All real points are coloured in two colours: black and white,
and the both colours were used. Prove that there are points of different colours
at the distance less than 0.001.

3.4. Appendix: Countable and uncountable subsets of R. Here we
touch very briefly the notions of countable and uncountable sets. You will
learn more in the courses “Introduction to the set theory” or in “Discrete
Mathematics”. First, recall some terminology. A map f : X → Y is

injective if
∀x1, x2 ∈ X x1 6= x2 =⇒ f(x1) 6= f(x2) ;

i.e., injective maps define one-to-one correspondence between X and its image
f(X) ⊂ Y .

surjective if
∀y ∈ Y ∃x ∈ X f(x) = Y ;

i.e., surjective maps map X into the whole Y . In this case, we say that f maps
X onto Y .
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bijective if it is injective and surjective; that is, bijective maps define one-to-one
correspondence between the sets X and Y .

bijection

X Y X Y X Y

injection surjection

Figure 4. Injective, surjective, and bijective maps

Definition 3.4.1. A set X is countable if there is a bijection between this set
and the set N of positive integers.

Lemma 3.4.2.

i) Any infinite subset of a countable set is countable.

ii) Any finite or countable union of countable sets is countable.

Proof: It suffices to prove i) in the special case when X1 is an infinite subset
of N. Indeed, let X be our countable set, and X1 be its infinite subset. Let
ϕ : X → N be a bijection, and E1 = ϕ(X1) ⊂ N. We’ll build the bijection
θ : E1 → N. Then the composition ϕ◦ θ gives us the bijection between X1 and
N.

Let e1 = min E1. The set E1 is infinite, hence the set E2 = E1 \ {e1} is also
infinite. We set e2 = min E2 (note that e2 > e1) and then consider the infinite
set E3 = E2 \ {e2} of N, etc. On the n-th step, we start with the infinite set
En ⊂ N, let en = min En (such that en > en−1 > ... > e1) and define the new
infinite set En+1.

In this way, we get a map θ : N → E1 such that θ(n) = en. Since ei 6= ej

for i 6= j, this is an injective. Let’s check that it maps N onto E1. Consider
an arbitrary element e ∈ E1 \ θ(N). The set

{
n ∈ N : n ≤ e

}
is finite, hence

its subset
{
n ∈ E1 : n ≤ e

}
is also finite. Let k be the cardinality of this set.

Then e = ek, i.e., e ∈ θ(N). This proves the first statement.
The proof of the second statement is based on the following

Claim 3.4.3. The set of ordered pairs of positive integer numbers

N× N def
=

{
(m,n) : m,n ∈ N}

is countable.
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22

10

12

14

15

16

21

26

27

28

31

33

34

41

43

72 85

50

1 3 6

2 5 9 20 35

4 8 13 19

7 18 25 42 52

625132241711

23 40 61 73

60493930

Figure 5. Cantor’s board

The proof of this claim follows by inspection of the infinite Cantor board
(Figure 5) that explains how to build a bijection between the sets N and N×N.
2

Now, let N1 ⊂ N, and let X =
⋃

m∈N1

Xm be a finite or countable union of

countable sets. Let Xm =
{
xm,1, xm,2, ... xm,n, ...

}
. Then ψ : (m,n) 7→ xm,n

defines a bijection between X and a subset of N×N. The first statement and
Claim yield that X is countable. 2

Corollary 3.4.4. The set of rational numbers is countable.

Proof: Consider the countable sets

Qm
def
=

{
r =

n

m
: n ∈ Z}

, m ∈ N .

(For instance, Q7 =
{
...,−2

7
,−1

7
, 0, 1

7
, 2

7
, ...

}
). Then

Q =
⋃

m∈N
Qm

is a countable union of countable sets. Hence, it is countable. 2

Exercise 3.4.5. Write down an explicit formula for the bijection between the
sets N and N× N.

Theorem 3.4.6 (Cantor). Any interval of positive length contains uncountable
many points.

Proof: Since any interval of positive length contains a closed subinterval of
positive length, it suffices to prove the statement for closed intervals. Suppose
that the statement is not correct, i.e., there is a closed interval I1 of positive
length which contains countably many points: I1 =

{
x1, x2, ..., xn, ...

}
. Choose
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a closed subinterval I2 ⊂ I1 of positive length that does not contain the point
x1. Then choose a closed subinterval of positive length I3 ⊂ I2 that does not
contain the point x2, etc.

At the n-th step, having a closes interval of positive length In, we choose
its closed subinterval In+1 ⊂ In of positive length that does not contain the

point xn+1. By Cantor’s lemma, the intersection
⋂
j

Ij is not empty. Take any

point c ∈
⋂
j

Ij. By construction, c ∈ I1, but c differs from any of the points

x1, x2, ..., xn, .... Contradiction! 2

Exercise 3.4.7. Check the following claims:

i) The set of all irrational numbers is uncountable.

ii) The set of all subsets of a countable set is uncountable.

iii) The set of all sequences {ε1, ε2, ..., εn, ...} with εn ∈ {0, 1} is uncountable.

Exercise 3.4.8.

i Prove that it is possible to draw uncountably many disjoint figures 5 on the
plane but only countably many disjoint figures 8.

ii* Prove that it is possible to draw only countably many disjoint letters T
on the plane.
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4. Sequences and their limits

4.1. The infinite sequence is a function defined on the set N of natural num-
bers, f : N → R. Such a function f can be written as a infinite string
{f(1), f(2), f(3), ... , f(n), ...}. For historical reasons, in this case the argu-
ment is usually written as a subscript: {f1, f2, f3, ... , fn, ...}. A standard
notation for such a string is {fn}n∈N. The value fn is called the n-th term of
the sequence.

Examples:

Arithmetic progression
{1, 2, 3, 4, 5, 6, ... },

or more generally

{a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, ... }.
Geometric progression

{q0, q1, q2, q3, q4, q5, ... }
Definition 4.1.1 (convergence). A sequence {xn} converges to the limit a if

∀ε > 0 ∃N ∈ N such that ∀n ≥ N |xn − a| < ε .

In other words, whatever small ε is, only finitely many terms of the sequence
do not belong to the interval (a− ε, a + ε). If the sequence {xn} converges to

a2ε

1 2 3 4

x1

x2

x3

x4

n

xn

Figure 6. Convergent sequence

the limit a, we write
a = lim

n→∞
xn ,

or xn → a. If a sequence is not convergent, it is called divergent.

Examples:

{1/n}, the sequence converges to zero;
{(n + 1)/n}, the sequence converges to one;{
1, 1

2
, 3, 1

4
, 5, 1

6
, ....

}
, the sequence is divergent;

{1 + (−1)n/n}, the sequence converges to one;
{sin n/n}, the sequence converges to zero;
{qn}, the sequence converges to zero if |q| < 1, converges to one if
q = 1, and is divergent in the other cases.
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4.2. Fundamental properties of the limits.

(a) If the limit exists, it is unique.

Proof: Let a and b be limits of a sequence {xn}. We have to prove that a = b.
Given positive ε, we can find N ∈ N such that simultaneously |xN − a| < ε
and |xN − b| < ε. Therefore,

|a− b| = |(a− xN) + (xN − b)| ≤ |xN − a|+ |xN − b| < 2ε .

Since this holds for an arbitrary positive ε, we conclude that a = b, completing
the proof. 2

(b) If a sequence converges, then it is bounded.

Proof: Let a be a limit of a sequence {xn}. Using the definition of convergence
with ε = 1, we find N ∈ N such that |xn − a| < 1 for all n ≥ N . Therefore,
for these n’s, |xn| < |a|+ 1. Hence {xn} is bounded:

|xn| ≤ M := max(|x1|, |x2|, ... , |xN−1|, |a|+ 1) , ∀n ∈ N .

2

Note that the bounded sequence {(−1)n} diverges.

(c) Let {xn} and {yn} be two sequences such that the set {n ∈ N : xn 6= yn}
is finite, and let {xn} converges to a. Then {yn} converges to a as well.

In other words, the limit depends only on a tail of the sequence. We leave
this as an exercise.

Exercise 4.2.1. Prove that every convergent sequence has either the maximal
term, or the minimal term, or the both ones. Provide examples for each of the
three cases.

Exercise 4.2.2. Let a sequence {xn} converge to zero, and let a sequence {y}
be obtained from {xn} by a permutation of its terms, then {yn} converges to
zero as well.

With sequences we can do the same operations as with functions: for exam-
ple, we can add and multiply them termwise.

Theorem 4.2.3. Let a = lim xn and b = lim yn. Then

(i) lim(xn ± yn) = a± b;
(ii) lim(xn · yn) = a · b;
(iii) if b 6= 0, then lim(xn/yn) = a/b.

Proof:

(i) Given ε > 0, we choose N1 such that |xn−a| < ε for all n ≥ N1 and choose
N2 such that |yn − b| < ε for all n ≥ N2. Thus, for n ≥ N := max(N1, N2),
both inequalities hold. Therefore,

|(xn ± yn)− (a± b)| ≤ |xn − a|+ |yn − b| < 2ε ,

proving the claim.
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(ii) Since {xn} is convergent, it is bounded. Take M = sup |xn|. Given ε > 0,
choose values N1 and N2 such that for all n ≥ N1 we have |xn − a| < ε, and
for all n ≥ N2 we have |yn − b| < ε. Then

|xn · yn − a · b| = |xn · (yn − b) + (xn − a) · b|
≤ (sup |xn|) · |yn − b|+ |b| · |xn − a| < M · ε + |b| · ε = (M + |b|)ε .

(iii) We start with a warning some terms of the sequence {yn} can vanish. A
good news is that a number of vanishing terms of this sequence is always finite.
So that, the sequence {xn/yn} is well-defined for sufficiently large indices n.

Now, keeping in mind that (ii) has been proved already, we conclude that
it suffices to prove (iii) only in a special case when xn = 1 for all n ∈ N. We
have to estimate the quantity∣∣∣∣

1

y n

− 1

b

∣∣∣∣ =
|yn − b|
|yn| · |b| .

Since the sequence {yn} has a non-zero limit, we can choose N1 ∈ N such
that |yn| ≥ δ(> 0) for all n ≥ N1. Then, given ε > 0, we choose N2 ∈ N such
that ∀n ≥ N2 |yn − b| < ε. Therefore, ∀n ≥ N := max(N1, N2)∣∣∣∣

1

y n

− 1

b

∣∣∣∣ <
ε

δ|b| ,

completing the proof of the theorem. 2

Exercise 4.2.4. Prove:

1. Let a = lim xn, b = lim yn and a < b. Then xn < yn for all sufficiently
large indices n.

2. Let a = lim xn, b = lim yn and xn ≤ yn for all sufficiently large indices n.
Then a ≤ b.

Theorem 4.2.5 (Two policemen, a.k.a. the sandwich). Let

xn ≤ cn ≤ yn , n ∈ N,

and let the sequences {xn} and {yn} converge to the same limit a. Then the
sequence {cn} also converges to a.

Question: Explain, how the theorem got these names.

Proof: Given ε > 0, choose the naturals N1 and N2 such that

∀n ≥ N1 a− ε < xn ,

and

∀n ≥ N2 yn < a + ε .

Then for any n ≥ N := max(N1, N2)

a− ε < cn < a + ε ,

proving the convergence of {cn} to a. 2
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Definition 4.2.6 (monotonic sequence). A sequence {xn} does not decrease
if

x1 ≤ x2 ≤ ... ≤ xn ≤ ... .

A sequence {xn} does not increases if

x1 ≥ x2 ≥ ... ≥ xn ≥ ... .

If the strong inequalities hold, we’ll say correspondingly that the sequence
increases/decreases. In any of these cases, a sequence is called monotonic.

The next result is fundamental:

Theorem 4.2.7. Any upper bounded non-decreasing sequence {xn} converges,
and

lim xn = sup xn .

Proof: Take a := sup xn. According to the definition of the supremum, xn ≤ a
for each n ∈ N, and given ε > 0 there is an N ∈ N such that xN > a− ε. By
monotonicity,

∀n ≥ N xn ≥ xN > a− ε .

Therefore, for all sufficiently large indices n, a − ε < xn ≤ a, proving the
theorem. 2

This result is equivalent to the existence of the supremum of any upper
bounded subset of the reals (and therefore, to all other equivalent forms of
this statement we already know).
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5. Convergent sequences

5.1. Examples.

5.1.1. Fix q > 1 and consider a sequence with terms

xn =
n

qn
.

We shall prove that it converges to zero.
First, check that the sequence eventually (that is, for large enough n) de-

creases. Indeed,
xn+1

xn

=
n + 1

n · q .

If n is sufficiently large, the left hand side is less than one since lim(n+1)/n = 1
and q > 1. That is, for large n, xn+1 < xn.

Therefore, by the theorem from the previous lecture, the sequence {xn}
converges to a non-negative limit a. Let us show that a = 0. We have

a = lim xn+1 = lim

(
n + 1

qn
· xn

)
=

1

q
lim

n + 1

n︸ ︷︷ ︸
=1

lim xn =
a

q
.

Comparing the right and left hand sides, we conclude that a = 0. 2

Corollary 5.1.1. lim n
√

n = 1.

Indeed, taking into account the limit we’ve just computed, given ε > 0 we
can take N so large that ∀n ≥ N

1 < n < (1 + ε)n .

Then
1 <

n
√

n < 1 + ε ,

proving the convergence to one. 2

Exercise 5.1.2. Let M ∈ N, a > 0, and q > 1. Prove that

lim
nM

qn
= 0 and lim

n
√

a = 1 .

5.1.2. For each positive q,

lim
n→∞

qn

n!
= 0 .

We use a similar argument: first show that the sequence xn = qn/n! even-
tually decays:

xn+1

xn

=
qn+1

qn
· n!

(n + 1)!
=

q

n + 1
< 1 ,

if n is sufficiently large. Therefore, the sequence converges to a limit a. We
check that a vanishes:

a = lim xn+1 = lim
q

n + 1
· xn = 0 · a = 0 .

2
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In the following example the sequence is defined recurrently.

5.1.3. Take x0 = 1, xn =
√

2 + xn−1. We show that the sequence {xn}
converges to 2. Less formally,√

2 +

√
2 + ...

√
2 + ... = 2 .

First, using induction by n, we check that the sequence {xn} increases, and
that xn < 2 for all n. The base n = 1 of the induction is evident. Assume that
the claims are verified for n, check that they hold for n + 1. Since xn < 2, we
have xn+1 =

√
2 + xn >

√
x2

n = xn, and xn+1 =
√

2 + xn <
√

4 = 2, proving
the claim for n + 1.

We conclude that {xn} is an increasing upper bounded sequence, so that, it
has a limit which we call a. Then

a2 = lim
n→∞

x2
n+1 = 2 lim

n→∞
xn = 2a ,

so that a = 2. 2

5.1.4.

lim
n→∞

1 · 3 · 5 · ... · (2n− 1)

2 · 4 · 6 ... · 2n = 0 .

This follows from the following chain:
(

1 · 3 · 5 · ... · (2n− 1)

2 · 4 · 6 ... · 2n
)2

=
1 · 3
2 · 2 ·

3 · 5
4 · 4 · ... · (2n− 3)(2n− 1)

(2n− 2)2
· 2n− 1

2n
· 1

2n

<
1

2n
.

so that

(5.1.3)
1 · 3 · 5 · ... · (2n− 1)

2 · 4 · 6 ... · 2n <
1√
2n

,

and the statement follows. 2

It’s worth to mention that the estimate (5.1.3) is not bad. In reality,

lim
n→∞

√
n

1 · 3 · 5 · ... · (2n− 1)

2 · 4 · 6 ... · 2n =
1√
2π

.

This follows from the Wallis formula which, hopefully, you will learn in the
second semester.

5.2. Two theorems. Now we prove two rather useful results. They assert
that if {xn} is a convergent sequence, then sequences of arithmetic and geo-
metric means must converge to the same limit.

Theorem 5.2.1. Let lim xn = a. Then

lim
n→∞

1

n

n∑

k=1

xk = a.
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Proof: Without loss of generality, we assume that a = 0, otherwise we just
replace xn by xn − a. Put M = sup |xn|.3 Given ε > 0, find sufficiently large
N such that |xk| < ε for all k ≥ N . Then

∣∣∣∣∣
1

n

n∑

k=1

xk

∣∣∣∣∣ ≤
1

n

n∑

k=1

|xk| = 1

n

N∑

k=1

|xk|+ 1

n

n∑

k=N+1

|xk| ≤ N ·M
n

+ ε < 2ε ,

provided that n ≥ N ·M
ε

. This proves the theorem. 2

Exercise 5.2.2. Prove or disprove the following statement: If a sequence

1

n

n∑

k=1

xk

converges, then the sequence {xk} converges as well.

Exercise 5.2.3. If a sequence {xn} is such that lim(xn+1 − xn) = c, then

lim
xn

n
= c

as well.

Theorem 5.2.4. Let xn be a positive sequence such that lim xn = a. Then

lim
n→∞

n
√

x1x2 ... xn = a .

Proof: The idea of the proof is the same as in the previous theorem. First
consider the case when the limit a 6= 0. Then without loss of generality, we
assume that a = 1, otherwise we just replace xn by xn/a. Put M = sup |xn|,
and m = inf |xn|. Observe that m > 0 (why?). Given ε > 0, we have 1− ε <
xn < 1 + ε for all sufficiently large n > N . Then

x1 · ... · xn < MN(1 + ε)n−N =
(
M/ε

)N
(1 + ε)n

and

{x1 · ... · xn}1/n < Q1/n(1 + ε)

with Q = (M/ε)N . Since Q1/n → 1 as n → ∞, we can choose N1 (depending
on ε and M) such that, for n > N1, we have Q1/n < 1 + ε. Whence,

{x1 · ... · xn}1/n < (1 + ε)2

for n > max(N, N1). Similarly

{x1 · ... · xn}1/n ≥ (1− ε)2

(check this!). If ε < 1, these two estimates yield

−2ε < (1− ε)2 − 1 ≤ {x1 · x2 · ... · xn}1/n − 1 ≤ (1 + ε)2 − 1 < 3ε ,

completing the proof.
The case a = 0 is similar, and we leave it as an exercise. 2

3More formally, M = sup{|xn| : n ∈ N}.
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Corollary 5.2.5. Let tn > 0 and

lim
n→∞

tn+1

tn
= c.

Then lim{tn}1/n = c as well.

Proof: we reduce this statement to Theorem 5.2.4. Put

x1 := t1, xn =
tn

tn−1

.

Then tn = x1 · x2 · ... · xn and the statement follows from Theorem 5.2.4. 2

5.3. More examples.

5.3.1. Take in the previous corollary tn =
(
2n
n

)
(the binomial coefficient “choose

n from 2n”). The corollary is applicable since

tn+1

tn
=

(2n + 2)!

( (n + 1)!)2
· (n!)2

(2n)!
=

(2n + 1)(2n + 2)

(n + 1)2
,

tends to 4 when t →∞. We obtain

lim
n→∞

n

√(
2n

n

)
= 4 .

Exercise 5.3.1. For a (fixed) natural k, find

lim
n→∞

n

√(
kn

n

)
.

The next two limits are quite famous.

5.3.2. Let x0 > 0 and

xn+1 :=
1

2

(
xn +

a

xn

)
, a > 0 .

Then the sequence {xn} converges to
√

a.

This is an iterative Newton method of finding square roots.
If we know that the sequence {xn} is convergent, then it is quite easy to guess

that the limit is
√

a. Indeed, denote the limit c. Then using the recurrence
from the definition of {xn}, we get an equation

c =
1

2

(
c +

a

c

)
.

That is, c2 = a and c =
√

a.
This argument is not accurate since we have not checked that c > 0. Any-

way, below we will give a rigorous proof that xn converges to a.

Proof: in order to simplify recursion, let us replace xn by

ξn :=
xn −

√
a√

a
.
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Then xn =
√

a(1+ξn). Let us find a recursion for ξn: substituting the previous
formula into recursion for xn, we get

√
a(1 + ξn+1) =

1

2

(√
a(1 + ξn) +

a√
a(1 + ξn)

)
.

Whence (after some simplifications)

ξn+1 =
ξ2
n

2(1 + ξn)
.

Next, observe that ξn are positive for any n ∈ N. Indeed, 1 + ξ0 = x0√
a

> 0,

so that ξ1 > 0. Then ξ2 > 0 etc. Therefore,

ξn+1 <
ξ2
n

2ξn

=
ξn

2
< ... <

ξ1

2n
.

That is, ξn converges to zero and xn converges to
√

a. 2

The proof above also gives a convergence of the Newton algorithm with the
rate of geometric progression:

|xn −
√

a| < Const

2n
.

In fact, the convergence even faster. This explain a remarkable efficiency of
Newton’s method.

Exercise 5.3.2. Try to give a better estimate of |xn −
√

a|. Using Newton
method (and calculator, if needed) find

√
111 with error of order 10−6. How

many iterations were you needed for that?

5.3.3. The sequence

xn :=

(
1 +

1

n

)n

converges to a limit. To prove this, we define another sequence

yn :=

(
1 +

1

n

)n+1

.

We’ll show that the sequence {yn} decays. Then since it is lower bounded
(yn > 1) it is convergent. Since

xn = yn · n

n + 1

and the second factor on the right hand side converges to one, xn converges
to the same limit as yn.



27

To check that {yn} decays, we use Bernoulli’s inequality. We have

yn−1

yn

=

(
1 + 1

n−1

)n

(
1 + 1

n

)n+1 =
n2n+1

(n− 1)n(n + 1)n+1

=
n2n

(n2 − 1)n
· n

n + 1
=

(
1 +

1

n2 − 1

)n

· n

n + 1

≥
(

1 +
n

n2 − 1

)
· n

n + 1
>

(
1 +

1

n

)
· n

n + 1
= 1 ,

completing the argument. 2

The limit of this sequence is denoted by e. This is one of the most important
constants. It’s easy to see that 2 ≤ e < 3. Indeed, by Bernoulli’s inequality

xn =

(
1 +

1

n

)n

≥ 1 + n
1

n
= 2 .

To get the upper bound, note that

y5 =

(
1 +

1

5

)6

=

(
6

5

)6

=
46656

15625
< 3 .

Since the sequence yn decays, its limit is less than 3. The approximate value
is e ≈ 2.18281828459... . Later, we’ll find another representation for this con-
stant:

e = lim
n→∞

(
1 +

1

1!
+

1

2!
+ ... +

1

n!

)

which is more convenient for numerical computation of e. We will also prove
that e is an irrational number.
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6. Cauchy’s sequences. Upper and lower limits.
Extended convergence

In this lecture, we continue our study of convergent sequences.

6.1. Cauchy’s sequences. Suppose, we need to check that some sequence
converges but we have no clue about its limiting value. The definition of the
limit will not help us too much: it is not an easy task to verify it without
a priori knowledge about the limit. It would be useful to have an equivalent
definition of convergence which does not mention the limiting value at all.

Definition 6.1.1 (Cauchy’s sequence). A sequence {xn} is called Cauchy’s
sequence, if

∀ε > 0 ∃N ∈ N such that ∀m,n ≥ N |xn − xm| < ε . (C)

Theorem 6.1.2 (Cauchy). A sequence {xn} is convergent if and only if it is
Cauchy’s sequence.

Proof: In one direction the result is clear: if the sequence {xn} converges to
a limit a, then according to the definition of the limit,

∀ε > 0 ∃N ∈ N such that ∀m,n ≥ N

|xn − a| < ε , |xm − a| < ε ,

and therefore
|xn − xm| = |(xn − a) + (a− xm)| < 2ε ,

proving that {xn} is Cauchy’s sequence.
In the other direction, first, let us observe that the sequence {xn} is bounded:

choose N ∈ N such that

xN − 1 < xm < xN + 1

for all m ≥ N . Then the bound for |xn| is

sup
n
|xn| ≤ max{|x1|, |x2|, ..., |xN−1|, |xN |+ 1} .

Now, introduce the sequences

xn = inf
m≥n

xm , xn = sup
m≥n

xm .

The values xn, and xn are finite since the sequence {xn} is bounded. Compare
xn with xn+1: in the definition of xn+1 we take an infimum over a smaller set,
therefore, xn+1 ≥ xn. Similarly, xn+1 ≤ xn. Besides, we always have xn ≤ xn.
Summarizing,

... ≤ xn ≤ xn+1 ≤ ... ≤ x̄n+1 ≤ x̄n ≤ ... ,

and we get a sequence of closed nested intervals [xn, x̄n]. By Cantor’s lemma,
the intersection of these intervals is not empty, so we choose

c ∈
⋂
n≥1

[xn, xn]
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as a candidate for lim xn. We claim that the sequence {xn} converges to c.
Note that the values c and xn both belong to the interval [xn, xn]. Hence

|c− xn| ≤ xn − xn .

In order to estimate the difference on the left hand side, fix ε > 0 and choose
N ∈ N according to (C). Let n ≥ N . Then for some m ≥ n

xn (= sup
k≥n

xk) ≤ xm + ε ≤ xn + 2ε,

and similarly

xn ≥ xn − 2ε .

Hence xn − xn ≤ (xn + 2ε)− (xn − 2ε) = 4ε, and |c− xn| ≤ 4ε completing the
proof. 2

Example 6.1.3. Consider the sequence

Sn = 1 +
1

2
+

1

3
+ ... +

1

n
+ ... .

Then

S2n − Sn =
1

n + 1
+

1

n + 2
+ ... +

1

2n
> n · 1

2n
=

1

2
.

Hence the sequence {Sn} is not Cauchy’s sequence and therefore is divergent.
Of course, one can check divergence of this sequence without appeal to the

Cauchy criterion. The property S2n−Sn ≥ 1
2

we’ve established shows that the
sequence Sn is unbounded.

6.2. Upper and lower limits. In the proof of the Cauchy theorem, for a
given sequence {xn}, we defined two sequences {xn} and {xn}. Sometimes,
they are called the lower and upper envelopes of the sequence {xn}. If the
sequence {xn} was not upper bounded, then its upper envelope is identically
+∞, if the sequence is not lower bounded, then its lower envelope is identically
−∞.

Note that if the sequence {xn} does not decrease, then xn = xn, and if the
sequence {xn} does not increase, then xn = xn.

Example 6.2.1.

(i) If xn = 1
n
, then xn = 1

n
while xn = 0.

(ii) If xn = (−1)n, then xn = −1 while xn = 1.

(iii) If xn = (−1)n

n
, then

{xn} = {−1,−1

3
,−1

3
,−1

5
,−1

5
, ... }, {xn} = {1

2
,
1

2
,
1

4
,
1

4
,
1

6
,
1

6
, ... } .

In the course of the proof of Cauchy’s theorem, we observed that

(i) the sequence xn does not decrease;
(ii) the sequence xn does not increase;
(iii) ∀m, n xn ≤ xm
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In the case when the sequence {xn} is not bounded this requires an obvious
agreement about inequalities which involve the symbols ±∞.

In particular, we see that the both envelopes are monotonic sequences, and
therefore they converge when they are bounded. Now, we look more carefully
at their limits.

Definition 6.2.2 (limsup, liminf). If the sequence {xn} is bounded, then its
upper limit (or limit superior) is

lim sup
n→∞

xn := lim
n→∞

xn = lim
n→∞

sup
m≥n

xm .

If the sequence {xn} is not upper bounded, we say that its upper limit equals
+∞.

If the sequence {xn} is lower bounded, then its lower limit is

lim inf
n→∞

xn := lim
n→∞

xn = lim
n→∞

inf
m≥n

xm .

If the sequence {xn} is not lower bounded, we say that its lower limit equals
−∞.

We see that always lim inf xn ≤ lim sup xn.
Deciphering the definition of the upper limit, we see that lim sup xn = L if

and only if the following two conditions are fulfilled:

(a) ∀ε > 0 ∃N ∈ N such that ∀n ≥ N xn < L + ε;
(b) ∀ε > 0 ∀N ∈ N ∃n > N such that xn > L− ε.

Indeed, condition (a) says that ∀n ≥ N xn < L + ε; i.e., that lim xn ≤ L,
while condition (b) says that ∀n ≥ N xn ≥ L; i.e., that lim xn ≥ L.

Exercise 6.2.3. Formulate and prove the similar criterium for lim inf xn.

Theorem 6.2.4. A sequence {xn} converges to the limit a if and only if

lim inf xn = lim sup xn = a . (L)

In other words, the sequence {xn} converges to the limit a if and only if the
envelopes {xn} and {xn} converge to the same limit a.

Proof: In one direction, since xn ≤ xn ≤ xn, then (L) combined with the two
policemen theorem give us convergence of {xn}.

In the other direction, if {xn} converges to the limit a, then we fix ε > 0
and choose N ∈ N such that ∀m ≥ N we have |xm − a| < ε. If n ≥ N , then
for some m ≥ n we have

a− ε < xn ≤ xn ≤ xm + ε < a + 2ε ,

therefore lim sup xn = lim xn = a, and similarly lim inf xn = a proving (L). 2

Note that we use more or less the same argument as in the proof of Cauchy’s
theorem.
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Exercise 6.2.5. Check that

lim sup(−xn) = − lim inf xn ;

and if 0 < a ≤ xn ≤ b < ∞,

lim sup 1/xn = 1/ lim inf xn .

Prove the inequalities

lim sup(xn + yn) ≤ lim sup xn + lim sup yn ,

lim sup(xn · yn) ≤ lim sup xn · lim sup yn ,

(in the second inequality, we assume that xn, yn > 0). Show that, if one of
the sequences {xn} or {yn} converges, then there is an equality sign in these
inequalities.

Exercise 6.2.6. Let 0 < a ≤ xn ≤ b < +∞. Show that

lim sup xn · lim sup
1

xn

≥ 1 .

Show that the equality sign is attained there if and only if the sequence {xn}
is convergent.

Exercise 6.2.7. Let an be positive numbers such that

An =
n∑

k=1

ak →∞, n →∞ .

For any sequence {tn} set

t̃n =
1

An

n∑

k=1

aktk .

Then
lim inf tn ≤ lim inf t̃n ≤ lim sup t̃n ≤ lim sup tn .

In particular, if tn → L, then t̃n → L. This extends Theorem 5.2.1 which
corresponds to the case an = 1.

6.3. Convergence in wide sense.

Definition 6.3.1 (convergence to ∞). The sequence xn converges to ∞, if

∀M < ∞ ∃N ∈ N such that ∀n ≥ N |xn| ≥ M .

Of course, this just means that the sequence {1/xn} converges to zero and
nothing else.

Definition 6.3.2 (convergence to ±∞). The sequence {xn} converges to +∞
if

∀M < ∞ ∃N ∈ N such that ∀n ≥ N xn ≥ M ,

and that a sequence {xn} converges to −∞ if

∀M > −∞ ∃N ∈ N such that ∀n ≥ N xn ≤ M ,



32

Exercise 6.3.3. Give 3 examples of sequences {xn} satisfying each of the
following properties:

(i) {xn} converges to +∞;
(ii) {xn} converges to −∞;
(iii) {xn} converges to ∞ but converges neither to +∞ nor to −∞;
(iv) {xn} is divergent in the wide sense.

(There should be 12 examples all together.)

Exercise 6.3.4. Extend Theorem 6.2.4 to the wide convergence.

Exercise 6.3.5 (Stoltz’ lemma). Suppose the sequence {yn} increases and
lim yn = +∞. If there exists the limit

lim
xn+1 − xn

yn+1 − yn

= L ,

then
lim

xn

yn

= L .

Here, L is a real number or ±∞.

Hint: use Exercise 6.2.7 with

ak = yk − yk−1, tk =
xk − xk−1

yk − yk−1

(for convenience, we set x0 = y0 = 0).

Exercise 6.3.6. Show that for each p ∈ N,

lim
n→∞

1

np+1

n∑

k=1

kp =
1

p + 1
.

Hint: use Stoltz’ lemma.

Exercise* 6.3.7. Let xn ≤ 1
2
(xn−1 + xn−2). Show that the sequence {xn} is

convergent (either to a finite number or to −∞.
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7. Subsequences and partial limits.

7.1. Subsequences. Let {xn} be a sequence, we want to define its subse-
quence. In plain words, we write down the sequence {xn} as a string, and then
drop out some elements from this string taking care that an infinite number
of elements remain. What remains is called a subsequence. More formally, we
take an increasing sequence {nk} of natural numbers (n1 < n2 <...< nk <...)
and form a new function k 7→ xnk

defined on N.

Exercise 7.1.1. Prove that any sequence contains a monotonic subsequence.

Exercise 7.1.2. Show that a monotonic sequence converges if it contains a
convergent subsequence.

Our first result is a version of the Bolzano-Weierstrass lemma 3.3.3.

Lemma 7.1.3 (Bolzano-Weierstrass). Each bounded sequence has a conver-
gent subsequence.

Proof: Let E be the set of all values attended by the sequence {xn}. Consider
two cases:
(a) The set E is finite. The we can choose an infinite number of elements in
our sequence which have the same value:

xn1 = xn2 = ... = xnk
= ... = x ∈ E , n1 < n2 < ... < nk < ... .

We get a subsequence {xnk
} converging to x.

(b) Now, assume that the set E is infinite. According to the Bolzano-Weierstrass
lemma about accumulation points, E has an accumulation point x. Choose
n1 ∈ N such that |xn1 − x| < 1. Then choose n2 > n1 such that |xn2 − x| < 1

2
,

etc. At the k-th step, choose nk > nk−1 such that |xnk
− x| < 1

k
. Clearly, the

subsequence {xnk
} converges to x. 2

Another proof of this lemma follows from the first exercise above combined
with a theorem about convergence of monotonic bounded sequences we proved
earlier.

It is not difficult to formulate and to prove a version of this lemma for the
extended convergence:

Lemma 7.1.4 (Bolzano-Weierstrass for extended convergence). Each sequence
has a subsequence convergent in the wide sense.

Exercise 7.1.5. Prove this lemma.

7.2. Partial limits. If a subsequence {xnk
} is convergent, then its limit is

called a partial limit of {xn}. It’s not difficult to verify that if the original
sequence {xn} converges to the limit a, then any of its subsequences also
converges to a. Define the limit set PL({xn}) of all partial limits of the
sequence {xn}.
Theorem 7.2.1. Let {xn} be a bounded sequence. Then

lim sup xn = max
{
c : c ∈ PL({xn})

}
,
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and

lim inf xn = min
{
c : c ∈ PL({xn})

}
.

Proof: We’ll prove only the first of these two relations, the proof of the second
one is similar. In fact, we have to prove two statements: (α) any partial limit
of {xn} does not exceed lim sup xn and (β) lim sup xn ∈ PL({xn}).

Let us recall what we already know about the value L = lim sup xn:

(a) ∀ε > 0 ∃N ∈ N such that ∀n ≥ N xn < L + ε;
(b) ∀ε > 0 ∀N ∈ N ∃n > N such that xn > L− ε.

A minute reflection shows that (α) follows from (a) and then (β) follows
from (a) and (b) (check this formally!) completing the proof. 2

In the previous lecture we proved that the sequence {xn} converges to a
limit a if and only if

lim inf xn = lim sup xn = a .

Combining this with the theorem above, we obtain

Corollary 7.2.2. A sequence {xn} converges if and only if the set of its limit
set is a singleton: PL({xn}) = {a}. In this case, a = lim xn.

Exercise 7.2.3. Find lim sup xn, lim inf xn, sup xn, inf xn, and the set PL({xn})
of all partial limits for the sequences

xn = cosn nπ

4
and xn = n(−1)nn.

Exercise 7.2.4. Construct a sequence whose set of partial limits coincides
with the closed interval [0, 1].

Exercise 7.2.5. (a) Show that there is no sequence {xn} with PL({xn}) =
(0, 1).

(b) Show that there is no sequence {xn} with PL({xn}) = {1, 1
2
, ..., 1

n
, ...}.

(c) Show that any accumulation point of the set PL({xn}) must belong to
PL({xn}) as well.

Exercise 7.2.6. Suppose the subsequences {x2n} and {x2n+1} converge to the
same limit. Show that the sequence {xn} converge.

Exercise 7.2.7. Let {xn} be a sequence such that ∀n ≥ 1 |xn+1 − xn| ≤ 1
2n .

Can this sequence be unbounded? Can this sequence be divergent? The same
questions for |xn+1 − xn| ≤ 1

n
.

Problem 7.2.8. Let {xn} be a bounded sequence such that

lim(xn − xn−1) = 0.

Show that the set PL({xn} coincides with the (closed) interval

[lim inf xn, lim sup xn].
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Problem* 7.2.9 (Fekete’s lemma). Let a sequence {xn} satisfy 0 ≤ xm+n ≤
xm + xn, ∀m,n ∈ N (such sequences are called subadditive). Show that there
exists the limit

lim
n→∞

xn

n
= inf

n≥1

xn

n
.

7.2.1. Appendix: The continued fraction of the golden mean and the Fibonacci
numbers. Let

xn+1 = 1 +
1
xn

, x0 = 1 .

We shall show that limxn =
√

5+1
2 . (This number is called the golden mean.) In

other words,

1 +
1

1 + 1
1+ 1

1+ ....

=
√

5 + 1
2

.

The expression on the left hand side is an example of a continued fraction.
First, let us write down several the beginning of the sequence {xn}:

x0 =
1
1
, x1 = 1 +

1
1

=
2
1
, x2 = 1 +

1
2

=
3
2
, x3 = 1 +

2
3

=
5
3
,

x4 = 1 +
3
5

=
8
5
, x5 = 1 +

5
8

=
13
8

, x6 = 1 +
8
13

=
21
13

, ... .

Let xn = pn

qn
, pn and qn are mutually prime natural numbers. Then by induction

pn = pn−1 + pn−2, p0 = 1, p1 = 2,

qn = qn−1 + qn−2, q0 = q1 = 1.

We see that pn and qn are famous Fibonacci numbers. We conclude from these
formulas that

qnpn−1−qn−1pn = −(qn−1pn−2−qn−2pn−1) = ... = (−1)n(q1p0−q0p1) = (−1)n (A)

and that
qnpn−2 − qn−2pn = qn−1pn−2 − qn−2pn−1 = (−1)n−1 . (B)

From (A) we get

xn−1 − xn =
(−1)n

qnqn−1
, (C)

from (B) we get

xn−2 − xn =
(−1)n−1

qnqn−2
. (D)

Looking at (D), we conclude by induction that the subsequence {x2n} increases
(and is < 2), while the subsequence {x2n+1} decreases (and is > 1). Therefore, the
both subsequences converges. Further, the increasing sequence of natural numbers
{qn} tends to +∞, so looking at (C), we conclude that the subsequences {x2n} and
{x2n+1} have the same limit α. From the initial recursion we see that α is a positive
solution to the equation α = 1 + 1

α , that is α = 1+
√

5
2 .

Problem 7.2.10. Show that

1 +
1

2 + 1
2+ 1

2+ ....

=
√

2 .
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If you want to learn more about fascinated continued fractions, read section 1.6
of the book by Hairer and Wanner mentioned in the introduction.
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8. Infinite series

8.1. Let {aj} be a sequence of real numbers, the sum an + an+1 + ... + am is
denoted by

m∑
j=n

aj =
∑

n≤j≤m

aj =
m∑
n

aj .

Our goal is to prescribe a meaning for the sum of all terms of the sequence
{aj}; i.e. to the expression

∞∑
j=1

aj = a1 + a2 + ... + an + ... (∗)

called (an infinite) series. Numbers aj are called the terms.
Define a sequence of partial sums Sn =

∑n
j=1 aj.

Definition 8.1.1. The series
∑∞

1 aj is called convergent if the sequence Sn

of partial sums converges. In this case, the limiting value S = lim Sn is called
the sum of the series:

∑∞
1 aj = S.

Dealing with series, usually it is not very difficult to check convergence or
divergence, to find the value of the sum is a much more delicate problem which
we almost will not touch here. We start with several simple observations and
examples.

1. Convergence or divergence of the series depends on its tail only; i.e. if
two series have the same terms aj for j ≥ j0 then they converge or diverge
simultaneously.

2. If the series (∗) converges, then lim an = 0. Indeed, an = Sn+1 − Sn and
therefore

lim an = lim(Sn+1 − Sn) = lim Sn+1 − lim Sn = S − S = 0 .

8.2. Examples.

8.2.1. Geometric series. Let aj = qj−1. Then

Sn =
1− qn

1− q
,

and if |q| < 1 the series converges to 1
1−q

. In the case |q| ≥ 1 the series is

divergent.

8.2.2. Harmonic series. Let aj = 1
j
. Then, as we know, lim Sn = +∞ and

therefore the series is divergent. Later in this course, we will show that there
exists the limit

lim
n→∞

(Sn − log n) = γ ,

called the Euler constant.

8.2.3. Let aj = (−1)j. Then Sn = 0 if n is even, and Sn = 1 if n is odd.
Therefore, the series diverges.
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8.2.4. Let

aj =
1

(α + j)(α + j + 1)
.

Observe that

aj =
1

α + j
− 1

α + j + 1
,

so that

Sn =
n∑

j=1

[
1

α + j
− 1

α + j + 1

]
=

1

α + 1
− 1

α + n + 1

(such sums with cancelation of all intermediate terms are called sometimes
telescopic). We see that the series converges to the value 1

α+1
= lim Sn.

8.2.5. Let

aj =
(−1)j−1

j
.

In this case, we consider separately partial sums with even and odd indices.
We have

S2n =

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ ... +

(
1

2n− 1
− 1

2n

)
.

Therefore, the sequence S2n increases. It is bounded from above by 1:

S2n = 1−
(

1

2
− 1

3

)
−

(
1

4
− 1

5

)
− .... < 1 .

Hence, {S2n} converges to the limit S. Further the sequence {S2n+1} converges
to the same limit:

lim S2n+1 = lim

(
S2n +

(−1)2n

2n + 1

)
= lim S2n = S .

Therefore, the whole sequence Sn converges. As we have seen S2n ↑ S, it is
not difficult to see that S2n+1 ↓ S (check this!).

The sum of this series is S = log 2, we’ll be able to explain this later.

Exercise 8.2.1 (Leibniz). Consider the series
∑

(−1)kak with ak ↓ 0. Prove
that the series converges to a value S and that the error of the n-th partial

sum Sn =
n∑

k=1

(−1)kak does not exceed the first neglected term:

|S − Sn| ≤ an+1 .

Hint: repeat the argument from Example 8.2.5.
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A warning. Many operations we used to do with finite sums generally speaking
are illegal with infinite convergent sums. Let us return to Example 8.2.5. We
have

2S =
2

1
− 2

2
+

2

3
− 2

4
+

2

5
− 2

6
+

2

7
... =

2

1
− 1

1
+

2

3
− 1

2
+

2

5
− 1

3
+

2

7
− 1

4
+ ... .

Consider separately the terms with even and odd denominators. The terms
with even denominators are negative:

−1

2
, −1

4
, −1

5
, ... .

There are two terms with any odd denominator, one term is positive, another
one is negative, and the difference is positive:

2

1
− 1

1
=

1

1
,

2

3
− 1

3
=

1

3
,

2

5
− 1

5
=

1

5
, ... .

Collecting the terms together in such a way that the denominators increase,
we get

2S =
1

1
− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ .... = S .

Therefore, S = 0. On the other hand, this is definitely impossible, since the
sequence S2n increases to S, and S2 = 1

2
, so that S > 1

2
. Find what was illegal

in our actions.

Exercise* 8.2.2 (Riemann). Given s ∈ R, there is a rearrangement of the
sequence

{
(−1)k/k

}
such that the corresponding series converges to the value

s.
The same holds for any Leibniz series

∑
(−1)kak with ak ↓ 0 and

∑
ak =

+∞.

8.3. Some results. There are two common tools to investigate convergence
of series. The theorem on convergence of upper bounded increasing sequences
immediately gives us

Theorem 8.3.1. The series with positive terms converges if and only if the
sequence of its partial sums is upper bounded.

The Cauchy’s criterion for convergence of sequences immediately gives us

Theorem 8.3.2 (Cauchy’s criterion for the series convergence). The series
(∗) converges if and only if ∀ε > 0 ∃N ∈ N such that ∀m ≥ n ≥ N

|an + an+1 + ... + am| < ε .

Now, we turn to the applications of these criteria.

Corollary 8.3.3. Let 0 < aj ≤ bj, j ≥ j0. If the series
∑

bj converges, then
the series

∑
aj also converges. If the series

∑
aj diverges, then the series∑

bj also diverges.

This follows from Theorem 1. Sometimes, another form of the same result
is useful:
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Corollary 8.3.4. If aj and bj are positive and

0 < lim inf
aj

bj

≤ lim sup
aj

bj

< ∞ ,

then the series
∑

aj and
∑

bj converge or diverge simultaneously.

Usually, in applications of this corollary there exists the limit

lim
j→∞

aj

bj

= L ,

and we need only to check that 0 < L < +∞.

Example 8.3.5. The series
∞∑

j=1

1

j2

converges. This we see by comparison with the convergent series

∞∑
j=1

1

j(j + 1)
.

In this case, the quotient of the terms tends to 1.

Example 8.3.6. The series
∞∑

j=1

√
j + 1

j3/2

diverges. This we see by comparison with the divergent harmonic series∑∞
j=1

1
j
.

8.4. Absolutely convergent series.

Definition 8.4.1 (absolute convergence). The series
∑

aj is called absolutely
convergent if the series

∑ |aj| converges.

Claim 8.4.2. If the series converges absolutely, then it converges in the usual
sense.

This follows at once from the Cauchy criterion. In the opposite direction

the result is wrong: the series
∑ (−1)j

j
converges but not absolutely.

In what follows we consider only series with positive terms aj. The sim-
plest was to check the convergence of such series is to compare them with the
geometric series.

Claim 8.4.3 (Cauchy’s root test). Set

α := lim sup a
1/j
j .

If α < 1, then the series
∑

aj converges. If α > 1, then the series diverges.
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Proof: Let α < 1. Choose α′: α < α′ < 1. Then according to the definition of
the upper limit, aj < α′j, j ≥ j0, and by Corollary 8.3.3 the series converges.

If α > 1, then choose α′ such that 1 < α′ < α, and by the definition of
lim sup we see that there are arbitrary large indices j such that aj ≥ α′j > 1.
Therefore, the sequence aj does not tend to zero4, and the series

∑
aj diverges.

2

Exercise 8.4.4 (D’Alembert’s “ratio test”). Suppose aj > 0 and there exists
the limit

β = lim
j→∞

aj+1

aj

.

If β < 1, then the series converges, if β > 1, the series diverges.

Hint: use Corollary 5.2.5.

Example 8.4.5. The series ∑
j≥2

1

(log j)j

converges by application of the Cauchy test.

Example 8.4.6. The series
∑
j≥1

xj

j!

(absolutely) converges for any real x by application of the d’Alambert test.

Example 8.4.7. The series
∑
j≥1

xj

js

converges for x < 1 and diverges for x > 1. This can be obtain easily by
application of any of the two tests, and the answer does not depend on the
choice of real s. In the remaining case x = 1 the answer depends on s. As we
already know, the series diverges for s = 1 and therefore for all s ≤ 1. A bit
later, we’ll see that the series converges for all s > 1.

The both tests do not lead to any conclusion in the “boundary” case when
α or β equal 1. In this case, the following theorem is very useful:

Theorem 8.4.8 (Cauchy’s compression). Let aj be a non-increasing sequence
of positive numbers. Then the series

∑
j≥1 aj converges and diverges simulta-

neously with the series
∑

k≥0 2ka2k .

Proof: Let sn be a partial sum
∑n

j=1 aj, let Ak = 2ka2k , and let Sn be a

partial sum Sn =
∑n

k=0 Ak. Since the terms aj do not increase, for each k ≥ 0
we have

1

2
Ak+1 = 2ka2k+1 ≤ a2k+1 + a2k+2 + ... + a2k+1 ≤ 2ka2k = Ak .

4Moreover, lim sup aj = +∞.



42

Summing up these inequalities from k = 0 till k = n, we get

1

2
Sn+1 ≤ s2n+1 ≤ Sn .

This means that the increasing sequence of partial sums {sn} is bounded from
above if and only if the increasing sequence of partial sums {Sn} is bounded
from above. Therefore, the sequences sn and Sn converge and diverge simul-
taneously. 2

The theorem is useful since the new series
∑

k≥1 2ka2k usually has “better
convergence” than the original one.

Example 8.4.9. The series ∑
n≥1

1

ns

converges if and only if s > 1. Indeed, in this case the new series from Cauchy’s
theorem is ∞∑

k=1

2k 1

2ks
=

∞∑

k=1

2k(1−s) .

If s > 1, we get a convergent geometric series, if s ≤ 1 the terms do not tend
to zero and the series diverges.

Exercise 8.4.10. Check convergence or divergence of the series
∑

n≥1 an when

an = 2nn!n−n, an = 3nn!n−n, an =
1

log n!
(n ≥ 2),

an = nne−n1.001

, an =
nlog n

(log n)n
, an =

(n!)2

(2n)!
,

an =
(√

n + 1−√n− 1
)α

, an =

√
n + 1−√n− 1

nα
(α ∈ R),

an =
1

n loga n
, an =

1

n loga n log logb n
(a, b ∈ R)

Exercise 8.4.11. Suppose that an ↓ 0, and
∑

an = +∞. Prove that∑
min(an, 1/n) = +∞ .

Hint: Use Cauchy’s compression.

There are many interesting problems about the infinite series with positive
terms. For instance,

Problem 8.4.12. Let an ≥ 0 and the series
∑

an diverges.

(i) Show that the series
∑ an

1 + an

also diverges.

(ii*) Let Sn = a1 + ... + an. Show that

(a)
∑
n≥1

an

Sn

= +∞; (b)
∑
n≥1

an

S1+ε
n

< ∞ for each ε > 0 .
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9. Limits of functions. Basic properties

9.1. Cauchy’s definition of limit. Denote by U∗
δ (a) = {x : 0 < |x−a| < δ}

the punctured δ-neighbourhood of a.

Definition 9.1.1 (the limit according to Cauchy). Let f : E → R be a
function defined on a set E ⊂ R, and let a be an accumulation point of E. We
say that f has a limit L when x tends to a along E: lim

E3x→a
f(x) = L, if

∀ε > 0 ∃δ > 0 such that ∀x ∈ U∗
δ (a)

⋂
E |f(x)− L| < ε .

Usually, we deal with the case when the set E contains some punctured
neighbourhood of a. Then we just say that f has a limit L at the point a:
lim
x→a

f(x) = L, or f(x) → L for x → a.

a

L

2δ

2ε

Figure 7. To the definition of the limit

Remarks:

i. Existence of the limit and its value do not depend on the value of the
function f(x) at the point x = a, moreover, the function f does not need to
be defined at a at all. For example, the function f : R \ {0} → R defined
by f(x) = 2x + 1, has the limit lim

x→0
f(x) = 1. If we consider the function

f1(x) : R → R which equals f(x) for x 6= 0 and equals C at the origin, then
its limit at the origin is the same for any C:

lim
x→0

f1(x) = lim
x→0

f(x) = 1 .

ii. If E1 ⊂ E, a is an accumulation of E1 (and therefore of E) and the limit
lim

E3x→a
f(x) exists, then the limit of f along E1 also exists and has the same

value.

Example 9.1.2.

lim
x→0

x sin
1

x
= 0 .

More generally,
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Claim 9.1.3. If lim
x→a

f(x) = 0, and a function g is bounded in a punctured

neighbourhood U∗(a) of a, then lim
x→a

f(x)g(x) = 0.

Proof: Indeed, set M = sup{|g(x)| : x ∈ U∗(a)} , fix ε > 0 and choose δ > 0
such that

|f(x)| < ε

M
for x ∈ U∗

δ (a) .

We may always assume that U∗
δ (a) ⊂ U∗(a), otherwise we make δ smaller.

Then

|f(x)g(x)| < ε

M
·M = ε , x ∈ U∗

δ (a) ,

and we are done. 2

In the example above, f(x) = x and g(x) = sin 1
x
.

Agreement. If E = (a, b) (b > a), then we use notations

lim
x↓a

f(x) = lim
x→a+0

f(x)
def
= lim

E3x→a
f(x)

(this is called the limit from above, or the right limit). If E = (b, a) (b < a),
then we write

lim
x↑a

f(x) = lim
x→a−0

f(x)
def
= lim

E3x→a
f(x)

(this is called the limit from below, or the left limit).

Example 9.1.4. f(x) = sgn(x). In this case the limit at the origin does not
exist, however

lim
x↑0

sgn(x) = −1, lim
x↓0

sgn(x) = +1 .

Exercise 9.1.5. Suppose that the limits from above and from below exist and
are equal. Then the usual limit exists as well and has the same value.

Example 9.1.6. Let m and n be positive integers. Then

lim
x→1

xm − 1

xn − 1
= lim

x→1

1 + x + ... + xm−1

1 + x + ... + xn−1
=

m

n
.

As a corollary, we obtain the value for another limit:

lim
x→1

x1/m − 1

x1/n − 1
=

n

m
.

Indeed, we introduce a new variable x = tmn, then t → 1 for x → 1 (why?),
and

lim
x→1

x1/m − 1

x1/n − 1
= lim

t→1

tn − 1

tm − 1
=

n

m
.
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9.2. Heine’s definition of limit. The next theorem shows the limit of func-
tions can be defined using only the notion of limits of sequences.

Theorem 9.2.1. The following two conditions are equivalent:

(A) lim
E3x→a

f(x) = L ,

and

(B) for any sequence {xn} ⊂ E\{a} 5 convergent to a, the sequence {f(xn)}
converges to L.

Proof: Implication (A) ⇒ (B) follows by straightforward inspection. We
shall prove that (B) implies (A). Assume that (B) holds but (A) fails, that is

∃ε > 0 ∀δ > 0 ∃x ∈ U∗
δ (a) |f(xn)− L| ≥ ε .

Choosing here δ = 1
n

we get

∀n ∈ N ∃xn such that 0 < |xn − a| < 1

n
and |f(x)− L| ≥ ε .

We see that f(xn) does not converge to L and therefore we arrived at the
contradiction. 2

Remark 9.2.2. In the theorem, we can replace (B) by a seemingly weaker
condition

(B’) for any sequence {xn} ⊂ E \ {a} convergent to a the sequence {f(xn)}
converges.

This already yields (B): assume that (B) fails but (B’) holds, i.e., there are
two sequences {x′n}, {x′′n} ⊂ E \ {a}, both are convergent to a, such that
lim f(x′n) = L′ and lim f(x′′n) = L′′, where L′ 6= L′′. Take xn = x′m for n = 2m
and xn = x′′m for n = 2m + 1. Then xn → a but the sequence f(xn) has two
limit points L′ and L′′, and therefore it does not converge. We arrive at the
contradiction which proves (B).

Example 9.2.3. Consider the Dirichlet function D : R → R which equals 0
at irrational x and 1 at rational x. Then D does not have a limit at any real
point a. Indeed, take two sequences {xn} ⊂ Q and {yn} ⊂ R \ Q converging
to a. Then D(xn) = 1 for all n, hence limD(xn) = 1. Similarly, limD(yn) = 0.

Exercise 9.2.4. Show that

D(x) = lim
m→∞

lim
n→∞

cos2n (2πxm!) .

Theorem 9.2.1 will allow us to transfer all the properties of the limit of
sequences we’ve already known to the limits of functions.

Corollary 9.2.5 (Cauchy’s criterion). The limit lim
E3x→a

f(x) exists if and only

if
∀ε > 0 ∃δ > 0 such that |f(x′)− f(x′′)| < ε , (C)

provided x′, x′′ ∈ E and 0 < |x′ − a| < δ, 0 < |x′′ − a| < δ.

5more accurately, x : N→ E \ {a} or {xn : n ∈ N} ⊂ E \ {a}
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Here is a logic of the proof:

∃ lim
E3x→a

f(x) ⇒ (C)

⇒ ∀{xn} ⊂ E \ {a} convergent to a, {f(xn)} is Cauchy′s sequence

⇒ (B′) ⇒ ∃ lim
E3x→a

f(x) .

We leave the rest as an exercise.

Exercise 9.2.6. Prove that lim
x→0

sin
1

x
does not exist.

9.3. The first remarkable limit: lim
x→0

sin x

x
= 1. Since the function sin x

x
is

even, it suffices to consider the case when x ↓ 0. First, we prove the inequality

(∗) sin x < x < tan x

valid for 0 < x < π
2
. For that, consider the circle of radius one centered at O

and two points A and B on that circle such that the angle ∠AOB equals x
radians. Let C be the intersection point of the tangent to the circle at A and
the line containing the radius OB. Then

x

O A

C

B

1

1

Figure 8. The triangles AOB and AOC

4AOB ⊂ sectorAOB ⊂ 4AOC ,

so that

Area(4AOB) < Area(sectorAOB) < Area(4AOC) .

Computing the areas, we get

sin x

2
<

x

2
<

tan x

2
,

that is (∗).
Dividing (∗) by sin x, we obtain

1 >
sin x

x
> cos x ,
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or

0 < 1− sin x

x
< 1− cos x .

But

1− cos x = 2 sin2 x

2
< 2

(x

2

)2

=
x2

2
(we have used the first inequality from (∗)). So that

0 < 1− sin x

x
<

x2

2
.

This yields the limit in the box. Done! 2

Corollary 9.3.1.

lim
n→∞

{
cos

t

2
· cos

t

22
· cos

t

23
· ... · cos

t

2n

}
=

sin t

t
.

Proof: Indeed,

sin t = 2 cos
t

2
sin

t

2
= 22 cos

t

2
cos

t

22
sin

t

22

= ... = 2n cos
t

2
cos

t

22
... cos

t

2n
sin

t

2n
,

so the product of cosines equals

sin t

2n sin t
2n

=
sin t

t
·

t
2n

sin t
2n

.

Notice, that the second factor converges to 1 since t
2n converges to 0. 2

Exercise 9.3.2 (Vieta). Prove that

2

π
=

√
2

2

√
2 +

√
2

2

√
2 +

√
2 +

√
2

2
...

(the product on the RHS is infinite).

Hint: Let t = 2/π in the previous corollary. Using induction, check that

cos
π

2n+1
=

√
2 +

√
2 + ... +

√
2

2
, n ∈ N, with n square roots on the RHS.

9.4. Limits at infinity and infinite limits. We extend the definition of
limit to two cases: first, we allow the point a to be ±∞. Second, we allow the
limit to be ±∞.

Definition 9.4.1. Let f be a function defined for x > x0. We say that
lim

x→+∞
f(x) = L if

∀ε > 0 ∃M ∀x > M |f(x)− L| < ε .

If f is defined for x < x0 we say that lim
x→−∞

f(x) = L if

∀ε > 0 ∃M ∀x < M |f(x)− L| < ε .
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Exercise 9.4.2. Check that lim
x→+∞

f(x) = lim
y↓0

f

(
1

y

)
.

Example 9.4.3.

lim
x→+∞

arctan x =
π

2
, lim

x→−∞
arctan x = −π

2
.

Consider the first case. Fix ε > 0 and choose M = tan(π
2
−ε). If x > tan(π

2
−ε),

then arctan x > π
2
− ε, and since arctan x is always less than 1, we are done.

The second case is similar to the first one. 2.

Definition 9.4.4. We say that lim
E3x→a

f(x) = +∞, if

∀M > 0 ∃δ > 0 such that ∀x ∈ U∗
δ (a) f(x) > M .

Similarly, we say that lim
E3x→a

f(x) = −∞ if

∀M > 0 ∃δ > 0 such that ∀x ∈ U∗
δ (a) f(x) < −M .

In both cases, lim
E3x→a

1

f(x)
= 0.

Example 9.4.5.

i

lim
x↓0

1

sin x
= +∞, lim

x↑0
1

sin x
= −∞.

ii.
lim

x→±∞
x3 = ±∞.

9.5. Limits of monotonic functions. Set sup
E

f = sup{f(x) : x ∈ E} if f

is bounded from above on E, and = +∞ otherwise, and set inf
E

f = inf{f(x) :

x ∈ E} if f is bounded from below and = −∞ otherwise.

Theorem 9.5.1. Suppose f : (a, b) → R does not decrease. Then the limits

(1) lim
x↑b

f(x) = sup
(a,b)

f ,

and

(2) lim
x↓a

f(x) = inf
(a,b)

f

exist.

Proof: We shall prove the first relation, proof of the second one is similar.
First, assume that f is bounded from above on (a, b), then sup

(a,b)

f < +∞.

We fix ε > 0 and use of the definition of the supremum. We find x0 < b such
that f(x0) > sup

(a,b)

f − ε. Since f does not decrease on the interval (a, b), we

have f(x) ≥ f(x0) for x ≥ x0, so that

sup
(a,b)

f − ε < f(x) ≤ sup
(a,b)

f , x0 ≤ x < b .
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This proves (1) in the case when f is bounded from above.
Now, let f be unbounded from above. Then for any M we find x0 such that

f(x0) > M , hence f(x) > M for x0 ≤ x < b, and lim
x↑b

f(x) = +∞. 2

9.6. Limits and arithmetic operations. Set (f + g)(x) = f(x) · g(x),

(f · g)(x) = f(x) · g(x), and

(
f

g

)
(x) =

f(x)

g(x)
.

Theorem 9.6.1. Let the functions f and g be defined on a set E \ {a} where
{a} is an accumulation point of E. Suppose that

lim
E3x→a

f(x) = A, and lim
E3x→a

g(x) = B .

Then there exists the limits:

a) lim
E3x→a

(f + g)(x) = A + B,

b) lim
E3x→a

(f · g)(x) = A ·B,

c) if B 6= 0 and g(x) 6= 0 for x ∈ E, then

lim
E3x→a

f

g
(x) =

A

B
.

This theorem can be checked using the definition of the limit, it also follows
at once from the corresponding properties of the limits of sequences, so we
shall not prove it here.

Example 9.6.2. Let P (x) = apx
p + ... and Q(x) = bqx

q + ... be polynomials
of degrees p and q. Then

lim
x→+∞

P (x)

Q(x)
= lim

x→+∞
apx

p + ap−1x
p−1 + ... + a0

bqxq + bq−1xq−1 + ... + b0

= lim
x→+∞

xp−q · ap + ap−1x
−1 + ... + a0x

−p

bq + bq−1x−1 + ... + b0x−q
.

The latter limit equals 0 if p < q, equals +∞ if p > q and ap and bq have the
same signs, and −∞ if they are of different signs, and equals the quotient ap

bq

of the leading coefficients if the polynomials have the same degrees p = q.

Exercise 9.6.3. Find the following limits:

lim
x↓0

x

[
1

x

]
, lim

x↑0
x

[
1

x

]
, lim

x→0

√
1 + x−√1− x

x
, lim

x→0
x cos

1

x
,

lim
x→+∞

(√
x +

√
x +

√
x−√x

)
, lim

x→π

sin x

π − x
, lim

x→0

x

tan x
,

lim
x→±∞

x + sin x

x− sin x
, lim

x↓0
sin x

x2
, lim

x→0

1− cos x

x2
, lim

x→0

sin 5x− sin 3x

x
,

lim
n→∞

sin π
√

n2 + 1 , lim
n→∞

sin π
(
n3 + 1

)1/3
, lim

n→∞
sin sin ... sin︸ ︷︷ ︸

n times

x .
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10. The exponential function and the logarithm

10.1. The function t 7→ at. Fix a > 0. First, we recall the definition of the
function t 7→ at for t ∈ Z that you’ve known from the high-school, then then
we extend it to the set of all rationals Q, and then to the whole real axis. The
discussion will be brief.

10.1.1. t ∈ Z. We set a0 = 1, at = a · a · ... · a︸ ︷︷ ︸
t times

, and a−t =
1

at
for t ∈ N. This

function has the following properties

(a) am · an = am+n;
(b) (am)n = amn;
(c) an · bn = (ab)n;
(d) for n > 0, an < bn if and only if a < b;
(e) let n < m, then an < am provided a > 1, and an > am provided a < 1.

10.1.2. t ∈ Q. Suppose t =
m

n
. Then we denote by x = at a unique positive

solution to the equation xn = am. Note that with this definition

a
m
n = (am)

1
n =

(
a

1
n

)m

(why?).
First of all, we need to check that this definition is correct; i.e., that if we

use a different representation t =
m′

n′
then the answer will be the same. Let

x = a
m
n , y = a

m′
n′ ,

then

xnn′ = amn′ , ynn′ = am′n .

Since
m′

n′
=

m

n
, we have m′n = mn′; i.e., xnn′ = ynn′ . Since the positive nn′-th

root is unique, we get x = y. 2

Notice that the properties (a)–(e) formulated above hold true for the exten-
sion t 7→ at, t ∈ Q. We check only (a) and leave the rest as an exercise.

Claim 10.1.1. For t1, t2 ∈ Q, at1+t2 = at1 · at2.

Proof: Suppose

x1 = a
m1
n1 , x2 = a

m2
n2 .

We need to check that

x1 · x2 = a
m1
n1

+
m2
n2 .

We have

xn1n2
1 = am1n2 , xn1n2

2 = am2n1 ,

whence

(x1 · x2)
n1n2 = am1n2 · am2n1 = am1n2+m2n1
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(note that in the last equation, we’ve used the property (a) for integer t’s).
That is

x1 · x2 = a
m1n2+m2n1

n1n2 = a
m1
n1

+
m2
n2 ,

completing the proof. 2

We need one more property of the exponential function:

(f) lim
Q3r→t

ar = at, t ∈ Q.

Proof of (f): First, we prove (f) in a special case when t = 0; i.e, we prove that
lim
Q3r→0

ar = 1. We prove it in the case a > 1, the case a < 1 is similar.

We use Heine’s definition of the limit. Let {rn} be a sequence of rationals
converging to 0. We fix an arbitrarily small ε > 0 and choose k ∈ N such that

1− ε < a−1/k < a1/k < 1 + ε

(why this is possible?). Then we choose N ∈ N such that for n ≥ N ,

−1

k
< rn <

1

k
.

Then we have

1− ε < a−1/k
(e)
< arn

(e)
< a1/k < 1 + ε ,

proving the claim in the case t = 0.
Now, consider the general case. We have

lim
Q3r→t

ar · a−t = lim
Q3r→t

ar−t = lim
Q3s→0

as = 1 ,

hence, the claim. 2

10.1.3. t ∈ R. Assume again that a > 1. Given t ∈ R, consider the numbers

s = sup{ar : r ∈ Q, r < t}, i = inf{ar : r ∈ Q, r > t}.
It is not difficult to see that these two numbers must coincide. First note that
s ≤ i (why?). Then, given k ∈ N, choose the rationals r and q such that
r < t < q and q − r < 1

k
. Then

0 ≤ i− s < aq − ar = ar(aq−r − 1) < s(a1/k − 1) .

Letting k →∞, we get s = i. 2

Definition 10.1.2. For a > 1 and for each t ∈ R, we set at = s = i. If a < 1,

then we set at =
(

1
a

)−t
.

An equivalent definition says

at def
= lim

Q3r→t
ar .

Exercise 10.1.3. Show that the limit on the right hand side exists, and prove
the equivalence of these definitions.

This extends the function t 7→ at to the whole real axis preserving the
properties (a)–(f):
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(a) at · as = at+s;
(b) (at)

s
= ats;

(c) at · bt = (ab)t;
(d) for t > 0, at < bt if and only if a < b, for t < 0, at < bt if and only if

a > b.
(e) let t < s, then at < as provided a > 1, and at > as provided a < 1;
(f) lims→t a

s = at.

Exercise 10.1.4. Check the properties (a)–(f).

Next, we’ll need one more property of the exponential function:

Claim 10.1.5. The function t 7→ at maps R onto R+.

I.e., for each positive y, there is t ∈ R such that at = y. Note, that due do
monotonicity claimed in (e), if such a t exists then it must be unique.

Proof: Suppose that a > 1. Fix y > 0 and consider the sets

A< = {t ∈ R : at < y} and A> = {t ∈ R : at > y} .

The both sets are not empty, for instance, if we take a big enough n ∈ N, then
1/n ∈ A< and n ∈ A>. By (e), for each t1 ∈ A< and t2 ∈ A>, we have t1 < t2.
Therefore, by the completeness axiom, there exists t ∈ R such that t1 ≤ t ≤ t2
for each t1 ∈ A< and each t2 ∈ A>. Let us show that at = y.

Suppose that at < y. Since at+1/n → at when n → ∞, we can choose big
enough n such that t + 1

n
∈ A<. This contradicts to our assumption that the

point t separates the sets A< and A>. Similarly, the assumption at > y also
leads to the contradiction. Thus, at = y, completing the proof. 2

The claim we’ve just proven allows us to define the inverse function to at

which is called the logarithmic function loga : R+ 7→ R.

10.2. The logarithmic function loga x. This function is defined as inverse
to the function t 7→ at, that is loga(a

t) = aloga t = t. It follows from the
definition that loga 1 = 0 and loga a = 1. Now we list the basic properties of
the logarithmic function:

(i) loga(xy) = loga x + loga y;
(ii) loga(x

y) = y loga x .
(iii) if x < y, then loga x < loga y provided a > 1, and loga x > loga y

provided a < 1;
(iv) lim

x→y
loga x = loga y;

Exercise 10.2.1. Check the properties (i)–(iv) of the logarithmic functions.

Another important property is

(v)

loga x =
logb x

logb a
.
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Indeed, if u = logb x and v = logb a, then bu = x and bv = a. Now, we need
to express the value t = loga x, that is the solution of the equation at = x
through u and v. We have bvt = at = x = bu, hence vt = u and t = u

v
as we

needed. 2

In particular, we see that

loga x =
1

logx a
.

If the basis a equals e, then we simply write log x = loge x. Such logarithms
are called the natural ones. The reason why the base e is important will be
clear later (the base a = 2 is also very useful). It is worth to remember the
special case of (v):

loga x =
log x

log a
which allows to convert any logarithms to the natural ones.

Having the logarithms, we can define the power function x 7→ xα for x > 0
by

xα = eα log x .

If α ∈ Z this definition coincide with the one we know from the high-school
(why?). If α > 0 the function x 7→ xα increases, if α < 0, then this function
decreases.

It is important to remember that the exponential function grows at infinity
faster than the power function:

Claim 10.2.2. For a > 1 and p < ∞,

(∗) lim
x→+∞

xp

ax
= 0.

Proof: The relation (∗) easily follows from its special case for the sequences.
We know that np/an → 0, as N 3 n → ∞. Therefore, we can fix sufficiently
small ε > 0 and choose big enough N such that ∀n > N

n[p]+1

an
< ε .

Then for n = [x] (x is large enough) we have

0 <
xp

ax
<

(n + 1)[p]+1

an+1
· a < aε .

Done! 2

Corollary 10.2.3.

i. Setting in (∗) at = xα, we see that the logarithmic function grows slower
than any power function:

lim
x→+∞

loga x

xα
=

1

α
lim

t→+∞
t

at
= 0 .

Here α > 0, of course.
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ii. Making the change of variables s = 1
x
, we arrive at another important limit:

lim
s→0

sα| loga s| = 0 .

Here again α > 0.

Example 10.2.4.

i.
lim
x↓0

xx = lim
x↓0

ex log x = e0 = 1.

ii.
lim
x↓0

xxx

= lim
x↓0

exx log x = 0 .

Now, the exponent tends to −∞, hence the limit equals 0.
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11. The second remarkable limit.
The symbols “o small” and “∼”

11.1. lim
x→±∞

(
1 +

1

x

)x

= e.

Proof: We already know the special case:

lim
n→∞

(
1 +

1

n

)n

= e ,

which is a definition of the number e. Now, let x → +∞, and let n = [x] be
the integer part of x. Then

(
1 +

1

n + 1

)n+1
n + 1

n + 2
=

(
1 +

1

n + 1

)n

<

(
1 +

1

x

)x

<

(
1 +

1

n

)n+1

=

(
1 +

1

n

)n
n + 1

n
,

and the result follows.
Now, consider the second case: x → −∞. First, observe that

lim
x→+∞

(
1− 1

x2

)x

= 1 .

Indeed, fix ε > 0, then for x ≥ 1 and n = [x] we get

1 >

(
1− 1

x2

)x

>

(
1− 1

n2

)n+1

≥ 1− n + 1

n2
> 1− ε

if x is sufficiently large. Next, observe that

lim
x→+∞

(
1− 1

x

)x

= lim
x→+∞

(
1− 1

x2

)x

(
1 + 1

x

)x =
limx→+∞

(
1− 1

x2

)x

limx→+∞
(
1 + 1

x

)x =
1

e
.

Thus,

lim
x→−∞

(
1 +

1

x

)x

= lim
x→+∞

(
1− 1

x

)−x

= (1/e)−1 = e .

Done! 2

Corollary 11.1.1.

lim
t→0

(1 + t)
1
t = e

and

lim
t→0

log(1 + t)

t
= 1 .

Proof: To get the first limit put x = 1/t in the 2nd remarkable limit. The
second relation follows from the first one: if y = (1+ t)1/t → 1, then log y → 0,
and log y is nothing but 1

t
log(1 + t).
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11.2. Infinitesimally small values
and the symbols o and ∼. Here we develop a useful formalism which in
many cases make the formulas simpler.

Definition 11.2.1. Let E ⊂ R, and a be an accumulation point of E. The
function α : E → R is called infinitesimally small at a, if

lim
E3x→a

α(x) = 0.

Let us make several trivial comments. If α and β are infinitesimally small
at a, then their sum α+β is infinitesimally small as well. If α is infinitesimally
small at a and β is bounded, then the product α · β is infinitesimally small as
well. At last, relation f(x) = L + α(x) where α is infinitesimally small at a is
equivalent to limx→a f(x) = L.

Another notation for infinitesimally small values is o(1) (“o small”). This
notation is quite useful.

Definition 11.2.2. Let f, g : E → R, and let a be an accumulation point of
E. We say that

f(x) = o(g(x)) , x → a, x ∈ E ,

if f(x) = α(x)g(x), where α is infinitesimally small at a.

For instance,
x2 = o(x), x → 0,

x = o(x2), x → ±∞,

1

x
= o

(
1

x2

)
, x → 0,

and
1

x2
= o

(
1

x

)
, x → ±∞.

Definition 11.2.3. We say that the functions f and g are equivalent at a:

f ∼ g, x → a, x ∈ E,

if

lim
E3x→a

f(x)

g(x)
= 1 .

Another way to express the same is to write

f(x) = g(x) + o(g(x)) = (1 + o(1))g(x), x → a, x ∈ E .

Examples:

(i) if Pn−1(x) is a polynomial of degree ≤ n − 1, then xn + Pn−1(x) ∼ xn

for x → ±∞.

The next relations hold for x → 0:

(ii) x2 + x ∼ x;
(iii) sin x ∼ x;
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(iv) log(1 + x) ∼ x;
(v) ex − 1 ∼ x;
(vi) (1 + x)a − 1 ∼ ax.

Let us prove the last two relations: in (v) we introduce a new variable
x = log(1 + t), then (v) reduces to (iv). In (vi) we use both (iv) and (v):

lim
x→0

(1 + x)a − 1

x
= lim

x→0

ea log(1+x) − 1

x

= lim
x→0

ea log(1+x) − 1

a log(1 + x)
· a log(1 + x)

x

= lim
y→0

ey − 1

y
· a lim

x→0

log(1 + x)

x
= a .

Exercise 11.2.4. Show that
√

x +
√

x +
√

x ∼ x
1
8 for x → 0, and is ∼ √

x

for x → +∞.

Exercise 11.2.5. Find the limits

lim
x→1

(
m

1− xm
− n

1− xn

)
, lim

x→0

(
1 + tan x

1 + sin x

)1/x3

, lim
x→0

log cos αx

log cos βx
(β 6= 0) ,

lim
x→∞

(
x2 + 1

x2 − 1

)x2

, lim
x→+∞

(ex − 1)1/x , lim
x→1

x
1

x−1 ,

lim

(
at + bt

2

)1/t

(t → +∞, t → −∞, t → 0) .

Let
lim

x→+∞
f(x) = lim

x→+∞
g(x) = +∞ .

If g(x) = o(f(x)) for x → +∞, then we say that f grows faster at +∞ than g
(or, equivalently, that g grows slower at +∞ than f). For example, for each
α > 0, and p < ∞, xα grows faster than logp x, and for each a > 1, ax grows
faster than xα.

Exercise* 11.2.6. Prove that for any sequence of functions

f1(x), f2(x), ...fn(x), ... x0 < x < +∞,

such that
lim

x→+∞
fn(x) = +∞ , ∀n ∈ N ,

it is possible to construct other two functions ϕ(x) and ψ(x) such that ϕ grows
to +∞ faster than any of fn (i.e., for each n, lim sup

x→+∞
(ϕ/fn)(x) = +∞) and ψ

grows to +∞ slower than any of fn (i.e., for each n, lim inf
x→+∞

(ψ/fn)(x) = 0).
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12. Continuous functions, I

12.1. Continuity.

Definition 12.1.1. The function f defined in a neighbourhood of a point a
is called continuous at a if

f(a) = lim
x→a

f(x).

In other words, ∀ε > 0 exists δ > 0 such that ∀x ∈ Uδ(a)

|f(x)− f(a)| < ε.

Here, as usual, Uδ(a) = {t : |t− a| < δ} is a δ-neighbourhood of a.
If a function f is continuous at any point it is defined, we say that this

function is continuous everywhere.

The function f can be defined only on a set E and a ∈ E. If a is an
accumulation point of E then we say that f is continuous at a along E if

f(a) = lim
E3x→a

f(x) .

If a is an isolated point of E, then we also say that also f is continuous at a.

Examples:

i. The constant function f(x) = const is continuous everywhere.

ii. The identity function f(x) = x is continuous everywhere.

iii. The function f(x) = sin x is continuous everywhere. Indeed, if |x−a| < ε,
then we get

| sin x− sin a| =

∣∣∣∣2 cos
x + a

2
sin

x− a

2

∣∣∣∣

≤ 2

∣∣∣∣sin
x− a

2

∣∣∣∣ ≤ 2

∣∣∣∣
x− a

2

∣∣∣∣ = |x− a| < ε .

Similarly, the cosine function is continuous.

iv. The exponential function x 7→ ax and the logarithmic function x 7→ log x
are continuous everywhere they are defined. This follows from the properties
of these functions established in the previous lecture.

v. The function f : [0, +∞) → [0,∞) defined by f(x) = e−1/x2
for x 6= 0 and

f(0) = 0 is continuous at every point of [0, +∞).

12.2. Points of discontinuity. There are various reasons for a function f
to be discontinuous at a point a. We give here a brief classification of possible
cases. In what follows, we’ll use notations

f(a− 0) = lim
x↑a

f(x), f(a + 0) = lim
x↓a

f(x) .
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f(a-0)=f(a+0)

a a

The infinite limits f(a-0), f(a+0)

a

removable sinluraity

f(a)

a

f(a-0)

f(a+0)

the limits f(a-0), f(a+0) are different

The limits f(a-0), f(a+0) do not exist

Figure 9. Possible discontinuities at a

Removable singularity. We say that the function f has a removable singularity
at the point a if the limits from above and from below at this point exist and
have the same value: f(a− 0) = f(a + 0). In this case, we can always define
(or re-define) the function f at this point by the common value of these limits
making the function continuous.

Examples:

i. Let f(x) = x for x 6= 0 and f(0) = 10. This function is clearly discontinuous
at the origin. However, re-defining f at the origin by prescribing it the zero
value, we obtain a continuous function at the origin.

ii. Let f(x) = x sin 1
x

for x 6= 0. Again setting f(0) = 0, we get a continuous
function.

iii. Let f(x) = sin x
x

for x 6= 0. Setting f(0) = 1, we get a continuous function.

iv. Consider the Riemann function

R(x) =

{
1
n

if x = m
n
∈ Q \ {0}, (m,n) = 1

0 if x ∈ R \Q or x = 0.

Here (m, n) is the greatest common divisor of m and n; i.e., (m,n) = 1 means
that m and n are mutually primes. We show that R has a limit at any point
a ∈ R and

(R) lim
x→a

R(x) = 0 .
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We fix a and an arbitrary large natural number N . The set

QN =
{

r =
m

n
: m ∈ Z, n ∈ N, (m,n) = 1, n ≤ N

}

does not have finite accumulation points (why?). Hence, we can find a punc-
tured neighbourhood U∗(a) such that it contains no rational numbers repre-
sented in the form r = m

n
with mutually primes m and n with n ≤ N . This is

possible since the set
This means that

∀x ∈ U∗(a) 0 ≤ R(x) <
1

N
,

that is (R) holds. Relation (R) yields that Riemann’s function is continuous
at any irrational point and at the origin, and is discontinuous at any rational
point except of x = 0. 2

Problem* 12.2.1. Whether there exists a function f : R→ R continuous at
all rational points and discontinuous at all irrational points?

Different one-sided limits. Another simple singularity appears when the func-
tion f has different one-sided limits at the point a, i.e., f(a − 0 and f(a + 0
exist but do not equal. For instance, if a discontinuity point of a monotonic
function is not removable, then it must be of that kind.

Examples:

i. f(x) = sgnx, a = 0.

ii. f(x) = tan x, a = π
2
.

Exercise 12.2.2. Give an example of the function f : R → R which is con-
tinuous at R \ Z and discontinuous at all integer points.

Exercise 12.2.3. The function f(x) = sin 1
x

has no limits from the left and
the right at the origin.

Problem 12.2.4. The discontinuity set of an arbitrary monotonic function is
at most countable.

12.3. Local properties of continuous functions. Everywhere below we
assume that the function f : E → R is continuous at a. We list some simple
local properties of f :

Local boundedness. There exists a neighbourhood U(a) of a such that f is
bounded in E ∩ U(a).

Local conservation of the sign. If f(a) 6= 0, then there exists a neighbourhood
U(a) of a where f has the same sign as at a:

sgnf(x) = sgnf(a) , ∀x ∈ E ∩ U(a) .



61

Arithmetic of continuous functions. If g : E → R is continuous at a, then the
functions f+g and f ·g are also continuous at a. If g(x) 6= 0 in a neighbourhood
of a, then the quotient f

g
is also continuous at a.

Exercise 12.3.1. Prove these three properties.

Using these properties, we see for example, that every polynomial is a con-
tinuous function on R and any rational function (that is the function of the
form R = P

Q
where P and Q are polynomials) is continuous everywhere except

of the zeroes of the denominator.

Continuity of the composition. If f : E → V is continuous at a, and g : V → R
is continuous at b = f(a), then the composition (g ◦ f)(x) is continuous at a.

Proof: Indeed, fix ε > 0 and choose δ > 0 such that

|g(y)− g(b)| < ε

provided |y − b| < δ. Then having this δ choose an η > 0 such that

|f(x)− f(a)| < δ

provided |x− a| < η. With this choice

|g(f(x))− g(f(a))| = |g(y)− g(b)| < ε .

Done! 2

The last property implies continuity of the power function x 7→ xα = eα log x

on (0, +∞) for α < 0 and on [0, +∞) for α > 0. Using this fact, we prove now
that

eλ = lim
x→∞

(
1 +

λ

x

)x

for each λ ∈ R. Indeed, we may assume that λ 6= 0 (if λ = 0 the formula is
trivial). Then we introduce a new variable t = x

λ
which goes to ∞ with x. We

have

lim
x→∞

(
1 +

λ

x

)x

= lim
t→∞

[(
1 +

1

t

)t
]λ

=

[
lim
t→∞

(
1 +

1

t

)t
]λ

= eλ .

The limit was interchanged with the brackets using continuity of the power
function, the limit of the expression in the brackets equal e, as we know from
the previous lecture.

Exercise 12.3.2. Suppose that the functions f, g : E → R are continuous at
a. Show that the functions max(f, g)(x) and min(f, g)(x) are also continuous
at a. Deduce that if f is continuous at a, then |f | is continuous at a as well.

Exercise* 12.3.3 (Cauchy’s functional equation). Suppose f : R → R is a
continuous function such that, for each x, y ∈ R, f(x+y) = f(x)+f(y). Then
f(x) = kx for some k ∈ R.

I.e., the linear functions are the only continuous solutions of the functional
equation f(x + y) = f(x) + f(y).
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Hint: First, using induction, check that f(nx) = nf(x) for any n ∈ Z. Then
check that f(m

n
x) = m

n
f(x). Then use the continuity of f .

Exercise* 12.3.4. Prove the same under a weaker assumption that f is
bounded from above in a neighbourhood of the origin.

Exercise* 12.3.5.

a. Suppose f : R→ R is a continuous function that does not vanish identically
and such that, for each x, y ∈ R, one has f(x+y) = f(x)f(y). Then f(x) = ekx

for some k ∈ R.

b. Formulate and prove a similar characterization of the logarithmic function
f(x) = k log x, and the power function f(x) = xk (in the both cases, k ∈ R).
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13. Continuous functions, II

13.1. Global properties of continuous functions. In what follows we
denote by C(E) the collection of all continuous functions on the set E ⊂ R.

Theorem 13.1.1. Let f ∈ C[a, b] and let the values of the function f at the
end-points have different signs: f(a)f(b) < 0. Then there exists an interme-
diate point c ∈ (a, b) where the function f vanishes.

Our intuitive understanding of the word “continuous” suggests that the
result is correct: the graph of continuous function should be a “continuous
curve” and we cannot connect a point above the x-axis with a point below
x-axis by a continuous line which does not intersects the x-axis.

Proof: We construct inductively a sequence of nested intervals In = [an, bn],
I0 ⊃ I1 ⊃ ... ⊃ In ⊃ ... such that |In| = 2−n|I0|, and f(an)f(bn) < 0.

Set a0 = a, b0 = b, and I0 = [a0, b0]. As we know, at the end-points of I0

the function f has different signs: f(a0)f(b0) < 0. Having the interval In, we
consider its middle point ξ and check the sign of f(ξ). If f(ξ) = 0, then the
theorem is proven and there is no need in the further construction. If f(ξ) 6= 0,
then either f(an) or f(bn) has the opposite sign with f(ξ). If f(an)f(ξ) < 0,
then we set an+1 = an, bn+1 = ξ, otherwise we set an+1 = ξ, bn+1 = bn. In any
case, we get a new interval In+1 with the same properties.

By Cantor’s lemma the intersection of the intervals In is a singleton set:

{c} =
⋂
n≥1

In .

We claim that the function f vanishes at c. By construction,

lim
n→∞

an = lim
n→∞

bn = c.

By continuity of f
f 2(c) = lim

n→∞
f(an)f(bn) ≤ 0 ,

so that f(c) = 0. We are done. 2

The proof of this theorem is constructive, and it can be easily turned to a
simple and effective numerical algorithm (called sometimes bisection method)
for finding roots of equations.

The result can be put in a more general form:

Theorem 13.1.2 (Intermediate Value Property). Let f ∈ C[a, b], and let
f(a) = A, f(b) = B, where A 6= B. Then for any intermediate value C
between A and B (that is A < C < B or B < C < A) there exists c ∈ (a, b)
such that f(c) = C.

Proof: Consider a new function f1(x) = f(x)−C. Its values at the end-points
have different signs, so applying Theorem 1 we find a point c ∈ (a, b) such that
f1(c) = 0, or f(c) = C. 2

Corollary 13.1.3. For each polynomial P of odd degree there exists a point
ξ ∈ R such that P (ξ) = 0.
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Proof: Let P (x) = a2N−1x
2N−1 + ... be a polynomial of degree 2N − 1, i.e.,

a2N−1 6= 0. Suppose, for instance, that a2N−1 > 0. Then lim
x→±∞

P (x) = ±∞.

Therefore, we can find a sufficiently big positive M such that P (M) > 0 and
P (−M) < 0. The rest follows from continuity of P and from the IVP-property.
2

Corollary 13.1.4. If f ∈ C(a, b) then the image f(a, b) is an interval (maybe,
infinite, semi-infinite, or a singleton).

Proof: Take any two points y1 < y2 in f(a, b). We need to check that (y1, y2) ⊂
f(a, b). Since y1, y2 ∈ f(a, b), there are points ξ1, ξ2 ∈ (a, b) such that f(ξi) =
yi, i = 1, 2. Suppose, for instance, that xi1 < xi2. Then by the IVP-property,
for any y ∈ (y1, y2), there is ξ ∈ (ξ1, ξ2) such that f(ξ) = y; i.e., (y1, y2) ⊂
f(a, b). 2

Exercise 13.1.5. A point ξ is said to be a fixed point of the function f if
f(ξ) = ξ.

i. Prove that any continuous function that maps the interval [0, 1] into itself
has a fixed point. In other words, if f ∈ C[0, 1] and 0 ≤ f(x) ≤ 1 for all
x ∈ [0, 1], then there exists a point ξ ∈ [0, 1] such that f(ξ) = ξ.

ii. Let the function f be defined on [a, b] and satisfy there

|f(x)− f(y)| ≤ K|x− y|, ∀x, y ∈ [a, b]

with some K < 1. Show that f has a unique fixed point at the interval [a, b].

Exercise 13.1.6. Let P be a polygon in the plane. Prove that there is a
vertical line which splits P onto two polygons of equal area.

Exercise 13.1.7. Let a1, a2, a3 > 0, λ1 < λ2 < λ3. Show that equation
a1

x− λ1

+
a2

x− λ2

+
a3

x− λ3

= 0

has exactly 2 real solutions.

Exercise 13.1.8. Let f ∈ C[0, 1], and f(0) = f(1). Show that there exists
a ∈ [0, 1

2
] such that f(a) = f(a + 1

2
).

Theorem 13.1.9 (Weierstrass). If f ∈ C[a, b], then f is bounded on [a, b] and
attains there its maximum and minimum values.

Proof: First, we prove the boundedness of f . In the previous lecture we proved
local boundedness of continuous functions. Therefore, for each x ∈ [a, b] there
exists a neighbourhood U(x) and a constant Cx such that

|f(y)| ≤ Cx , y ∈ U(x) .

The neighbourhoods {U(x)}x∈[a,b] form a covering of [a, b]. Hence, using the
Borel covering lemma we can find a finite sub-covering

[a, b] ⊂
N⋃

k=1

U(xk)
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Then

|f(x)| ≤ max{Cx1 , ..., Cxk
} , x ∈ [a, b] ,

that is. f is bounded on [a, b].
Now we show that f achieves its maximum and minimum values. We’ll

show this only for the maximum value. The other case is similar. Let

M = sup
[a,b]

f.

By the definition of the supremum, there is a sequence {xn} ⊂ [a, b] such that

lim
n→∞

f(xn) = M.

Since the sequence {xn} is bounded we can find a convergent subsequence

{xni
} → x∗ ∈ [a, b].

Then by continuity of f

f(x∗) = lim
i→∞

f(xni
) = M .

We are done. 2

Remark 13.1.10. The both conclusions of the Weierstrass theorem may fail
if f is continuous on an open interval (or on the whole real axis).

For instance, the function f(x) = 1/x is continuous on the interval (0, 1) but
is unbounded there. The function f(x) = x is bounded on the same interval
but has no maximal and minimal values on that interval.

Combining the Weierstrass theorem and the IVP of continuous functions,
we get

Corollary 13.1.11. If f ∈ C[a, b], then the image f [a, b] is a closed interval.

Exercise 13.1.12.

i. Give an example of a bounded continuous function on R which has no
maximum and minimum.

ii. Prove, that if f ∈ C(R) is a positive function and lim
x→∞

f(x) = 0, then f

attains its maximum value.

Exercise 13.1.13. Show that if f ∈ C[a, b], then the image of [a, b] under f
is a segment (closed interval).

13.2. Uniform continuity.

Definition 13.2.1. The function f : E → R is called uniformly continuous
on E if ∀ε > 0 ∃δ > 0 such that the inequality

(α) |f(x)− f(y)| < ε

holds ∀x, y ∈ E provided that |x− y| < δ.
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It is instructive to compare this definition with the definition of continuity
everywhere on E. The latter says that ∀x ∈ E ∀ε > 0 ∃δ > 0 (depending on
x and ε) such that (α) holds provided that |x − y| < δ. Here, δ depends on
a point x. The uniform continuity guarantees the choice of δ which works ev-
erywhere on E, which is, at least formally, a stronger property than continuity
everywhere.

In order to show that a continuous function f is not uniformly continuous,
one has to find two sequences of points {xn} and {yn} in the domain of f such
that |xn − yn| → 0 but |f(xn)− f(yn)| ≥ const.

Examples:

i. Consider the function f(x) = sin 1
x

on the set E = (0, 1]. The function is
continuous (as a composition of two continuous functions) but not uniformly
continuous. Indeed, consider two sequences of points: xn = (2πn)−1 and
yn = [ (2π + 1

2
)n ]−1. Clearly, |xn − yn| → 0 but f(xn) = 0, f(yn) = 1.

ii. The identity function f(x) = x is uniformly continuous everywhere on R.

iii. The square function f(x) = x2 is continuous on R but not uniformly.
Suppose xn =

√
n + 1 and yn =

√
n. Then

|xn − yn| = 1√
n + 1 +

√
n
→ 0

but f(xn)− f(yn) = 1.

iv. The function f(x) =
√

x is continuous on {x ≥ 0}. This follows from
inequality

|√x−√y| ≤
√
|x− y| , x, y ≥ 0 .

To prove this inequality, we suppose that y = x + h with h > 0. Then

√
y −√x =

h√
x + h +

√
x
≤
√

h =
√

y − x .

v. The function f(x) = 1
x

is not uniformly continuous on (0.1]. Indeed,

consider the sequences xn = 1
2n

and yn = 1
2n+1

, the difference between them
converges to zero, but f(yn)− f(xn) = 1.

vi. The function f(x) = sin x2 is not uniformly continuous on R. Choose
xn =

√
π
2
(n + 1), yn =

√
π
2
n, then |xn − yn| → 0 but f(xn)− f(yn) = 1.

Theorem 13.2.2 (Cantor). If f ∈ C[a, b], then f is uniformly continuous on
[a, b].

Proof: Since f is continuous everywhere on [a, b], for each point t ∈ [a, b] and
each ε > 0, we find δ = δt,ε such that

|f(x)− f(y)| < ε, ∀x, y ∈ Uδ(t) = {ξ : |ξ − t| < 1
2
δ} .
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These neighbourhoods cover the segment [a, b] and we can choose a finite
subcovering

[a, b] ⊂
N⋃

j=1

Uδj
(tj), δj = δtj ,

and set

δ = min (δ1, ... , δN) .

Now, let x, y ∈ [a, b] be two points such that |x− y| < δ
2
. Choose a point tj

such that x ∈ Uδj
(tj), then |x− tj| < δj

2
and |y − tj| ≤ |y − x|+ |x− tj| < δj.

By the choice of δj, we get

|f(x)− f(y)| ≤ |f(x)− f(tj)|+ |f(y)− f(tj)| < 2ε .

Done! 2

An alternative proof can be done using the Bolzano-Weierstrass lemma.
Here is its sketch. Assume that f is not uniformly continuous on [a, b], then, for
some ε > 0, one can find two sequences {xn} and {yn} such that |xn−yn| → 0
but |f(xn) − f(yn)| ≥ ε. Passing to the subsequences, we may assume that
{xnk

} and {ynk
} converge to c ∈ [a, b]. Then |f(xnk

) − f(ynk
)| → 0 and we

arrive at the contradiction. Work out the details.

Exercise 13.2.3. If f ∈ C[a, b], then the functions

m(x) = inf
a≤ξ≤x

f(ξ), and M(x) = sup
a≤ξ≤x

f(ξ)

are also continuous on [a, b].

Exercise 13.2.4.

i. Let the function f be uniformly continuous on a bounded set E. Prove that
f is bounded.

ii. Let f ∈ C(a, b) where (a, b) is a finite interval. Prove that f is uniformly
continuous on (a, b) if and only if there exist the limiting values f(a + 0) and
f(b− 0).

iii. Let f ∈ C(R) be bounded and monotonic. Prove that f is uniformly
continuous.

Exercise 13.2.5. Check the uniform continuity of the following functions:

log x , x ∈ (0, 1] ;
1

log x
, x ∈ (0, 1) ; x +

x

x + 1
, x ∈ [0, +∞) ;

x sin x ; sin x2 ; sin
√

x (x ∈ R) .

Exercise 13.2.6. Let f : E → R, E ⊂ R. Show that the function f is
uniformly continuous on E if and only if

ωf (δ)
def
= sup {|f(x)− f(y)| : x, y ∈ E, |x− y| < δ} → 0

for δ → 0.
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13.3. Inverse functions. We start with a simple result (in fact, we’ve used
it already):

Theorem 13.3.1. Suppose the function f : X → R is strongly monotonic, and
Y = fX is the range of f . Then there exists the inverse function f−1 : Y → X
which is also strongly monotonic. It increases when f increases, and decreases
when f decreases.

The proof follows by a straightforward inspection and we skip it.
For continuous functions, strong monotonicity is also a necessary conditions

for existence of the inverse function.

Theorem 13.3.2. Let the function f ∈ C[a, b] have an inverse function. Then
f is strongly monotonic.

Proof: First, observe that since f is invertible, for any x, y ∈ [a, b], f(x) 6= f(y).
Strongly monotonic functions have the following characteristic property: for

each triple of points x1 < x2 < x3 the value f(x2) must be belong to the open
interval with the end-points at f(x1) and f(x3). Now, assume that the theorem
is wrong and that there exists a triple x1 < x2 < x3 such that, for example,
f(x1) < f(x3) < f(x2) (the other cases are similar). Therefore, by the IVP-
property there exists ξ ∈ (x1, x2) such that f(ξ) = f(x3) which contradicts
invertibility of f . 2

The next theorem says that for monotonic functions continuity is equivalent
to the IVP-property.

Theorem 13.3.3. Suppose f : [a, b] → R is monotonic. Then f is continuous
on [a, b] if and only if the image f [a, b] is a closed interval with the end-points
at f(a) and f(b).

Proof: If f is continuous, then by the IVP-property the image f [a, b] contains
any intermediate point between f(a) and f(b).

In the other direction, suppose f [a, b] be a closed interval and suppose that
f is discontinuous at c ∈ [a, b]. By monotonicity of f , the one-sided limits
f(c− 0) and f(c + 0) exist, and at least one of open intervals

(f(c), f(c + 0)), (f(c− 0), f(c))

is not empty, let us call this interval I. The function f does not attain any
value from this interval, on the other hand, I ⊂ [f(a), f(b)]. The contradiction
proves the theorem. 2

Note that the theorem fails without monotonicity assumption:

Exercise 13.3.4. Consider the function

f(x) =

{
sin 1

x
x ∈ R \ {0}

0 x = 0 .

This function is discontinuous at the origin. Check that for any closed interval
I ⊂ R the image fI is an interval as well.
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Combining these theorems, we obtain

Corollary 13.3.5. Let f ∈ C[a, b] be strongly monotonic. Then the inverse
function f−1 is also continuous and strongly monotonic.

Proof: Indeed, by Theorem 13.3.1, the inverse function f−1 is strongly mono-
tonic. Suppose for instance, that f and hence f−1 are (strongly) increas-
ing functions. Let α = f(a) and β = f(b). Then by the IVP-property
f [a, b] = [α, β]; i.e., f−1[α, β] = [a, b], and by Theorem 13.3.3 the function
f−1 must be continuous. 2

For example, the function arcsin x is continuous on [−1, 1] and the function
arctan x is continuous on R.

In some sense, the continuity assumption in the last corollary is redundant:

Problem 13.3.6. Let f : (a, b) → R be monotonic, and let the inverse f−1 be
defined on a set E. Then f−1 is continuous on E.

Problem 13.3.7. Let f : [0, 1] → [0, 1] be a continuous increasing function.
Then for each x ∈ [0, 1] one of the following holds: either x is a fixed point of
f (that is, f(x) = x), or the n-th iterate fn(x) converges to a fixed point of f
when n →∞.
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14. The derivative

14.1. Definition and some examples.

Definition 14.1.1 (The derivative). f be a function defined in an open neigh-
bourhood U of a point x ∈ R. The function f is called differentiable at x if
there exists the limit

f ′(x) = lim
y→x

f(y)− f(x)

y − x
= lim

ε→0

f(x + ε)− f(x)

ε

called the derivative of f at x. The function f is differentiable on an open
interval (a, b) if it is differentiable at every point x ∈ (a, b).

Sometimes, we denote the differences by the symbols ∆:

∆x = y − x = ε

and
∆f(x, ε) = f(x + ε)− f(x).

Notice that ∆f is a function of two variables: x and ∆x = ε. In these notations

f ′(x) = lim
∆x→0

∆f(x, ∆x)

∆x
=

df

dx
,

where df and dx are (in the meantime) symbolic notations called the differen-
tials of f and of x.

If the function f is defined on the closed interval [a, b], then we say that f
is differentiable at the end-points a and b if there exist one-sided limits:

f ′(a + 0) = lim
y↓a

f(y)− f(a)

y − a
, f ′(b− 0) = lim

y↑b
f(y)− f(b)

y − b
.

It follows immediately from the definition, that if f is differentiable at x,
then it must be continuous at x, otherwise, the limit in the definition of the
derivative is infinite.

Examples:

(i) Let f(x) be the constant function. Then f ′(x) = 0 everywhere. Soon, we’ll
see that this property characterizes the constant functions: they are the only
functions with the zero derivative.

(ii) Let f(x) = xn, n ∈ N. Then

∆f(x, ε) = (x + ε)n − xn = nxn−1ε + o(ε), ε → 0.

So that

f ′(x) = lim
ε→0

∆f(x, ε)

ε
= lim

ε→0

(
nxn−1 + o(1)

)
= nxn−1.

In particular, if the function f(x) is linear, than its derivative is a constant
function: (ax+ b)′ = a. We’ll learn soon that the linear functions are the only
functions with constant derivative.

(iii) Consider the sine-function f(x) = sin x. Then

∆f(x, ε) = sin(x + ε)− sin x = 2 sin
ε

2
cos

(
x +

ε

2

)
,
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and

(sin x)′ = lim
ε→0

(
sin(ε/2)

ε/2

)
cos

(
x +

ε

2

)
= cos x.

In a similar way, one finds the derivative of the cosine function

(cos x)′ = − sin x.

(iv) Next, consider the exponential function f(x) = ax. Now

∆f = ax+ε − ax = ax (aε − 1) = ax
(
eε log a − 1

)
,

and

lim
ε→0

∆f(x, ε)

ε
= ax lim

ε→0

eε log a − 1

ε
= ax log a lim

δ→0

eδ − 1

δ
= ax log a.

Therefore,

(ax)′ = ax log a .

In particular,

(ex)′ = ex.

This explains why in many situations it is simpler to work with the base e
than with the other bases.

(v) Now, let f(x) = xµ, x > 0 and µ > 0. Then

∆f(x, ε) = (x + ε)µ − xµ

= xµ
{(

1 +
ε

x

)µ

− 1
}

= xµ
{

1 + µ
ε

x
+ o(ε)− 1

}

= µxµ−1ε + o(ε) ,

and

(xµ)′ = µxµ−1 .

This computation extends example (ii).

(vi) Consider the logarithmic function f(x) = loga |x| defined for x ∈ R \ {0}.
In this case,

∆f(x, ε) = loga |x + ε| − loga |x| = loga

∣∣∣1 +
ε

x

∣∣∣ .

If ε is sufficiently small: |ε| < |x|, then the expression 1 + ε/x is positive and

∆f(x, ε) = loga

(
1 +

ε

x

)
=

log (1 + ε/x)

log a
=

ε

x log a
+ o(ε) .

Hence

(loga |x|)′ =
1

x log a
.
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In particular,

(log |x|)′ = 1

x
.

(vii) At last, consider the function f(x) = |x|. It is easy to see directly from
the definition that f ′(x) = sgn(x) for x 6= 0 and that f has no derivative at
the origin.

14.2. Some rules. In this section we show several simple rules which help
us to compute derivatives.

Theorem 14.2.1. Let the functions f and g be defined on an interval (a, b)
and suppose they are differentiable at the point x ∈ (a, b). Then

(i) the sum f + g is differentiable at x and (f + g)′(x) = f ′(x) + g′(x);
(ii) the product f · g is differentiable at x and

(f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x).

In particular, if c is a constant, then (cf)′(x) = cf ′(x).

(iii) if g(x) 6= 0, then the quotient f
g

is differentiable at x and
(

f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)

g2(x)
.

Proof: The proof of (i) is obvious. Next,

(f · g)(x + ε) − (f · g)(x)

= f(x + ε)g(x + ε)− f(x)g(x + ε) + f(x)g(x + ε)− f(x)g(x)

= (f(x + ε)− f(x))g(x + ε) + f(x)(g(x + ε)− g(x))

which readily gives us (ii).
Having (ii), it suffices to prove (iii) in a special case when f equals identically

1:

(iv)

(
1

g

)′
(x) = − g′(x)

g2(x)
.

We have

1

g(x + ε)
− 1

g(x)
= −g(x + ε)− g(x)

g(x + ε)g(x)

= −g(x + ε)− g(x)

g2(x)
· g(x + ε)

g(x)
,

which yields (iv). This proves the theorem. 2

Example 14.2.2. Consider the function f(x) = tan x = sin x
cos x

. We have

f ′(x) =
cos2 x + sin2 x

cos2 x
=

1

cos2 x
.
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That is,

(tan x)′ =
1

cos2 x
.

Similarly,

(cot x)′ = − 1

sin2 x
.

Example 14.2.3. If

P (x) =
n∑

j=0

ajx
j

is a polynomial of degree n, then

P ′(x) =
n−1∑
i=0

(i + 1)ai+1x
i.

is a polynomial of degree n− 1.

14.3. Derivative of the inverse function and of the composition.

Theorem 14.3.1. Let the function f : (a, b) → R be a continuous, strictly
monotone function. Suppose f is differentiable at the point x0 ∈ (a, b) and
f ′(x0) 6= 0. Then the inverse function g = f−1 is differentiable at y0 = f(x0)
and

g′(y0) =
1

f ′(x0)
.

Symbolically, if y = f(x), then x = g(y) and

g′(y) =
dx

dy
=

1
dy
dx

.

Proof: Let x = g(y). If y → y0, then g(y) → g(y0) (since the function g is
continuous at y0) or, what is the same, x → x0. Then we have

lim
y→y0

g(y)− g(y0)

y − y0

= lim
x→x0

x− x0

f(x)− f(x0)

= lim
x→x0

1
f(x)−f(x0)

x−x0

=
1

f ′(x0)
,

proving the theorem. 2

Theorem 14.3.1 gives us the expression for g′(y) in terms of the variable x,
however, applying Theorem 14.3.1, we have to return to the variable y.

Examples:

i. Let f(x) = sin x, x ∈ [−π
2
, +π

2
].

(arcsin y)′ =
1

(sin x)′
=

1

cos x
=

1√
1− sin2 x

=
1√

1− y2
.
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Similarly,

(arccos y)′ = − 1√
1− y2

.

ii. Let f(x) = tan x, x ∈ (−π
2
, π

2
). Then

(arctan y)′ =
1

(tan x)′
= cos2 x =

1

1 + tan2 x
=

1

1 + y2
.

Similarly,

(arccoty)′ = − 1

1 + y2
.

iii. Let f(x) = ax. Then g(y) = loga y and

(loga y)′ =
1

ax log a
=

1

y log a
.

(We’ve known already the answer in advance, of course).

Theorem 14.3.2 (The Chain Rule). Let the function y = f(x) be differen-
tiable at the point x0 and let the function z = g(y) be differentiable at the point
y0 = f(x0). Then the composition function g ◦ f is differentiable at x0 and

(g ◦ f)′(x0) = g′(y0)f
′(x0) = g′(f(x0))f

′(x0).

Symbolically,
dz

dx
=

dz

dy
· dy

dx
.

Proof: We have

(g ◦ f)(x)− (g ◦ f)(x0)

x− x0

=
g(f(x))− g(f(x0))

f(x)− f(x0)
· f(x)− f(x0)

x− x0

=
g(y)− g(y0)

y − y0

· f(x)− f(x0)

x− x0

.

If x → x0, then y → y0 (since the function f is continuous at x0), and we see
that the last expression tends to g′(y0)f

′(x0) proving the theorem. 2

The chain rule is easily extended to the composition of several functions: if
F = f1 ◦ f2 ◦ ... ◦ fn, then

F ′ = f ′1(f2 ◦ ... ◦ fn)f ′2(f3 ◦ ... ◦ fn) ... f ′n.

This can be easily proved by induction with respect to n. In particular, if

F = f ◦ f ◦ ... ◦ f = f ◦n

is the n-th iterate of the function f , then

F ′ = f ′(f ◦ (n−1))f ′(f ◦ (n−2))...f ′(f)f ′ .

Examples:
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i. The logarithmic derivative. Let f(x) = log g(x). Then

f ′(x) =
g′

g
(x) .

For example, if P (x) = c(x− x1)...(x− xn) is a polynomial of degree n, then

P ′

P
(x) =

1

x− x1

+ ... +
1

x− xn

.

ii. If f(x) = eg(x), then f ′(x) = g′(x)eg(x).

iii. If f(x) = u(x)v(x), then

f ′ =
(
ev log u

)′
= ev log u(v log u)′ = uv

(
v′ log u + v

u′

u

)
.

For example,

(xx)′ = xx

(
log x + x

1

x

)
= xx (log x + 1) .
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15. Applications of the derivative

The differential calculus was systematically developed by Newton and Leib-
nitz, however Archimedes, Fermat, Barrow and many other great mathemati-
cians already used it in some concrete situations. In this lecture we bring
just a few of numerous applications without trying to make the arguments
completely formal.

15.1. Local linear approximation. Given a function f : (a, b) → R and
a point x0 ∈ (a, b), we want to find a linear approximation to the function f
which will be good in a small neighbourhood of the point x0. More precisely,
we are looking for the linear function L(x) = c0 + c1(x− x0) such that

f(x) = L(x) + o(x− x0), x → x0.

In the limit x → x0, we obtain condition: f(x0) = L(x0) (of course, if the
function f is continuous at x0, so let’s assume that this is the case), that is
c0 = f(x0). Then

c1 =
f(x)− f(x0)

x− x0

+ o(1) ,

and in the limit we obtain c1 = f ′(x0) (provided that f is differentiable at x0).
Therefore, the linear function L equals

L(x) = f(x0) + (x− x0)f
′(x0),

and we obtain

f(x) = f(x0) + (x− x0)f
′(x0) + o(x− x0), x → x0.

Sometimes, the approximate equality

f(x) ≈ f(x0) + (x− x0)f
′(x0)

can be used in order to find the numerical value of f(x) if f(x0) is known. The
closer x to x0, the better approximation we get. Consider two examples:

If f(x) = log x and x0 = 1, then we get an approximation for small values of
t:

log(1 + t) ≈ t

which shows, for example, that log 1.02 ≈ 0.02 while my calculator gives
log 1.02 = 0.0198026.

If f(x) =
√

x and x0 = 100, then f(x0) = 10, f ′(x0) = 1
20

, so we get

√
100 + t ≈ 10 +

t

20
.

For example,
√

101 ≈ 10.05, and my calculator gives
√

101 = 10.049876.

Exercise 15.1.1. Without using the calculator, find the approximate values
of tan 44◦ and of 1

0.9513 . Check the results with the calculator.
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Later, we’ll develop further the idea of this section and find a polynomial
P (x) of degree ≤ n which locally approximate the function f(x) in the follow-
ing way:

f(x) = P (x) + o((x− x0)
n), x → x0.

15.2. The tangent line. Given a curve γ in the (x, y)-plane and a point
M0(x0, y0) on γ, we want to draw through M0 a tangent line to γ. For that,
we consider another point M1(x1, y1) on γ which is sufficiently close to M0 and
draw the straight line Q through these points. The tangent line to γ at M0 is
a limiting position of this straight line when the point M1 moves to M0 along
γ.

γ

M0

Figure 10. The tangent line to the curve γ

Now, assume that the line γ is a graph of the function f(x), and let us find
equation of the tangent line. The equation of the straight line Q is

y = f(x0) +
f(x1)− f(x0)

x1 − x0

(x− x0) .

We see that if existence of the limiting equation as x1 → x0 is equivalent to
the differentiability of the function f at x0. The limiting equation is

y = f(x0) + f ′(x0)(x− x0) .

This is the equation of the tangent line we were after. In particular, we see
that the slope of the tangent line at the point x0 equals f ′(x0).

Example 15.2.1. Let f(x) = x2 sin 1
x

for x 6= 0 and f(0) = 0. This function

is differentiable at the origin, and f ′(0) = limε→0 ε sin 1
ε

= 0. We see that the
x-axis is the tangent line to the graph of f at the origin. Observe that in this
example the graph of f has infinitely many intersections with the tangent line
in any neighbourhood of the origin.

Exercise 15.2.2. Find the angles between the graphs of functions y = 8− x
and y = 4

√
x + 4 at the point of their intersection.

Exercise 15.2.3. Find the value of parameter a such that the graphs of the
functions y = ax2 and y = log x touch each other (i.e. have a joint tangent
line).
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y = f(x)

x0x1

f(x0)

f(x1)

y = f(x0) + f ′(x0)(x− x0)

y = f(x0) + f(x1)−f(x0)
x1−x0

(x− x0)

Figure 11. The tangent to the graph of the function f

15.3. Lagrange interpolation. From high school, we know how to draw a
straight line through two points in the plane. Here, we consider a more general
problem: given a set of n + 1 points in the plane Mj(xj, yj), 0 ≤ j ≤ n, find
a polynomial P (x) of degree ≤ n whose graph passes all these points; i.e.

(a) P (xj) = yj, 0 ≤ j ≤ n.

A natural restriction is that the points xj must be disjoint: xj 6= xi for j 6= i.
To solve the problem we define the polynomial

Q(x) = (x− x0)(x− x1) ... (x− xn)

of degree n and observe that

(b) lim
x→xj

Q(x)

(x− xj)Q′(xj)
= lim

x→xj

Q(x)−Q(xj)

(x− xj)Q′(xj)
= 1.

Now, we can present the solution of the problem:

(c) P (x) =
n∑

k=0

ykQ(x)

(x− xk)Q′(xk)
.

First of all, observe that P is indeed a polynomial of degree ≤ n: since Q(x)
vanishes at xk, the polynomial Q(x)/(x − xk) is a polynomial of degree n, so
that P is a sum of n + 1 polynomials of degree n, and therefore has degree
≤ n.

Now, we check that P satisfies conditions (b). When we plug x = xj in
the right hand side of (c), we see that the terms with k 6= j vanish (since
the numerator vanishes and the denominator does not). Therefore, the only
term with k = j remains on the right hand side. Since this remaining term is
a polynomial, it is a continuous function of x, so we can find its value at xj

using (a):

P (xj) = lim
x→xj

yjQ(x)

(x− xj)Q′(xj)
= yj.
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Mention, that the solution P we have found is unique: if there are two
solutions P1 and P2 satisfying (a), then their difference P1 − P2 vanishes at
all n + 1 points xj. Being a polynomial of degree ≤ n, it must be the zero
function.

It is also worth to mention another form of the formula (c):

(d)
P (x)

Q(x)
=

n∑

k=0

P (xk)

(x− xk)Q′(xk)

which provides the partial fraction decomposition of the rational function P/Q
in the case when deg P < deg Q (and Q has simple zeroes, i.e. Q′ does not
vanish at zeroes of Q).

Exercise 15.3.1 (Newton). Show that for n ≥ 1

n∑
j=0

xp
j

Q′(xj)
=





0, 0 ≤ p ≤ n− 1

1, p = n.

Hint: in the case p < n, apply (d) to P (x) = xp+1 and set x = 0. In the case
p = n, apply (d) to P (x) = xn, multiply the formula you get by x, and let
x →∞.

15.3.1. Appendix: the Horner scheme. In the solution above we used two simple
facts which you may not know yet:

15.3.2. If a polynomial Q of degree n+1 vanishes at xj, then Q(x) = (x−xj)Q1(x)
where Q1 is a polynomial of degree n.

15.3.3. If a polynomial of degree ≤ n vanishes at n + 1 points, then it must be zero
everywhere.

To prove these facts, you should recall the Horner scheme (a fast algorithm of a
division of a polynomial by a linear factor) which you’ve probably known from the
high-school. Here it is:

Claim 15.3.4 (Horner’s scheme). Consider the polynomial p(x) =
n∑

k=0

pkx
k and the

number c ∈ R. Then there are another polynomial q and a constant r ∈ R such that

p(x) = (x− c)q(x) + r .

Here the degree of q is less than the degree of p by one, and r = f(c).

Proof: We look for q at the form q(x) =
n−1∑

k=0

qkx
k, we need to find the coefficients

qk. We have

pnxn + pn−1x
n−1 + ... + p1x + p0 = (x− c)(qn−1x

n−1 + ... + q1x + q0) + r ,
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which is equivalent to the chain of equations:

pn = qn−1

pn−1 = qn−2 − cqn−1

pn−2 = qn−3 − cqn−2

... ...

p1 = q0 − cq1

p0 = r − cq0 .

From here, we find one by one the coefficients qk and the remainder r. 2

This yields 15.3.2 and 15.3.3.

Remark 15.3.5. The Horner scheme works without any modifications for polyno-
mials with coefficients in other fields different from R. For instance, the coefficients
pk and the value c can be rational numbers. Then the polynomial q has rational
coefficients and the value r = p(c) is rational as well. Similarly, the coefficients of
P might be complex numbers.
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16. Derivatives of higher orders

16.1. Definition and examples. Let f be a function defined in a neigh-
bourhood of a point x. The derivatives of higher orders of f at x are defined
recurrently:

f ′′(x) = (f ′)′(x) =
d2f

dx2

(the second order derivative),

f ′′′(x) = (f ′′)′(x) =
d3f

dx3

(the third order derivative) etc, and

f (n)(x) = (f (n−1))′(x) =
dnf

dxn

(the derivative of order n). Sometimes, it is convenient to agree that the zeroth
order derivative is f itself: f (0) = f , we’ll follow this agreement.

Example 16.1.1. Let

P (x) =
n∑

k=0

ckx
k

be a polynomial of degree n. Then differentiating P , we have:

P (0)(x) = P (x), P (0) = c0;

P ′(x) = c1 + 2c2x + ... + ncnx
n−1, P ′(0) = c1;

P
′′
(x) = 2c2 + 3 · 2c3x + ... + n(n− 1)cnxn−2, P

′′
(0) = 2c2;

P
′′′
(x) = 3 · 2c3 + ... + n(n− 1)(n− 2)cnx

n−3, P
′′′
(0) = 3 · 2c3;

...

P (n)(x) = n!cn, P (n)(0) = n!cn;

P (k)(x) = 0, for k > n .

We obtain

ck =
P (k)(0)

k!
, k ∈ Z+,

and

P (x) = P (0) +
P ′(0)

1!
x +

P ′′(0)

2!
x2 + ... +

P (n)(0)

n!
xn .

From here, we easily get a more general formula

P (x) = P (x0) +
P ′(x0)

1!
(x− x0) +

P ′′(x0)

2!
(x− x0)

2 + ... +
P (n)(x0)

n!
(x− x0)

n .
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To prove it, we consider the polynomial Q(x) = P (x+x0), apply the previous
boxed formula to the polynomial Q(y), and then replace y be x− x0.

We’ll return to these formulas a bit later when we’ll begin the study the
Taylor expansion.

Exercise 16.1.2. Let u(x) and v(x) be twice differentiable non-vanishing
functions of x, and let

g(x) = log
u(x)

v(x)
.

Find g′′(x).

The next table gives expressions for the higher derivatives of some elemen-
tary functions. These expressions are of frequent use. The formulas can be
easily checked by induction with respect to the order of derivative.

f(x) f ′(x) f ′′(x) ... f (n)(x)

ax ax log a ax log2 a ... ax logn a

ex ex ex ... ex

sin x cos x − sin x ... sin
(
x + nπ

2

)

cos x − sin x − cos x ... cos
(
x + nπ

2

)

xµ µxµ−1 µ(µ− 1)xµ−2 ... µ(µ− 1)...(µ− n + 1)xµ−n

log |x| 1
x

− 1
x2 ... (−1)n−1(n− 1)!x−n

ax+b
cx+d

ad−bc
(cx+d)2

−2c(ad−bc)
(cx+d)2

... (−1)n−1cn−1n!(ad−bc)
(cx+d)n+1

1√
ax+b

− a
2(ax+b)3/2

a21·3
22(ax+b)5/2 ... (−1)nan1·3·...·(2n−1)

2n(ax+b)n+1
2

Exercise 16.1.3. Find (
log x

x

)(n)

.

Example 16.1.4. Consider the function

f(x) =
1

x2 − a2
.

First, represent f in the form more convenient for differentiation:

f(x) =
1

2a

(
1

x− a
− 1

x + a

)
.
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Making use of this form, we easily find that

f (n)(x) =
(−1)nn!

2a

(
1

(x− a)n+1
− 1

(x + a)n+1

)
.

Example 16.1.5. Let

f(x) = eax sin bx .

Then

f ′(x) = aeax sin bx + beax cos bx

=
√

a2 + b2

{
a√

a2 + b2
sin bx +

b√
a2 + b2

cos bx

}
eax

=
√

a2 + b2 sin(bx + ϕ)eax ,

where ϕ is an “auxiliary phase” defined by

sin ϕ =
b√

a2 + b2
, cos ϕ =

a√
a2 + b2

.

Differentiating further, we get

f (n)(x) = (a2 + b2)
n
2 sin(bx + nϕ)eax .

Functions which have derivatives of any order are called infinitely differ-
entiable. The elementary functions are usually infinitely differentiable in the
domain of definition. The set of infinitely differentiable functions on an interval
I is denoted by C∞(I).

Example 16.1.6. Consider the function

f(x) =





e−1/x2
for x 6= 0

0 for x = 0.

We show that f is an infinitely differentiable function on R and that

(1) f (n)(x) =





Pn

(
1
x

)
e−1/x2

, x 6= 0

0, x = 0,

where Pn(s) is a polynomial of degree 3n in s. We shall need a

Claim 16.1.7. For each p, p < ∞,

lim
x→0

x−pe−1/x2

= 0 .

Proof of the claim: follows by the change of variable: set t = 1/x2, then

lim
x→0

x−pe−1/x2

= lim
t→+∞

tp/2e−t = 0 .

2
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Making use of induction with respect to n, we see that (1) holds for all n ≥ 1
with P0 = 1 and

Pn+1(s) = 2s3Pn(s)− s2P ′
n(s) , degPn+1 = degPn + 3.

At the origin, using the claim and again the induction with respect to n, we
have

f (n+1)(0) = lim
x→0

f (n)(x)

x
= 0

This completes the argument. 2

Exercise 16.1.8. Build the infinitely differentiable function which vanishes
outside of the interval [0, 1] but does not vanish identically.

Exercise 16.1.9. Suppose

f(x) =





x2n sin 1
x

for x 6= 0

0 for x = 0.

Show that f is n times differentiable at the origin and f (j)(0) = 0, 1 ≤ j ≤ n.
Show that the n + 1-st derivative of f at the origin does not exist.

Exercise 16.1.10. Suppose f is an infinitely differentiable function on R such
that, for some n ∈ N, f (n)(x) ≡ 0 on R. Then f is a polynomial.

Problem* 16.1.11.

i. Suppose f is infinitely differentiable function on the real axis such that

∀x ∈ R ∃n ∈ Z+ ∀m ≥ n f (m)(x) = 0 .

Then f is a polynomial.

ii. Suppose f is infinitely differentiable function on the real axis such that

∀x ∈ R ∃n ∈ Z+ f (n)(x) = 0 .

Then f is a polynomial.

16.2. The Leibniz rule. We know that the product of two n times differ-
entiable functions is n times differentiable as well. The Leibnitz formula gives
an explicit expression for the n-th derivative of the product:

(uv)(n) =
n∑

m=0

(
n

m

)
u(n−m)v(m) ,

where, as usual,
(

n
m

)
is the binomial coefficient “n choose m”.

Proof: We use induction with respect to n. For n = 1 the formula is correct.
Suppose it is correct for the n-th derivative, and check its correctness for the
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n + 1-st derivative:

(uv)(n+1) =

(
n∑

m=0

(
n

m

)
u(n−m)v(m)

)′

=
n∑

m=0

(
n

m

)
u(n−m+1)v(m) +

n∑
m=0

(
n

m

)
u(n−m)v(m+1)

= u(n+1)v(0) +
n∑

m=1

((
n

m

)
+

(
n

m− 1

))
u(n+1−m)v(m) + u(0)v(n+1)

=
n+1∑
m=0

(
n + 1

m

)
u(n+1−m)v(m) ,

completing the argument. 2

Exercise 16.2.1. Find (x2 cos ax)(2008).

Example 16.2.2. Find the n-th order derivative of g(y) = arctan y at y = 0.
We’ll show that

g(n)(0) =





0 for n = 2m

(−1)m(2m)! for n = 2m + 1.

Indeed, since the function arctan y is odd, its derivatives of even order vanish
at the origin (prove it!), so we need to find only derivatives of odd orders. We
have

g′(y)(1 + y2) = 1.

Differentiating this equation n = 2m times and using the Leibnitz rule, we get
the recurrence relation

(1 + y2)g(n+1) + 2nyg(n) + n(n− 1)g(n−1) = 0.

Substituting here y = 0, we get

g(2m+1)(0) + 2m(2m− 1)g(2m−1) = 0.

Since g′(0) = 1, this yields the result. 2

Exercise 16.2.3. Show that

dn arcsin y

dyn

∣∣∣
y=0

=





0 for n = 2m

((2m− 1)!!)2 for n = 2m + 1.

Here, (2m− 1)!! = 1 · 3 · 5 · ... · (2m− 1).

Hint: use that (1− y2)g′′(y)− yg′(y) = 0 for g(y) = arcsin y.

Exercise 16.2.4. Function y(x) satisfies the differential equation y′′−xy = 0
with y(0) = 0 and y′(0) = 1. Find the derivatives of all orders y(n)(0).
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16.3. Derivatives of functions defined in the parametric form. Sometimes,
the function y(x) we need to differentiate is given in a parametric form:{

x = x(t)
y = y(t) a < t < b.

Suppose the function x(t) is invertible, then we denote the inverse function by t(x)
and obtain the function y(x) = y(t(x)) of variable x. We can differentiate this
function using the chain rule and express the derivatives in terms of the parameter
t:

dy

dx
=

dy

dt
· dt

dx
=

dy

dt
:
dx

dt
=

y′(t)
x′(t)

,

d2y

dx2
=

d

dt

(
y′(t)
x′(t)

)
dt

dx
=

y′′(t)x′(t)− y′(t)x′′(t)
x′3(t)

.

If needed, we can continue the process.

Example 16.3.1. Consider the equation of the ellipse:{
x = a cos t
y = b sin t

0 ≤ t ≤ 2π.

To make the function x(t) invertible, we assume that 0 ≤ t < π, however the
formulas we’ll obtain below do not depend on the choice of the domain for the
parameter t, for example, they also work if π ≤ t < 2π. We have

x′(t) = −a sin t, x′′(t) = −a cos t,

y′(t) = b cos t, y′′(t) = −b sin t,

and
dy

dx
=

b cos t

−a sin t
= − b

a
cot t,

d2y

dx2
=

(−b sin t)(−a cos t)− (b cos t)(−a sin t)
(−a sin t)3

=
b

a2 sin3 t
.
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17. Basic theorems of the differential calculus:
Fermat, Rolle, Lagrange. Applications

17.1. Theorems of Fermat and Rolle. Local extrema. We start with a
simple

Claim 17.1.1. Let the function f has the finite derivative at x0. If f ′(x0) > 0,
then there exists a δ > 0 such that

(I)





f(x) > f(x0) for x0 < x < x0 + δ

f(x) < f(x0) for x0 − δ < x < x0.

If f ′(x0) < 0, then

(II)





f(x) < f(x0) for x0 < x < x0 + δ

f(x) > f(x0) for x0 − δ < x < x0.

Proof of the claim: If f ′(x0) > 0, using the definition of the limit, we choose a
δ > 0 such that

f(x)− f(x0)

x− x0

> 0 for 0 < |x− x0| < δ.

This is equivalent to (I). The second case is similar. 2

In the case (I) we say that the function f increases at x0, in the case (II)
we say that the function f decreases at x0.

Definition 17.1.2. We say that the function f has a local extremum at the
point x0, if one of the following holds:

f(x) ≤ f(x0), ∀x ∈ U(x0),

f(x) ≥ f(x0), ∀x ∈ U(x0),

where U(x0) is a neighbourhood of x0. In the first case, we say that f has a
local maximum at x0, and a local minimum in the second case.

Theorem 17.1.3 (Fermat). Let a function f be defined in a neighbourhood
of a point x0, be differentiable at x0, and have a local extremum there. Then
f ′(x0) = 0.

The proof follows at once from the claim above. 2

If f ′(x) = 0 then the point x is called a critical point of the function f . The
set of all critical points

{
x : f ′(x) = 0

}
is called sometimes a stationary set of

the function f .
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17.1.1. Classification of local extrema. Vanishing of the derivative is only a
necessary condition for the local extremum, for example, consider the function
f(x) = x3 in a neighbourhood of the origin. Its derivative vanishes at the
origin, but the function does not have a local extremum there.

Note that if f attains its extremal value on the edge of the interval, then the
derivative does not have to vanish. For example, consider the identity function
f(x) = x on [−1, 1].

The next figure explains how to recognize what happens at critical points.

a

f ′ f ′

a

a a

a

f ′

f f f

f ′′(a) ≥ 0 f ′′(a) ≤ 0 f ′′(a) = 0

a a

a

Figure 12. Classification of local extrema

Exercise 17.1.4. Find the critical points and their characters for the functions

f(x) =
log2 x

x
, x > 0, and g(x) = x(x − 1)1/3, x ∈ R. Sketch the graphs of

these functions.

Hint: in the second example, the one-to-one change of variables t = (x− 1)1/3

simplifies the investigation.

17.1.2. Geometric applications. Now, we give two geometric applications of
Fermat’s theorem.

Question 17.1.5. Find x such that the rectangle on the following figure has
the maximal area (the radius of the circumference equals one).

To solve this question, denote by S(x) the area which we need to maximize.
Then S(x) = (1 + x)

√
1− x2. We need to maximize this function for −1 ≤
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-1 10 x

Figure 13

x ≤ 1. Since it is non-negative and vanishes at the end points x = ±1, at
achieves its maximum at some inner point x0 ∈ (−1, 1). Then S ′(x0) = 0; i.e.,

√
1− x2 − x(x + 1)√

1− x2
= 0 ,

and we get equation

2x2 + x− 1 = 0

with solutions x1 = 1
2

and x2 = −1. The second root it irrelevant for us, and

we see that the function S achieves its maximal value 3
√

3
4

at the point x = 1
2
.

2

In the second application, we prove the Snellius Law of Refraction. Recall
that Fermat’s principle of least action in optics says that the path of a light
ray is determined by the property that the time the light takes to go from
point A to point B under the given condition must be the least possible.

Question 17.1.6 (The Law of Refraction). Given two points A and B on
the opposite sides of the x-axis. Find the path from A to B that requires the
shortest possible time if the velocity on one side of the x-axis is a and on the
other side is b.

x

A

B

β

velocity = a

velocity = b

αh1

h2

L

Figure 14. Law of refraction
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If the light intersects the real axis at x, then the time it takes to go from A
to B equals

T (x) =
1

a

√
h2

1 + x2 +
1

b

√
h2

2 + (L− x)2 .

We are looking the minimum of this function. We have

T ′(x) =
1

a

x√
h2

1 + x2
− 1

b

L− x√
h2

2 + (L− x)2
.

This function vanishes for
1

a

x√
h2

1 + x2

︸ ︷︷ ︸
=sin α

=
1

b

L− x√
h2

2 + (L− x)2

︸ ︷︷ ︸
=sin β

.

Hence, the answer:
sin α

sin β
=

a

b
.

It is easy to see that we’ve indeed found the minimum of T . For instance,
since T ′′(x) > 0 everywhere (check!).

Hairer and Wanner write in their book (p. 93) that Fermat himself found
the problem too difficult for analytical treatment, and that the computations
were performed by Leibniz.

17.1.3. Rolle’s theorem and its applications.

Theorem 17.1.7 (Rolle). Let the function f be continuous on the closed in-
terval [a, b], be differentiable on the open interval (a, b), and let f(a) = f(b).
Then there exists a point c ∈ (a, b) such that f ′(c) = 0.

Proof: By the Weierstrass theorem, the continuous function f in the closed
interval [a, b] attains its maximal and minimal values:

f(xmin) = min
x∈[a,b]

f(x), f(xmax) = max
x∈[a,b]

f(x).

Consider two cases:

(i) First, assume that min[a,b] f = max[a,b] f . Then f is the constant function
and f ′ = 0 everywhere.

(ii) Now, suppose that min[a,b] f 6= max[a,b] f . Then at least one of the points
xmin, xmax must belong to the open interval (a, b), and by the Fermat theorem,
the derivative of f vanishes at this point. 2

Usually, counting zeroes of smooth functions, we are taking into account
their multiplicities: if

f(c) = f ′(c) = ... = 0, but f (n)(c) 6= 0,

then we say that f has zero of multiplicity n at c. If n = 1, we say that c is
a simple zero of f . For example, the function x 7→ xn (n ∈ N) has zero of
multiplicity n at the origin. The function ex − 1− x has zero of multiplicity 2
at the origin.
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Exercise 17.1.8. Construct a function the has zero of multiplicity m at x = 0
and n at x = 1. Construct a function the has zeroes of multiplicity 2 at each
integer point.

Exercise 17.1.9.

i. Show that if the function f is continuous on the closed interval [a, b], n
times differentiable on the open interval (a, b), and has n zeroes in (a, b), then
its n− 1-st derivative has at least one zero in the open interval (a, b).

ii. Show that if a polynomial P of degree n has n real zeroes, then its derivative
has n− 1 real zeroes.

iii. Show that if a polynomial of degree n has at least n + 1 real zeroes, then
it vanishes identically.

Problem 17.1.10. For non-zero c1, c2, ..., cn, and for pairwise distinct α1,
α2, ..., αn, prove that the equation

c1x
α1 + c2x

α2 + ... + cnx
αn = 0

has at most n− 1 zeroes in (0, +∞), and that the equation

c1e
α1s + c2e

α2s + ... + cne
αns = 0

has at most n− 1 real zeroes.

Hint: use induction with respect to n.

This bookkeeping can be made more accurate:

Problem 17.1.11 (Descartes’ sign rule). If α1 < α2 < ... < αn, then the
number of positive zeroes of the function

f(x) =
n∑

j=1

cjx
αj

(with their multiplicities) does not exceed the number of changes of signs in
the sequence of coefficients c1, c2, ..., cn.

17.2. Mean-value theorems.

Theorem 17.2.1 (Lagrange’s mean value theorem). Let the function f be
continuous on the closed interval [a, b] and differentiable on the open interval
(a, b). Then there is a point c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Proof: Notice, that in the special case f(b) = f(a) the result coincides with
the Rolle theorem. Now, using this special case we prove the general one.
For this, define a linear function L(x) that interpolates the values of f at the
end-points:

L(x) = f(a) +
f(b)− f(a)

b− a
(x− a),

and set
F (x) = f(x)− L(x).
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ba c

Figure 15. Lagrange’s MVT

We have F (a) = F (b) = 0, so the Rolle theorem can be applied to F . We get
an intermediate point c ∈ (a, b) such that F ′(c) = 0, or

f ′(c) = L′(c) =
f(b)− f(a)

b− a
,

completing the proof. 2

Corollary 17.2.2.
If the function f is differentiable on an open interval (a, b) and has a positive
derivative there, then f is strictly increasing. If f ′ is negative, then f is strictly
decreasing. If f ′ is non-negative, then f does not decrease, and if f ′ is not
positive, then f does not increase.
If f ′ ≡ 0 on (a, b), then f is a constant function.
If f is n times differentiable and f (n) ≡ 0, then f is a polynomial of degree
n− 1 or less.

Corollary 17.2.3. If f is a differentiable function, and f ′ = f . Then f(x) =
Cex (C is a constant).

Proof: Consider the function F (x) = f(x)e−x. Then F ′(x) = f ′(x)e−x −
f(x)e−x = 0, therefore, F is a constant function. 2

We’ve just learnt how to solve the simplest differential equations. The next
problem looks more complicated (but in a year, after the course of ordinary
differential equations you will recall it with a smile).

Problem 17.2.4. Let f be a twice differentiable function such that f ′′+f = 0.
Show that f(z) = C1 sin x + C2 cos x where C1 and C2 are constants.

Hint: multiply the equation by 2f ′, deduce that (f ′2 + f 2)′ = 0, hence f ′2 + f 2

is the constant function.

Exercise 17.2.5. Let f : (0, +∞) → R be a twice differentiable function, such
that f ′′(x) > 0 everywhere. Prove that for each x > 0,

f(2x)− f(x) < f(3x)− f(2x) .

Exercise 17.2.6. Let the function f be defined on the interval I, and for
some α > 1 and K < ∞ satisfy

|f(x)− f(y)| ≤ K|x− y|α, ∀x, y ∈ I.

Then f is a constant function.
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Problem 17.2.7 (Darboux). Let the function f be differentiable everywhere
in the segment [a, b]. Then f ′ attains every intermediate value between f ′(a)
and f ′(b).

Notice that we do not require here that the derivative f ′ is continuous.

Hint: consider first a special case when f ′(a) < 0 and f ′(b) > 0, and prove
that there exists c ∈ (a, b) such that f ′(c) = 0.

Warning: the obvious idea is that c must be an extremal point of f . In general,
the idea is correct, but before applying the Fermat theorem, do not forget to
check that c is not the end-point of the interval [a, b].

Problem 17.2.8. Prove that if f is an unbounded differentiable function on
an interval (a, b), then its derivative f ′ is also unbounded.

Whether the converse is true?

Problem 17.2.9. Prove that if f is a differentiable function on an interval
(a, b) (finite or infinite) with the bounded derivative, then f is uniformly con-
tinuous on this interval.

Whether the converse is true; i.e. whether the uniformly continuous differ-
entiable function must have a bounded derivative?

The next theorem slightly generalizes Lagrange’s theorem:

Theorem 17.2.10 (Cauchy’s extended mean value theorem). Let f and g be
continuous functions on [a, b] differentiable in the open interval (a, b). Then
there exists a point c ∈ (a, b) such that

f ′(c)[g(b)− g(a)] = g′(c)[f(b)− f(a)].

If g′ 6= 0 on (a, b), then g(b) 6= g(a), and

f(b)− f(a)

g(b)− g(a)
=

f ′(c)
g′(c)

.

Proof: Notice, that if g(x) = x then we get the previous result. The strategy
of the proof is similar: define an auxiliary function

F (x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)].

This function vanishes at the end-points: F (b) = F (a) = f(a)g(b)− f(b)g(a),
and applying the Rolle theorem, we get the result. 2

17.3. L’Hospital’s rule. Here we prove a theorem which in many cases sim-
plifies calculation of limits.

Theorem 17.3.1. Let f and g be differentiable functions defined on an inter-
val (a, b) with

f(a + 0) = g(a + 0) = 0.

If g′(x) 6= 0 for x ∈ (a, b), and the limit

lim
x↓a

f ′(x)

g′(x)
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exists, then the limit

lim
x↓a

f(x)

g(x)

also exists and has the same value.

Proof: Set f(a) = g(a) = 0, then the functions f and g are continuous on
[a, b). By Cauchy’s extended mean value theorem, for x ∈ (a, b) there is an
intermediate value c between a and x such that

f(x)

g(x)
=

f(x)− f(a)

g(x)− g(a)
=

f ′(c)
g′(c)

.

As x decreases to a, c = c(x) also tends to a. By the assumption, the limit of
the right hand side exists, so f(x)/g(x) has the same limit. 2

There are many other versions of L’Hospital rule. The limit point a can
be replaced by −∞ or +∞. The limit values of f and g can be +∞ or −∞
instead of 0. The limit of f ′(x)/g′(x) also can be equal +∞ or −∞. In all
these cases, the l’Hospital rule persists.

Here, we explain how to modify the proof if

f(a + 0) = g(a + 0) = +∞.

Let a < x < y < b. Then

f(y)− f(x)

g(y)− g(x)
=

f ′(c)
g′(c)

for some c ∈ (x, y). From here, we find that

f(x)

g(x)
:
f ′(c)
g′(c)

=
1− g(y)/g(x)

1− f(y)/f(x)
.

Set

A = lim
t↓a

f ′(t)
g′(t)

,

and fix an arbitrary small positive ε. First, we choose y so close to a that

1− ε <
f ′(c)
g′(c)

: A < 1 + ε.

Then we choose x such that

1− ε <

∣∣∣∣
1− g(y)/g(x)

1− f(y)/f(x)

∣∣∣∣ < 1 + ε .

(why this is possible?) We obtain

(1− ε)2 <
f(x)

g(x)
: A < (1 + ε)2.

Letting ε → 0, we complete the proof of this case. 2

The other cases are left as an exercise.

Examples:
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i.

lim
x→0

tan x− x

x− sin x
= lim

x→0

1
cos2 x

− 1

1− cos x
= lim

x→0

1

cos2 x

1− cos2 x

1− cos x
= 2.

ii.

lim
x→0

(
1

x2
− cot2 x

)
= lim

x→0

sin2 x− x2 cos2 x

x2 sin2 x

= lim
x→0

sin x + x cos x

sin x
· lim

x→0

sin x− x cos x

x2 sin x

= 2 · lim
x→0

x sin x

2x sin x + x2 cos x
=

2

3
.

Exercise 17.3.2. Find the limits

lim
x→0

ax + a−x − 2

x2
(a > 0), lim

x→0

ax − bx

cx − dx
(c 6= d) .

Problem 17.3.3. Prove that if f is differentiable on (a, +∞) and

lim
x→+∞

f ′(x) = 0,

then f(x) = o(x) when x → +∞.

Problem 17.3.4. Prove that if the function f has the second derivative at x,
then

f ′′(x) = lim
h→0

f(x + h) + f(x− h)− 2f(x)

h2
.

Whether existence of the limit on the right hand side yields existence of the
second derivative of f at x?

17.4. Appendix: Algebraic numbers. Lagrange’s MVT has a nice application
in the algebraic number theory.

Definition 17.4.1. The number t ∈ R is algebraic if there exist a0, a1, ..., an ∈ Z,
an 6= 0, with

n∑

j=0

ajt
j = 0 .

The degree of the algebraic number t is the least possible n with this property.
The number t ∈ R is transcendental if it is not algebraic.

For instance, the rational numbers are algebraic numbers of degree 1,
√

2 is an
algebraic number of degree 2. The number 103/17 is also algebraic.

Note that if a rational number satisfies some algebraic equation with rational coef-
ficients, then it satisfies another equation of the same degree with integer coefficients
and hence is algebraic.

The first question is natural: do the transcendental numbers exist?

Exercise 17.4.2 (Cantor). The set of algebraic numbers is countable. Hence, the
transcendental numbers exist.

Unfortunately, this neat argument does not give us explicit examples of transcen-
dental numbers.
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Theorem 17.4.3 (Liouville). Suppose t is an algebraic number of degree n ≥ 2.
Then there exist a positive constant c (depending on t) such that

∣∣t− p

q

∣∣ ≥ c

qn

for any p, q ∈ Z.

The theorem says that algebraic numbers are badly approximated by the rational
ones.

Proof: We assume that
∣∣t− p

q

∣∣ < 1 (otherwise, any c ≤ 1 works).

Suppose that P (x) =
n∑

j=0

ajx
j is a polynomial of degree n with integer coefficients

such that P (t) = 0.

Claim 17.4.4. The polynomial P cannot have rational roots.

Proof of Claim: Indeed, suppose that P (
p

q
) = 0. Then

P (x) = P (x)− P (
p

q
) = (x− p

q
)Q(x)

where Q is a polynomial with rational coefficients of degree n− 1. Since

Q(t) =
P (t)

t− p/q
= 0

we arrive at the contradiction (t cannot satisfy an algebraic equation of degree less
than n). This proves the claim. 2

The claim yields that, for any integers p and q, the number P (p/q) is a non-zero
rational number of the form r/qn with integer r 6= 0. Hence

∣∣P (p

q

)∣∣ ≥ 1
qn

.

Now, we have

1
qn
≤ ∣∣P (p

q

)∣∣ =
∣∣P (p

q

)− P (t)
∣∣ MVT=

∣∣p
q
− t

∣∣|P ′(ξ)| .

The point ξ lies in the interval with the end-points at t and p/q, hence, it belongs
to the larger interval (t − 1, t + 1). Denoting by M the maximum of |P ′| over the
closed interval [t− 1, t + 1], we get

1
Mqn

≤ ∣∣p
q
− t

∣∣ .

Hence, the result. 2

The numbers t ∈ R such that

∀n ≥ 2 ∃p

q
∈ Q ∣∣t− p

q

∣∣ ≤ 1
qn

are called the Liouville numbers. The Liouville theorem says that they are tran-
scendental.
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Example 17.4.5. The number

t =
∞∑

k=1

1
10k!

is the Liouville number.
Indeed, let

p

q
=

n∑

k=1

1
10k!

.

Then q = 10n!, and

0 < t− p

q
=

∞∑

k=n+1

1
10k!

<
2

10(n+1)!
,

while
1
qn

=
1

10n·n!
.

Since 10n! > 2 (sic!), we have

10(n+1)! =
(
10n!

)n+1
> 2 · 10n·n! ,

i.e.,

0 < t− p

q
<

1
qn

.

Done! 2

It is worth mentioning that the numbers e and π are transcendental but the proofs
are not so simple (they are due to Hermite and Lindemann) and they were found
after Liouville proved his theorem.
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18. Inequalities

Here, we show how the differential calculus helps to prove useful inequalities.

18.1. 2
πx ≤ sinx ≤ x, 0 ≤ x ≤ π

2 . The right inequality we already know. In
order to prove the left inequality, consider the function

ϕ(x) =
sinx

x
, 0 ≤ x ≤ π

2
.

We have

ϕ′(x) =
x cosx− sinx

x2
=

cosx

x2
(x− tan x).

Since x ≤ tanx on the interval [0, π
2 ), ϕ′(x) ≤ 0. Therefore, the function ϕ does not

increase, and

ϕ(x) ≥ ϕ
(π

2

)
=

2
π

,

proving the inequality. 2

Exercise 18.1.1. Show that the equality signs attains only at the end-points x = 0
and x = π

2 .

18.2. x
1+x

< log(1 + x) < x, x > −1, x 6= 0. In order to prove the right
inequality, consider the function ψ(x) = log(1 + x)− x. Its derivative equals

ψ′(x) =
1

1 + x
− 1 = − x

1 + x
.

Therefore, the function ψ increases on (−1, 0), has a local maximum at x = 0
and decreases for x > 0. At the end-points it equals −∞:

lim
x↓−1

ψ(x) = lim
x↑+∞

ψ(x) = −∞.

So that, the function ψ attains its global maximum at the origin, and hence
log(1 + x) < x for x > −1, x 6= 0.

To prove the left inequality, we set

ψ(x) = log(1 + x)− x

1 + x
.

In this case,

ψ′(x) =
1

1 + x
− 1

(1 + x)2
=

x

(1 + x)2
.

Now, ψ′ is positive for x > 0, vanishes at the origin and is negative for −1 <
x < 0. Therefore, ψ decreases for −1 < x < 0 and increases for x > 0. The
limiting values of ψ equals +∞:

lim
x↓−1

ψ(x) = lim
x↑+∞

ψ(x) = +∞.

So that, ψ attains its global minimum at the origin, and

log(1 + x) >
x

1 + x
, x > −1, x 6= 0,

completing the argument. 2
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Exercise 18.2.1. Show that

a− b

a
< log

a

b
<

a− b

b

for positive a and b.

The inequality we proved has an interesting application:

Corollary 18.2.2. There exists the limit

γ = lim
n→∞

( n∑
j=1

1

j
− log n

)
.

The constant γ is called the Euler constant. Its approximate value is γ ≈
0.5772.

Proof of Corollary: Consider the series

(S)
∞∑

j=1

(
1

j
− log

j + 1

j

)
.

We’ll show that the terms of this series are positive and that the series is
convergent.

Indeed,
1

j + 1
=

1/j

1 + 1/j
< log

(
1 +

1

j

)
<

1

j
,

so that

0 <
1

j
− log

(
1 +

1

j

)
<

1

j
− 1

j + 1
<

1

j2
,

and the series (S) converges since the series
∑

j≥1
1
j2 is convergent.

Denote by γ the sum of the series S. Then
n∑

j=1

1

j
=

n∑
j=1

(
1

j
− log

j + 1

j

)
+ log(n + 1)

= γ + o(1) + log n + o(1) = γ + log n + o(1), n →∞,

proving the corollary. 2

18.3. Bernoulli’s inequalities. We prove that for x > 0

xα − αx ≤ 1− α, 0 < α < 1,

xα − αx ≥ 1− α, α < 0, or α > 1,

with strong inequalities for x 6= 1.
Consider the function

f(x) = xα − αx + α− 1, x > 0.

Then f ′(x) = α(xα−1 − 1). If 0 < α < 1, then f ′ is positive on (0, 1), vanishes at
x = 1 and is negative for x > 1, and the limiting values of f are negative:

f(+0) = α− 1 < 0,
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lim
x→+∞ f(x) = −∞.

So that
f(x) < f(1) = 0, for x > 0, x 6= 1.

Similarly, if α < 0 or α > 1, f decreases on (0, 1) and increases on (1, +∞), and
the limiting values of f are positive. So that, in this case

f(x) > f(1) = 0, for x > 0, x 6= 1,

completing the proof. 2

Exercise 18.3.1. Prove inequalities:

xm(1− x)n ≤ mmnn

(m + n)m+n
, m, n > 0, 0 ≤ x ≤ 1 ,

(x + 1)2−
n−1

n ≤ (xn + 1)
1
n ≤ x + 1 , n ≥ 1, x > 0 .

Exercise 18.3.2. Prove that equation log x = cx
(i) has no solutions if c > 1

e
;

(ii) has a unique solution if c = 1
e

or if c ≤ 0;
(iii) has two solutions if 0 < c < 1

e
.

Exercise 18.3.3. Prove that equation log(1 + x2) = arctan x has two real
solutions.

18.4. Young’s inequality. Here, we prove that

(Y ) ab ≤ ap

p
+

bq

q
,

for a, b > 0, 1
p

+ 1
q

= 1, p, q > 1, and the equality sign attains for ap = bq only.

Introduce the function

h(a) = ab− ap

p
.

Then

h′(a) = b− ap−1.

We see that

h′(a)





< 0, for a < b1/(p−1)

= 0, for a = b1/(p−1)

> 0, for a > b1/(p−1).

Therefore,

h(a) ≤ h
(
b1/(p−1)

)
= b1+ 1

p−1 − b
p

p−1

p
=

bq

q
,

and the equality sign attains only when a = b1/(p−1). This proves the state-
ment. 2

If p > 1, the value q = p
p−1

is called sometimes the dual to p. I.e., if p and q

are dual to each other, then 1
p

+ 1
q

= 1.
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Exercise 18.4.1. Prove the inequality

ab ≤ ea + b log
b

e
, a, b > 0.

18.5. Hölder’s inequality. The Hölder inequality says that

(H)
n∑

j=1

xjyj ≤
(

n∑
j=1

xp
j

)1/p (
n∑

j=1

yq
j

)1/q

provided that xj, yj ≥ 0, p, q > 1 and 1
p

+ 1
q

= 1, with the equality sign only

in the case when
xp

j

yq
j

= const, 1 ≤ j ≤ n.

When p = q = 2, with get the Cauchy-Schwarz inequality

n∑
j=1

xjyj ≤
(

n∑
j=1

x2
j

)1/2 (
n∑

j=1

y2
j

)1/2

.

Proof of (H): Set

X =

(
n∑

j=1

xp
j

)1/p

, Y =

(
n∑

j=1

yq
j

)1/q

,

and

a =
xj

X
, b =

yj

Y
.

Applying the Young inequality (Y), we get

xj

X
· yj

Y
≤ 1

p

xp
j

Xp
+

1

q

yq
j

Y q
, 1 ≤ j ≤ n.

Adding these inequalities, we obtain

1

X · Y
n∑

j=1

xjyj ≤ 1

p
· 1 +

1

q
· 1 = 1,

which yields (H).
There is the equality sign in (H) if and only if for each j we applied (Y)

with the equality sign, that is
(xj

X

)p

=
(yj

Y

)q

,

or setting λ = Xp/Y q, we obtain

xp
j = λyq

j , 1 ≤ j ≤ n,

completing the argument. 2
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18.6. Minkowski’s inequality. Minkowski’s inequality says

(M)




n∑

j=1

(xj + yj)p




1/p

≤



n∑

j=1

xp
j




1/p

+




n∑

j=1

yp
j




1/p

provided that xj , yj > 0 and p ≥ 1.

Proof of (M): Let the index q be dual to p. Then
n∑

j=1

(xj + yj)p =
n∑

j=1

xj(xj + yj)p−1 +
n∑

j=1

yj(xj + yj)p−1

≤



n∑

j=1

xp
j




1/p 


n∑

j=1

(xj + yj)(p−1)q




1/q

+




n∑

j=1

yp
j




1/p 


n∑

j=1

(xj + yj)(p−1)q




1/q

=




n∑

j=1

xp
j




1/p 


n∑

j=1

(xj + yj)p




1/q

+




n∑

j=1

yp
j




1/p 


n∑

j=1

(xj + yj)p




1/q

,

whence (M) follows at once. 2

We finish this lecture mentioning two beautiful and deep inequalities proven
by Swedish mathematicians:

Problem* 18.6.1 (Carleman). Let
∑

j≥1 aj be a convergent series with pos-
itive terms. Then the series

∑
j≥1

{a1...aj}1/j

also converges and its sum is

< e
∑
j≥1

aj.

The constant e in this inequality cannot be replaced by a smaller one.

Problem* 18.6.2 (Carlson).
(∑

j≥1

aj

)4

≤ π2

(∑
j≥1

a2
j

)(∑
j≥1

j2a2
j

)
.

The constant π on the right hand side is optimal.
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Try to solve these with some constants on the right hand side. This is also
not easy. If you want to learn more about the inequalities, you should look at
the classical book:

Hardy, Littlewood, Polya “Inequalities”

or at the recent book

J.M.Steele “ Cachy-Schwarz master class”.
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19. Convex functions. Jensen’s inequality

19.1. Definition. Let I be an interval, open or closed, finite or infinite. The
function f : I → R is called convex if its graphs lies below the chord between
any two points on the graph.

f(x)

x1 x2x

L(x)

Figure 16. Convexity

Now, we’ll find an analytic form of this condition. We fix two points x1, x2 ∈
I, x1 < x2, and let x be an intermediate point between x1 and x2; i.e. x1 ≤
x ≤ x2. Let y = L(x) be an equation of the chord which joins the points
(x1, f(x1)) and (x2, f(x2)). Then the definition says

f(x) ≤ L(x) ∀x ∈ [x1, x2].

The affine function L is given by the equation

L(x) = f(x1) +
f(x2)− f(x1)

x2 − x1

(x− x1),

so that we get the inequality

(a) (x2 − x1)f(x) ≤ (x2 − x)f(x1) + (x− x1)f(x2),

which holds for any triple of points x1 ≤ x ≤ x2 from I. We set

x = λx1 + (1− λ)x2, λ =
x− x1

x2 − x1

,

and get

(a′) f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for each λ ∈ [0, 1] and each x1 < x2 in I. Obviously, (a) and (a′) are equivalent.
Taking λ = 1

2
, we get

f
(x + y

2

) ≤ f(x) + f(y)

2
for each x, y ∈ I. This property is “almost equivalent” to convexity of f :

Exercise 19.1.1. If the function f is continuous on an interval I and if for
any pair of points x, y ∈ I, x < y:

f

(
x + y

2

)
≤ f(x) + f(y)

2
,
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then f is convex on I.

It is convenient way to rewrite condition (a) as a double inequality be-
tween the slopes of three chords which join the points (x1, f(x1)), (x, f(x))
and (x2, f(x2)) on the graph of f :

γ
α

β

Figure 17. α < β < γ

(b)
f(x)− f(x1)

x− x1

≤ f(x2)− f(x1)

x2 − x1

≤ f(x2)− f(x)

x2 − x
.

Each of these two inequalities after a simple transformation reduces to (a).

Exercise 19.1.2. If f and g are two convex functions defined on the same
interval I, then the functions cf(x), where c is a positive constant, f(x)+g(x)
and max{f(x), g(x)} are convex as well.

From this exercise we see that the function |x| is convex on R, and more gen-
erally, if L1(x), ..., Ln(x) are affine functions, then the function max1≤j≤n Lj(x)
is also convex.

The other examples will be given a bit later after we’ll find a simple way to
verify that a twice-differentiable function is convex.

Problem 19.1.3 (Geometric meaning of convexity). The set F ⊂ R2 is called
convex if, for any two points A,B ∈ F , the whole segment [A,B] that connects
these two points also belongs to F . For instance, the disk, the triangle and
the rectangle are convex sets, while the annulus is not convex.

Suppose f : I → R, I is an open interval. Consider the set Γ+(f) =
{(x, y) : x ∈ I, y ≥ f(x)}. This is a set of points P (x, y) that lie above the
graph of f .

Prove that the function f is convex iff the set Γ+(f) is convex.

19.2. Fundamental properties of convex functions.

Claim 19.2.1. Any convex function on an open interval is continuous.
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Proof: Fix two points t, x ∈ I, t > x which are not the end-points of I. Choose
a subinterval [a, b] ⊂ I such that [x, t] ⊂ (a, b). Then applying condition (b)
to the triple x < t < b, we get

f(t)− f(x)

t− x
≤ f(b)− f(x)

b− x

and
f(x)− f(a)

x− a
≤ f(t)− f(x)

t− x
.

Thus

(t− x)
f(x)− f(a)

x− a
≤ f(t)− f(x) ≤ (t− x)

f(b)− f(x)

b− x
,

which yields continuity of f . 2

Question 19.2.2. Suppose the function f is convex on a closed interval [a, b].
Whether it has to be continuous at the end-points a and b?

Exercise 19.2.3. If f is convex on the closed interval [a, b], then f attains its
maximal value at one of the end-points:

max
x∈[a,b]

f(x) = max{f(a), f(b)}.

Claim 19.2.4. Set

mf (x, y) =
f(y)− f(x)

y − x
.

If f is convex, then the functions x 7→ mf (x, y) and y 7→ mf (x, y) are increas-
ing.

Proof: is a reformulation of (b). 2

In the next claim, we’ll use one-sided derivatives of the function f defined
by

f ′+(x) = lim
t↓x

f(t)− f(x)

t− x

(the right derivative) and

f ′−(x) = lim
t↑x

f(t)− f(x)

t− x

(the left derivative). The (usual) derivative f ′(x) exists if and only if the right
and left derivatives exist and equal to each other.

Claim 19.2.5. If f is convex on I, then f has the right and left derivatives,
and

f ′−(x) ≤ f ′+(x) ≤ f ′−(y),

for any x < y, x, y ∈ I.

Proof: follows from the previous claim. 2
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Remark 19.2.6. The same argument shows that if f is convex on the closed
interval [a, b], then the one-sided derivatives f ′+(a) and f ′−(b) exist, and

f ′+(a) ≤ f ′−(x), ∀x ∈ (a, b],

f ′−(b) ≥ f ′+(x), ∀x ∈ [a, b).

Exercise 19.2.7. Prove that the set of points x where the derivative of a
convex function does not exist is at most countable.

Claim 19.2.8. If f is differentiable on I, then f is convex if and only if f ′

does not decrease.

Proof: In one direction, this follows from the inequalities between the one-
sided derivatives. Now, assume that f ′ does not decrease. Then using the
Lagrange mean value theorem we get for any triple x1 < x < x2 there are
points ξ1 ∈ [x1, x], and ξ2 ∈ [x, x2] such that

f(x)− f(x1)

x− x1

= f ′(ξ1) and f ′(ξ2) =
f(x2)− f(x)

x2 − x
.

Since f(ξ1) ≤ f(ξ2), this yields inequality (a). 2

Claim 19.2.9. If f is twice differentiable on I, then it is convex if and only
if f ′′ ≥ 0.

Proof: follows from the previous claim. 2

Problem 19.2.10. Let f ∈ C2(R) and

lim
x→+∞

f(x) = lim
x→−∞

f(x) = 0.

Prove that there exist at least two points c1 and c2 such that

f ′′(c1) = f ′′(c2) = 0 .

19.3. A function f is called concave if the function −f is convex. The affine
function is the only one which is convex and concave at the same time.

• The function f(x) = xa is convex on [0, +∞) for a ≥ 1, is convex on (0, +∞)
for a ≤ 0, and is concave on [0, +∞) for 0 ≤ a ≤ 1.

• The exponent f(x) = ax is a convex function on R.

• The logarithmic function f(x) = log x is a concave function on (0, +∞).

• The function f(x) = sin x is concave on [0, π] and convex on [π, 2π].

Exercise 19.3.1. Suppose that t ≥ 1. Show that

2tp ≤ (t− 1)p + (t + 1)p

for p ≥ 1, and
2tp ≥ (t− 1)p + (t + 1)p

for 0 ≤ p ≤ 1.

Exercise 19.3.2. If g is the inverse function to a convex one, then g is concave.
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19.4. Jensen’s inequality.

Theorem 19.4.1. Let f be a convex function in the interval I, and let x1, x2,
..., xn ∈ I. Then

(J) f

(
n∑

j=1

αjxj

)
≤

n∑
j=1

αjf(xj)

provided that α1, ..., αn ≥ 0 and
∑n

j=1 αj = 1.

Proof: We shall use induction with respect to n. The case n = 2 corresponds
to inequality (a′) proved above.

Now, assuming that (J) is proven for n = m− 1, we prove it for n = m. We
assume that αm > 0 (if αm = 0, then we have already the result), and take
β = α2 + ... + αm > 0. Notice that α1 + β = 1 and that

α2

β
+ ... +

αm

β
= 1.

Then applying (J) first with n = 2 and then with n = m− 1 we get

f(α1x1 + ... + αnxn) = f

(
α1x1 + β

(
α2

β
x2 + ... +

αm

β
xm

))

≤ α1f(x1) + βf

(
α2

β
x2 + ... +

αm

β
xm

)

≤ α1f(x1) + ... + αmf(xm),

completing the proof. 2

Problem 19.4.2. Prove that if αj > 0 for every j, then there is equality in
(J) if and only if f is the affine function in the interval [min xj, max xj].

Examples:

i. Take f(x) = log x. This function is concave, so (J) works with the opposite
inequality:

α1 log x1 + ... + αn log xn ≤ log (α1x1 + ... + αnxn) .

Taking the exponent of the both sides, we get

xα1
1 · ... · xαn

n ≤ α1x1 + ... + αnxn,

provided that α1, ..., αn ≥ 0 and
∑n

j=1 αj = 1.
Consider a special case with

α1 = α2 = ... = αn =
1

n
.

We get celebrated Cauchy’s inequality between the geometric and arithmetic
means:

n
√

x1 · ... · xn ≤ x1 + ... + xn

n
.
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ii. Now, we apply the Jensen inequality to the function f(x) = xp, p > 1,
again with α1 = ... = αn = 1

n
. Recall, that f is convex for such p’s. We obtain

that for any x1, ..., xn > 0

1

n

n∑
j=1

xj ≤
(

1

n

n∑
j=1

xp
j

)1/p

, p > 1 .

Note that this inequality also follows from Hólder’s inequality.

Problem 19.4.3. For x1, ..., xn > 0 and p ∈ R \ {0}, set

Mp(x1, ..., xn) =

{
1

n

n∑
j=1

xp
j

}1/p

.

This quantity is called the p-th mean of the values x1, x2, ..., xp.

i. Find the limits

lim
p→0

Mp(x1, ..., xn), lim
p→+∞

Mp(x1, ..., xn), and lim
p→−∞

Mp(x1, ..., xn).

ii. Show that the function p 7→ Mp(x1, ..., xn) is strictly increasing unless all
xj are equal, in that case Mp(x1, ..., xn) is their common value for all p.
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20. The Taylor expansion

In this lecture we develop the polynomial approximation to smooth functions
which works both locally and globally.

20.1. Local polynomial approximation. Peano’s theorem. The start-
ing point of this lecture is the following

Problem. Let the function f has n derivatives6 at x0. Find the polynomial
Pn(x) of degree ≤ n such that

f(x) = Pn(x) + o((x− x0)
n), x → x0.

In the case n = 1, we know that the solution is given by the linear function

P1(x) = f(x0) + (x− x0)f
′(x0).

Juxtaposing this with another formula

P (x) =
n∑

j=0

P (j)(x0)

j!
(x− x0)

j

which we proved in Section 16 for an arbitrary polynomial P of degree n, we
can guess that the answer to our problem is given by the polynomial

Pn(x) = Pn(x; x0, f) =
n∑

j=0

f (j)(x0)

j!
(x− x0)

j

called the Taylor polynomial of degree n of the function f at x0. The difference

Rn(x) = Rn(x; x0, f) = f(x)− Pn(x)

called the remainder.
The Taylor polynomial of degree n interpolates at the point x0 the value of

f and of its first n derivatives:

P (j)
n (x0) = f (j)(x0), 0 ≤ j ≤ n.

Therefore, the remainder vanishes at x0 with its first n derivatives:

R(j)
n (x0) = 0, 0 ≤ j ≤ n.

The following claim finishes the job:

Claim 20.1.1. Suppose the function g has n derivatives at x0, and

g(x0) = g′(x0) = ... = g(n)(x0) = 0.

Then

g(x) = o((x− x0)
n), x → x0.

6This means that f is differentiable n − 1 times in a neighbourhood of x0 and the n-th
derivatives exists at x0.
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Proof: We shall use induction in n. For n = 1, we have

lim
x→x0

g(x)

x− x0

= lim
x→x0

g(x)− g(x0)

x− x0

= g′(x0) = 0.

Now, having the claim for n, we’ll prove it for n + 1, using the Lagrange
mean value theorem:

g(x) = g(x)− g(x0) = g′(c)(x− x0),

where c is an intermediate point between x0 and x. By the inductive assump-
tion,

g′(x) = o((x− x0)
n−1), x → x0,

hence

g′(c) = o((c− x0)
n−1) = o((x− x0)

n−1), x → x0.

This proves the claim. 2.

Theorem 20.1.2 (Peano). Let the function f have n derivatives at x0. Then

f(x) =
n∑

j=0

f (j)(x0)

j!
(x− x0)

j + o((x− x0)
n), x → x0.

20.2. The Taylor remainder. Theorems of Lagrange and Cauchy.
The Peano theorem shows that the Taylor polynomial Pn(x) well approximates
the function f locally in a small neighbourhood of x0 (which generally speaking
may shrink as n → ∞). It appears, that in many cases Pn(x) is close to f
globally, that is in a fixed interval containing x0 whose size does not depend
on n. In order to prove this, we need to find a convenient expression good for
the remainder Rn(x).

First, we introduce some notations: let I be an interval (it can be open or
close, finite or infinite). By Cn(I) we denote the class of all n-times differ-
entiable functions on I such that the n-th derivative is continuous on I. By
C∞(I) we denote the class of all infinitely differentiable functions on I.

Theorem 20.2.1. Let f ∈ Cn[x0, x], and let f (n+1) exist on (x0, x). Let
the function ϕ be continuous on [x0, x], be differentiable on (x0, x), and the
derivative ϕ′ do not vanish on (x0, x). Then there exists an intermediate point
c between x0 and x such that

(R) Rn(x) =
ϕ(x)− ϕ(x0)

ϕ′(c)n!
f (n+1)(c)(x− c)n.

Proof: Fix x and consider the function

F (t)
def
= f(x)−

{
f(t) +

f ′(t)
1!

(x− t) + ... +
f (n)(t)

n!
(x− t)n

}
.

Then F (x) = 0, F (x0) = Rn(x; x0), and

F ′(t) = −f (n+1)(t)

n!
(x− t)n.
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So that

Rn(x; x0)

ϕ(x)− ϕ(x0)
= −F (x)− F (x0)

ϕ(x)− ϕ(x0)

Cauchy′sMVT
= −F ′(c)

ϕ′(c)
=

f (n+1)(c)

n!ϕ′(c)
(x− c)n

completing the proof. 2

In what follows, we use two special cases of (R). Taking

(L) ϕ(t) = (x− t)n+1,

we arrive at the Lagrange formula for the remainder:

Rn(x) =
(x− x0)

n+1

(n + 1)!
f (n+1)(c).

This immediately yields a good estimate of the remainder:

Corollary 20.2.2. Suppose the function f is the same as in Theorem 2. Then

|Rn(x)| ≤ |x− x0|n+1

(n + 1)!
sup
c∈I

|f (n+1)(c)|.

Taking in (R) ϕ(t) = x − t, we arrive at another representation for the
remainder Rn(x) called the Cauchy formula:

(C) Rn(x) =
(x− c)n(x− x0)

n!
f (n+1)(c),

which sometimes gives a better result than the Lagrange formula. The both
forms will be extensively used in the next lecture.

Exercise 20.2.3. Find the approximation error:

√
1 + x ≈ 1 +

x

2
− x2

8
, 0 ≤ x ≤ 1 .

Problem* 20.2.4. Suppose that the function f is twice differentiable on [0, 1],
f(0) = f(1) = 0, and sup |f ′′| ≤ 1. Show that |f ′′| ≤ 1

2
everywhere on [0, 1].

Problem* 20.2.5 (Hadamard’s inequality). Suppose that the function f is
twice differentiable on R, and set Mk = supR |f (k)|, k = 0, 1, 2. Show that
M2

1 ≤ 2M0M2.

C∞-functions whose derivatives do not grow too fast with n:

sup
I
|f (n)| ≤ Cnn! , n ∈ Z+ ,

are called real analytic.

Problem 20.2.6. Let f be a real analytic function on the interval I.

(i) Show that the Taylor series of f at x0 converges to f on the set
{x ∈ I : |x− x0| < C−1} (C is the same constant as in the real analyticity
condition).
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(ii) Show that if f vanishes with all its derivatives at some point x0 of I:

f (n)(x0) = 0, j ∈ Z+,

then f is the zero function.

In Lecture 15 we defined the Lagrange interpolation polynomial of degree n
with the interpolation nodes at the pairwise distinct points {xj}0≤j≤n:

Ln(x) = Ln(x; x0, f) =
n∑

j=0

f(xj)Q(x)

Q′(xj)(x− xj)
,

where
Q(x) = (x− x0)(x− x1)...(x− xn).

Problem* 20.2.7. Show that if f ∈ Cn[a, b] and f (n+1) exists on (a, b), then
for any choice of nodes {xj} ⊂ [a, b] there exists a point c ∈ (a, b) such that

f(x)− Ln(x) =
Q(x)

(n + 1)!
f (n+1)(c).

In particular,

max
I
|f − Ln| ≤ maxI |Q|

(n + 1)!
sup

I
|f (n+1)|.

Hint: Take r = f − Ln, and consider the function

t 7→ r(x)Q(t)− r(t)Q(x).

This function has n + 2 zeroes on [a, b], so that its n + 1-st derivative vanishes
at an intermediate point c.
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21. Taylor expansions of elementary functions

Let f be a C∞-function on I. In many cases, using one of the formulas for the
remainder, we can conclude that

lim
n→∞

Rn(x; x0) = 0

for any point x from the interval I 3 x0. This means that

(T ) f(x) =
∞∑

j=0

f (j)(x0)

j!
(x− x0)

j, x ∈ I.

The series on the right hand side is called the Taylor series of f at x0. The
formula (T) says the Taylor series converges to f everywhere on I.

We should warn that even if the Taylor series converges, it does not have to
represent the function f . For example, the Taylor series at the origin of the
C∞-function

f(x) =





e−1/x2
, x 6= 0

0, x = 0

has only zero coefficients (since f (j)(0) = 0, j ≥ 0), and does not represent the
function f anywhere outside the origin.

In the rest of this lecture we consider examples of the Taylor series for
elementary functions. In all examples below, we choose x0 = 0 and set Rn(x) =
Rn(x; 0, f).

21.1. The exponential function. We start with the exponential function
f(x) = ex. Then by Lagrange’s estimate for the remainder, for any M < +∞,

max
[−M,M ]

|Rn(x)| ≤ Mn+1eM

(n + 1)!
.

The right hand side converges to zero as n →∞, hence

ex =
∞∑

j=0

xj

j!
, x ∈ R.

In particular, we obtain that

e =
∞∑

j=0

1

j!
,

with a good estimate for the remainder:

0 < e−
n∑

j=0

1

j!
<

e

(n + 1)!
<

3

(n + 1)!
.

Exercise 21.1.1. Which n one should take to compute e with error at most
10−10?

Claim 21.1.2. The number e is irrational.
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Proof: Let e = m
n

and sn =
∑n

k=1(k!)−1. Then

n!(e− sn) = (n− 1)!m−
n∑

k=1

n!

k!

is a natural number and hence is ≥ 1. On the other hand,

n!(e− sn) =
n!

(n + 1)!
+

n!

(n + 2)!
+

n!

(n + 3)!
+ ...

=
1

n + 1
+

1

(n + 1)(n + 2)
+

1

(n + 1)(n + 2)(n + 3)
+ ...

<
1

2
+

1

22
+

1

23
+ ... = 1 .

Contradiction! 2

Exercise 21.1.3. Prove that n! >
(n

e

)n
.

21.2. The sine and cosine functions. In this case, the Lagrange estimate for
the remainder gives us

max
[−M,M ]

|Rn(x)| ≤ Mn+1

(n + 1)!

which yields the formulas:

sinx =
∞∑

j=0

(−1)j x2j+1

(2j + 1)!
, x ∈ R

and

cosx =
∞∑

j=0

(−1)j x2j

(2j)!
, x ∈ R .

Similar formulas hold for the hyperbolic sine and cosine:

sinhx
def=

ex − e−x

2
=

∞∑

j=0

x2j+1

(2j + 1)!
, x ∈ R,

and

coshx
def=

ex + e−x

2
=

∞∑

j=0

x2j

(2j)!
, x ∈ R.

Exercise 21.2.1. Prove these two formulas and bound the reminder using the
Lagrange estimate.

Exercise 21.2.2. Check that cosh2 x − sinh2 = 1, and that the both functions
satisfy the differential equation f ′′ = f .
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21.3. The logarithmic function. Consider the function f(x) = log(1 + x)
defined for x > −1. We have

f (j)(x) = (−1)j−1 (j − 1)!

(1 + x)j
,

so that f (j)(0) = (−1)j−1(j−1)!. Lagrange’s estimate for the remainder yields
the convergence of the Taylor expansion for 0 ≤ x ≤ 1:

max
0≤x≤1

|Rn(x)| ≤ n!

(n + 1)!
=

1

n + 1
.

Therefore, for 0 ≤ x ≤ 1,

(21.3.1) log(1 + x) =
∞∑

j=1

(−1)j−1xj

j
.

In particular, we find the formula which was promised in Lecture 8:

log 2 = 1− 1

2
+

1

3
− 1

4
+ ... .

For x > 1 the Taylor series diverges (its terms tend to infinity with n). For
the negative x’s, we have to use Cauchy’s formula for the remainder. If |x| < 1,
then for some intermediate c between 0 and x:

|Rn(x)| =
∣∣∣∣
(x− c)nx

(1 + c)n

∣∣∣∣ = |x|
∣∣∣∣
x− c

1 + c

∣∣∣∣
n

.

Claim 21.3.2. ∣∣∣∣
x− c

1 + c

∣∣∣∣ < |x|.

Proof of Claim: since c is an intermediate point between 0 and x, |x − c| =
|x| − |c|. Then∣∣∣∣

x− c

1 + c

∣∣∣∣ =
|x| − |c|
|1 + c| ≤

|x| − |c|
1− |c| <

|x| − |c||x|
1− |c| = |x|.

proving the claim. 2

Making use of the claim, we continue the estimate for the remainder Rn(x)
and get

|Rn(x)| < |x|n+1.

Since |x| < 1, we see that the remainder goes to zero with n. Therefore, the
Taylor expansion converges to log(1 + x) for −1 < x ≤ 1. 2

It is curious, that the remainder in Cauchy’s form gives us the result for
|x| < 1 but to get the expansion at the end-point x = 1 we have to use
Lagrange’s estimate of the remainder. There is another way to find the Taylor
expansion for log(1 + x). The derivative of this function equals

1

1 + x
=

∞∑
j=0

(−1)jxj .
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Recalling that log(1 + x) = 0 at x = 0 and that
(
xj+1

)′
= (j + 1)xj, we

immediately arrive at the expansion (21.3.1). This idea will be justified in the
second semester.

Exercise 21.3.3. Find the Taylor expansion of the function log 1+x
1−x

and in-
vestigate its convergence.

21.4. The binomial series. In this section, we consider the function f(x) =
(1 + x)a defined for x > −1. Now,

f (j)(x) = a(a− 1)...(a− j + 1)(1 + x)a−j,

and we get (at least, formally) the Newton formula

(1 + x)a =
∞∑

j=0

a(a− 1)...(a− j + 1)

j!
xj .

Of course, if a ∈ N, then there are only finitely many non-zero terms in the
series on the right hand side, and we arrive at the familiar binomial formula.

We shall prove convergence of this formula for |x| < 1. The formula is also
valid at x = 1 and (for a ≥ 0) at x = −1. This will follow from the Abel
convergence theorem that you’ll learn in the second semester course.

So we fix s < 1, assume that |x| < s, and estimate the remainder using the
Cauchy formula:

|Rn(x)| =

∣∣∣∣
a(a− 1)...(a− n)

n!
(1 + c)a−n−1(x− c)nx

∣∣∣∣

=
∣∣∣a

(
1− a

1

)
...

(
1− a

n

)∣∣∣ (1 + c)a−1

∣∣∣∣
x− c

1 + c

∣∣∣∣
n

|x|

≤ (1 + c)a−1 ·
∣∣∣a

(
1− a

1

)
...

(
1− a

n

)∣∣∣ |x|n+1 = (1 + c)a−1 · qn

(in the passage from the second to the third line we used the claim from the
previous section). If n is big enough, we have

qn+1

qn

=

∣∣∣∣
(

1− a

n + 1

)
x

∣∣∣∣ ≤ s < 1,

so that qn and hence Rn(x) tend to zero for |x| < 1.

21.5. The Taylor series for arctan x. Let f(x) = arctan x, |x| ≤ 1. To
arrive at the Taylor expansion, recall that

f ′(x) =
1

1 + x2
=

∞∑
j=0

(−1)jx2j .

Hence, the guess:

arctan x =
∞∑

j=0

(−1)j x2j+1

2j + 1
.
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To justify our guess, we need to bound the remainder. For this, we need a
formula for the j-th derivative f (j)(x).

Claim 21.5.1. For each j ≥ 1,

(C) f (j) = (j − 1)! cosj f sin j
(
f +

π

2

)
.

Proof of the claim: We’ll use the induction with respect to j. For j = 1 we
have

f ′(x) =
1

1 + x2
=

1

1 + tan2 f
= cos2 f = cos f sin

(
f +

π

2

)
.

Suppose the claim is verified for j = n, then

f (n+1) = (n− 1)! cosn−1 f · nf ′
{
− sin f sin n

(
f +

π

2

)
+ n cos f cos n

(
f +

π

2

)}

= n! cosn+1 f cos
(
(n + 1)f + n

π

2

)

= n! cosn+1 f sin
(
(n + 1)

(
f +

π

2

))
,

proving the claim. 2

Corollary 21.5.2. For each n ≥ 1,

sup
[−1,1]

|f (n)| ≤ n!.

Then, by the Lagrange estimate for the remainder,

sup
x∈[−1,1]

|Rn(x)| ≤ 1

(n + 1)!
sup
[−1,1]

|f (n+1)| ≤ 1

n
.

That is, the Taylor expansion converges to arctan x everywhere on [−1, 1].
Plugging the value x = 0 into (C), we get

f (j)(0) = (j − 1)! sin
jπ

2
=





(−1)m(2m)!, j = 2m + 1

0, j = 2m

(we got this expression in Lecture 16 by a different calculation). So that we
obtain the Taylor expansion for arctan x

arctan x =
∞∑

j=0

(−1)j x2j+1

2j + 1

valid on [−1, 1].
Taking x = 1, we arrive at a remarkable formula of Leibnitz:

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− ... .
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Problem 21.5.3. Prove that

arcsin x = x +
∞∑

n=1

(2n− 1)!!

(2n)!!(2n + 1)
x2n+1, −1 ≤ x ≤ 1.

Plugging x = 1
2

into the expansion of arcsin x, we get

π

6
=

1

2
+

∞∑
n=1

(2n− 1)!!

(2n)!!(2n + 1)22n+1
.

This expansion of π
6

is essentially better than the previous one of π
4
. Why?

21.6. Some computations. There are many elementary functions for which it is
not easy to find a good expression for coefficients in the Taylor expansion. In most
of applications, one usually needs only a few first terms in the Taylor expansion
which can be found directly (sometimes, this requires a patience). Consider several
examples:

21.6.1. f(x) = tanx. This is an odd function, so in its Taylor expansion all even
coefficients vanish. We’ll find first three non-vanishing odd coefficients. We have

f ′(x) = cos−2 x, f ′(0) = 1,

then
f ′′(x) = 2 sinx cos−3 x,

f ′′′(x) = 2 cos−2 x + 6 sin2 x cos−4 x = −4 cos−2 x + 6 cos−4 x, f ′′′(0) = 2,

f (iv)(x) = −8 sin x cos−3 x + 24 sinx cos−5 x,

and at last

f (v)(x) = −8 cos−2 x + 24 sin2 x cos−4 x + 24 cos−4 x + 120 sin2 cos−6 x

= 16 cos−2 x− 120 cos−4 x + 120 cos−6 x,

so that f (v)(0) = 16. We find that

tanx = x +
1
3
x3 +

2
15

x5 + o(x6), x → 0.

Exercise 21.6.1. Find the approximation error

tan x ≈ x +
x3

3
, |x| ≤ 1

10
.

21.6.2. f(x) = log cosx. Sometimes, when f is a superposition of functions with
known Taylor expansions, instead of the direct differentiation it is easier to use
formal algebraic manipulations.

The function f is an even function, we find the first three non-vanishing terms of
its Taylor expansion. We know that

cosx = 1− x2

2
+

x4

24
− x6

720
+ o(x7), x → 0.
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Therefore,

log cosx = log
(

1− x2

2
+

x4

24
− x6

720
+ o(x7)

)

= log(1 + u) u = −x2

2
+

x4

24
− x6

720
+ o(x7)

= u− u2

2
+

u3

3
+ o(x7)

=
(
−x2

2
+

x4

24
− x6

720

)
− 1

2

(
−x2

2
+

x4

24

)2

+
1
3

(
−x2

2

)3

+ o(x7)

=
(
−x2

2
+

x4

24
− x6

720

)
− 1

2

(
x2

4
− x6

24

)
+

1
3

(
−x6

8

)
+ o(x7)

= −x2

2
− x4

12
− x6

45
+ o(x7).

Exercise 21.6.2. Find the Taylor polynomials of degree n at the point x0 to the
following functions

1+x+x2

1−x+x2 (n = 4, x0 = 0) m
√

am + x (a > 0) (n = 4, x0 = 0)
√

2x− x2 (n = 3, x0 = 1) e2x−x2
(n = 4, x0 = 0)

sin(sinx) (n = 3, x0 = 0) xx − 1 (n = 3, x0 = 1) .

21.7. Application to the limits. In many cases, knowledge of the Taylor expan-
sion simplifies computation of limits. For example, making use of the expansions of
tanx and log cosx we easily find

lim
x→0

sinx− x

tanx− x
= lim

x→0

−x3/6 + o(x3)
−x3/6 + o(x3)

= 1,

and
lim
x→0

log cosx

x2
= −1

2
.

Exercise 21.7.1. Find the limits

lim
x→0

sinx− arcsinx

tanx− arctanx
lim
x→0

(
sinx

x

) 1
1−cos x

lim
x→0

cosx− e−
1
2
x2

x4

lim
x→0

(
1
x
− 1

sinx

)
lim
x→1

1− x + log x

1−√2x− x2
lim

x→+∞

(
6
√

x6 + x5 − 6
√

x6 − x5
)

.
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22. The complex numbers

In this lecture we introduce the complex numbers and recall they basic
properties.

22.1. Basic definitions and arithmetics. As you probably remember from
the high-school, the complex numbers are the expressions z = x + iy with
i2 = −1. We can add and multiply the complex numbers as follows

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) ,

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1) .

If z = x+ iy, then the value z = x− iy is called the conjugate to z, x is the real
part of z, x = Re z = z+z

2
, and y is the imaginary part of z, y = Im z = z−z

2i
.

Note that zz = x2 + y2 is always non-negative, and vanishes iff z = 0. The
non-negative number

√
zz is called the absolute value of z, denoted r = |z| =√

x2 + y2. If z 6= 0, then there is the inverse to z:

z−1 =
1

z
=

z

zz
=

x− iy

x2 + y2
=

x

x2 + y2
− i

y

x2 + y2
.

Then, for z2 6= 0, we can define

z1

z2

= z1 · 1

z2

.

I.e., the complex number form a field denoted by C. Any real number x can be
regarded as a complex number x + i0 with zero imaginary part. I.e., R ⊂ C.

Exercise 22.1.1. Check:

z1 + z2 = z1 + z2 , z1 · z2 = z1 · z2 .

Claim 22.1.2 (Triangle inequality).

|z + w| ≤ |z|+ |w| .
Proof: We have

|z + w|2 = (z + w)(z + w) = (z + w)(z + w)

= zz + ww + zw + wz = |z|2 + |w|2 + 2 Re(zw) .

Note that −|a| ≤ Re a ≤ |a|, whence

|z + w|2 ≤ |z|2 + |w|2 + 2|z| |w| = (|z|+ |w|)2 .

Done! 2

Exercise 22.1.3.

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2) .

Exercise 22.1.4 (Cauchy-Schwarz inequality).
∣∣∣
∑

zjwj

∣∣∣
2

≤
(∑

|zj|2
)(∑

|wj|2
)

.
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22.2. Geometric representation of complex numbers. The argument.
We can represented complex numbers by two-dimensional vectors:

z = x + iy 7→
(

x

y

)
.

Then, the addition law for the complex numbers corresponds to the addition

r

−y

y z

z

xϕ

Figure 18. Complex plane

law for the vectors, and the absolute value of the complex number is the same
as the length of the corresponding vector. However, the vector representation
is not very convenient when we need to multiply the complex number. In this
case, it is more convenient to use the polar coordinates.

Definition 22.2.1 (argument). For z 6= 0, the argument of z is the angle
ϕ = arg z the point z is seen from the origin. The angle is measured counter-
clockwise, started with the positive ray.

We have

tan ϕ =
y

x
,

x = r cos ϕ, y = r sin ϕ

(as above, r = |z|), and

z = r(cos ϕ + sin ϕ) .

This representation is consistent with multiplication: if zj = rj(cos ϕj+sin ϕj),
j = 1, 2, are non-zero complex numbers, then

z1 · z2 = r1r2(cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)) .

I.e., multiplying the complex numbers, we multiply their absolute values and
add their arguments.

Corollary 22.2.2 (Moivre). If z = r(cos ϕ + i sin ϕ), then

zn = rn(cos nϕ + i sin nϕ) , n ∈ N .
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Warning: the angles are measured up to 2πk, k ∈ Z. Hence, the argument
is not the number but rather a set of real numbers, such that the difference
between any two numbers from this set equals 2πk with some integer k. The
most popular choice for the representative from this set is ϕ ∈ [0, 2π).

Example 22.2.3. Let us solve the equation zn = a. Here, n ∈ N. We
suppose that a 6= 0, otherwise, the equation has only the zero solution. Denote
a = ρ(cos θ + i sin θ). Then

rn(cos nϕ + i sin nϕ) = ρ(cos θ + i sin θ) ,

i.e., rn = ρ and nϕ = θ + 2kπ with some k ∈ Z. Hence, r = n
√

ρ. The obvious
solution for the second equation is ϕ = θ/n. However, after a minute reflection
we realize that it has n distinct solutions:

ϕk =
θ

n
+

2kπ

n
, k = 0, 1, ..., n− 1 .

Figure 19. The roots of unity, n = 2, n = 5, and n = 8

Consider the special case a = 1. In this case, ρ = 1 and θ = 0. We get n
points

zk = cos

(
2kπ

n

)
+ i sin

(
2kπ

n

)
, k = 0, 1, ..., n− 1

called the roots of unity.

Exercise 22.2.4. Solve the equations z4 = i, z2 = i, z2 = 1 + i. Find the
absolute value and the argument of the solutions, as well as their real and
imaginary parts. Mark the solutions on the complex plane.

Exercise 22.2.5. Let

ω = cos

(
2π

n

)
+ i sin

(
2π

n

)
.

Compute the sums

1 + ω + ω2 + ... + ωn−1 =? ,

1 + 2ω + 3ω2 + ... + nωn−1 =? ,

and

1 + ωh + ω2h + ... + ω(n−1)h =?

(h is a positive integer).
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22.3. Convergence in C. The distance between the complex numbers z1

and z2 is |z1 − z2|.
Definition 22.3.1. The sequence zn converges to z (denoted by zn → z or
z = lim

n→∞
zn), if lim

n→∞
|z − zn| = 0.

Since

max
{|x− xn|, |y − yn|

} ≤
√

(x− xn)2 + (y − yn)2

︸ ︷︷ ︸
=|z−zn|

≤ |x− xn|+ |y − yn| ,

the sequence zn converges to z iff the corresponding real and imaginary parts
converge:

xn → x , yn → y .

Exercise 22.3.2. Check that the Cauchy criterion of convergence works for
the complex sequences.

Definition 22.3.3 (continuity). The complex valued function f is continuous
at z, if for each sequence zn → z, f(zn) → f(z).

Exercise 22.3.4. Check that the sum and the product of continuous functions
is continuous. Check that the quotient of continuous functions is continuous
in the points where the denominator does not vanish.

Hint: the proofs are the same as in the real case.

We see that the polynomials are continuous functions in the whole complex
plane. That’s all we need to prove in the next lecture the fundamental theorem
of algebra.

Exercise 22.3.5. If f = u+ iv, then f is continuous iff its real and imaginary
parts u and v are continuous. If f is continuous, then |f | is also continuous.
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23. The fundamental theorem of algebra and its corollaries

23.1. The theorem and its proof.

Theorem 23.1.1. Any polynomial P (z) = c0 + c1z + ... + cnzn of positive
degree has at least one zero in C.

Proof: WLOG, we assume that cn = 1. Denote m = inf
z∈C

|P (z)|.

Claim 23.1.2. There is a sufficiently big R such that |P (z)| > m + 1 for
|z| > R.

Indeed, we have

P (z) = zn
(
1 +

cn−1

z
+ ... +

c0

zn

)
,

whence

|P (z)| ≥ |z|n
(
1−

∣∣∣cn−1

z
+ ... +

c0

zn

∣∣∣
)

≥ |z|n
(
1−

( |cn−1|
|z| + ... +

|c0|
|z|n

)

︸ ︷︷ ︸
≤1/2

)
≥ 1

2
|z|n

|z|≥R

≥ 1

2
Rn ≥ m + 1

provided that R is sufficiently big. 2

Therefore, m = inf
|z|≤R

|P (z)|. Next, using the Bolzano-Weierstrass lemma,

we will check that the infimum is actually attained:

Claim 23.1.3. There exists z0 with |z0| ≤ R such that |P (z0)| = m.

Indeed, choose a sequence of points zk, |zk| ≤ R, such that

|P (zk)| ≤ m +
1

k
.

The sequences xk = Re zk and yk = Im zk are bounded max{|xk|, |yk|} ≤ R.
Hence, they have convergent subsequences. Hence, the sequence {zk} has a
convergent subsequence zkj

→ z0. Then by continuity of the polynomial P ,
we have

P (z0) = lim
j→∞

P (zkj
) ,

whence |P (z0)| = m. 2

Suppose that P does not have zeroes in C, i.e., m > 0, and consider the
polynomial

Q(z)
def
=

P (z + z0)

P (z0)
.

Then 1 = Q(0) ≤ |Q(z)|, z ∈ C.
To complete the proof, we show that there are points z where |Q(z)| < Q(0).

This will lead to the contradiction. We have

Q(z) = 1 + qkz
k + qk+1z

k+1 + ... + qnz
n with |qk| 6= 0.
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Set ψ = arg qk and consider the points z with arg z =
π − ψ

k
. Then

arg(qkz
k) = ψ + (π − ψ) = π,

so that qkz
k = −rk|qk|. Let’s estimate |Q(z)| assuming on each step that r is

chosen sufficiently small:

|Q(z)| ≤
∣∣1 + qkz

k
∣∣ + |qk+1|rk+1 + ... + |qn|rn

= 1− rk|qk|+ rk+1|qk+1|+ ... + rn|qn|
= 1− rk

(|qk| − r|qk+1| − ... − rn−k|qn|
)

< 1 ,

and we are done! 2

23.2. Factoring the polynomials. In Lecture 15, we discussed the Horner
scheme of the polynomial division. This scheme also works for the polynomials
with complex coefficients. It yields, that if P is a polynomial of degree n ≥ 1,
then

P (z) = (z − a)P1(z) + P (a)

where P1 is a polynomial of degree n − 1. In particular, if P vanishes at a,
then

P (z) = (z − a)P1(z) .

Using induction with respect to the degree of P , we arrive at

Corollary 23.2.1 (factorization of polynomials). Every polynomial of degree
n ≥ 1 can be factored:

P (z) = c(z − z1) ... (z − zn) .

Note that some of the zeroes z1,...,zn of P may coincide. We say that a is a
zero of P of multiplicity k if

P (z) = (z − a)kP1(z)

where the polynomial P1 does not vanish at a. Usually, we count zeroes of the
polynomials with their multiplicities7. Then we can write down the factoriza-
tion in the following form

P (z) = c(z − z1)
k1 ... (z − zm)km

where the zeroes z1, ..., zm are pairwise different, and
∑

kj = n.

Exercise 23.2.2. If a polynomial of degree P has more than n zeroes in C
(counting with the multiplicities), then it vanishes identically.

7For instance, the polynomial P (z) = z(z− 1)2(z− 2)10 has 1 zero at the origin, 2 zeroes
at z = 1, and 10 zeroes at z = 2.
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23.3. Rational functions. Partial fraction decomposition. Rational
functions are functions represented as the quotients of the polynomials:

R(z) =
P (z)

Q(z)
.

Usually, writing this representation we assume that the polynomials P and

Q have no common zeroes. Then deg R
def
= max{deg P, deg Q}. The rational

functions form a field with usual addition and multiplication.
The rational function R is defined everywhere except of the zeroes of Q.

The zeroes of the polynomial Q are called the poles of R. Note that if a is a
pole of R, then

lim
z→a

|R(z)| = +∞ .

If a is a zero of Q of multiplicity k, then we say that the pole of R at a also
has multiplicity k. The polynomials are the rational functions without poles.

Claim 23.3.1. If a is a pole of R of multiplicity, then there are the unique
coefficients A1, ..., Ak such that

R(z)−
(

A1

z − a
+ ... +

Ak

(z − a)k

)

has no pole at a.

The sum on the RHS is called the singular part of R at a. We denote it by
Sa(z).

Proof:

i (existence): Consider the rational function U(z) = (z − a)kR(z), it has no
pole at a. We set Ak = U(a). Then

(z − a)kR(z)− Ak = U(z)− Ak = (z − a)V (z)

where V is a rational function without pole at a, or

R(z)− Ak

(z − a)k
=

V (z)

(z − a)k−1

and the RHS has a pole at a of multiplicity k − 1 or less. Then we apply the
same procedure to the function V .

ii (uniqueness): Suppose that the expression

R(z)−
(

B1

z − a
+ ... +

Bk

(z − a)k

)

also has no pole at a. Then the difference of the two expressions

F (z) =
B1 − A1

z − a
+ ... +

Bk − Ak

(z − a)k
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also has no pole at a. Suppose that some Al 6= Bl and set j = max{l : Al 6= Bl}.
Then

F (z) =
1

(z − a)j

{
(Bj − Aj) + (Bj−1 − Aj−1(z − a) + ... + (B1 − A1)(z − a)j−1

}
︸ ︷︷ ︸

=T (z)

=
T (z)

(z − a)j

where T is a polynomials, and T (a) = Bj−Aj 6= 0 by our assumption. Hence,
F has a pole at a, arriving at the contradiction. Hence, the claim. 2

Applying the claim, one by one, to all poles of R, we get

Theorem 23.3.2 (partial fraction decomposition). Every rational function R
can be uniquely represented in the following form:

R(z) =
∑

a

Sa(z) + W (z)

where the sum is taken over the set of all poles a of R, Saj
are the corresponding

singular parts, and W is a polynomial.

Exercise 23.3.3. If R = P
Q

where the polynomials P and Q has no common

zeroes, then deg W = deg P − deg Q, if the latter is non-negative; otherwise
W = 0.

Example 23.3.4. Let

R(z) =
z4 + 1

z(z + 1)(z + 2)
.

This function has simple poles at the points z = 0, −1, −2. Hence,

R(z) =
A0

z
+

A−1

z + 1
+

A−2

z + 2
+ W (z)

where W is a (linear) polynomial. We have

A0 = lim
z→0

R(z)z = lim
z→0

z4 + 1

(z + 1)(z + 2)
=

1

2
,

A−1 = lim
z→−1

R(z)(z + 1) = lim
z→−1

z4 + 1

z(z + 2)
= −2 ,

A−2 = lim
z→−2

R(z)z = lim
z→−2

z4 + 1

z(z + 1)
=

17

2
,

and

W (z) =
z4 + 1

z(z + 1)(z + 2)
−

(
1

2z
− 2

z + 1
+

17

2(z + 2)

)
= ... = z − 3 ,

and finally

z4 + 1

z(z + 1)(z + 2)
=

1

2z
− 2

z + 1
+

17

2(z + 2)
+ z − 3 .
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There a more simple way to compute the linear polynomial W (z) = az + b:

a = lim
z→∞

R(z)

z
= 1 ,

and

b = lim
z→∞

(R(z)− z) = lim
z→∞

z4 + 1− z2(z + 1)(z + 2)

z(z + 1)(z + 2)
= −3 .

23.3.1. Simple poles and Lagrange interpolation. If the poles of R are simple
(i.e., have multiplicity 1), then we get a representation of R as a sum of simple
fractions and a polynomial:

(23.3.5) R(z) =
∑

j

Aj

z − aj

+ W (z) .

In this case8,

Aj = lim
z→aj

R(z)(z − aj) = lim
z→aj

P (z)(z − aj)

Q(z)
=

P (aj)

Q′(aj)
,

and we get
P (z)

Q(z)
=

∑
j

P (aj)

(z − aj)Q′(aj)
+ W (z)

where the sum is taken over the zeroes of the polynomial Q. If deg P < deg Q,
then W is zero, and we arrive at the Lagrange interpolation formula with
nodes at the zeroes of Q proven in Lecture 15.

P (z) =
∑

j

P (aj)Q(z)

(z − aj)Q′(aj)
.

That is, Lagrange interpolation formula is a special case of the partial fraction
decomposition of rational functions!

23.4. Appendix: real polynomials and real rational functions. The poly-
nomial P is real if P (z) = cnzn + ... + c1z + c0 with the real coefficients c0, ... , cn.
Then

(23.4.1) P (z) = P (z) .

8Here we use the derivative of the polynomial Q at a ∈ C. It is defined as usual:

Q′(a) = lim
z→a

Q(z)−Q(a)
z − a

.

It is easy to see that this limit always exists. If

Q(z) =
∑

0≤j≤n

qjz
j ,

then
Q′(a) =

∑

0≤j≤n−1

(j + 1)qj+1z
j .
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It’s easy to see that (23.4.1) is also a necessary condition for the polynomial P to
have the real coefficients. Indeed, (23.4.1) yields that P maps R to R, hence, its

coefficients must be real (recall that ck =
P k(0)

k!
).

By condition (23.4.1), if a real polynomial vanishes at some point a with Re a 6= 0,
then it also vanishes at the conjugate point a:

P (a) = 0 =⇒ P (a) = 0 .

In this case, the product

(z − a)(z − a) = z2 − (a + a)z + |a|2

appears in the factorization of P . We arrive at

Corollary 23.4.2 (factorization of real polynomials). Every real polynomial of de-
gree n ≥ 1 can be factorized as

P (x) = c(x− x1) ... (x− xs)(x2 + p1x + q1) ... (x2 + plx + ql)

with s + 2l = n.

Example 23.4.3. Consider the real polynomial x2n + 1. It has zeroes at

zk = 2n
√−1 = cos

(2k − 1)π
2n

+ i sin
(2k − 1)π

2n
,

for k = 1, 2, ..., 2n. All these zeroes are not real. The zeroes z1, ..., zn have the
argument less than π and are located in the upper half-plane, while the zeroes zn+1,
..., z2n are located in the lower half-plane, zk = z2n−k. Then

(x− zk)(x− zk) = x2 − 2xRe zk + |zk|2 = x2 − 2x cos
(2k − 1)π

2n
+ 1 ,

and

x2n − 1 =
n∏

k=1

(
x2 − 2x cos

(2k − 1)π
2n

+ 1
)

.

We say that R is a real rational function if it is represented as a quotient R = P/Q

of two real polynomials. This is equivalent to R(z) = R(z), z ∈ C. Suppose that
the real rational function R has a real pole at a. By the proof of the existence in
Claim 23.3.1, the coefficients Aj , 1 ≤ j ≤ k, in the corresponding singular part Sa

are also real. (Indeed, Ak is real since it equals lim
x→a

(x− a)kR(x) etc). Now, we look
at the complex conjugated poles of R.

Claim 23.4.4. Suppose R is a real rational function with a pole at w 6= w of
multiplicity k. Then the sum of the singular parts of R at w and w equals

Sw(z) + Sw(z) =
A1 + B1z

z2 + pz + q
+ ... +

Az + Bkz

(z2 + pz + q)k

with z2 + pz + q = (z − w)(z − w) and with real coefficients Aj and Bj, 1 ≤ j ≤ k.

Proof: As above, we are looking for the coefficients Ak and Bk such that the rational
function

(23.4.5) R(z)− A + Bz

(z − w)k(z − w)k
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has poles at w and w of multiplicity at most k − 1. This means that after multipli-
cation by (z − w)k(z − w)k expression (23.4.5) vanishes as z → w, i.e.

lim
z→w

(z − w)k(z − w)kR(z)− (A + Bw) = 0 .

Denote the limit on the RHS by α. Then we have A+Bw = α. Since we are looking
for real A and B, we conclude that Imα = B Im w, whence

B =
Im α

Im w
, and A = α− Im α

Imw
w .

It remains to check that with this choice of A and B, expression (23.4.5) has a pole
of multiplicity at most k − 1 at w. We leave this as an exercise. 2

Exercise 23.4.6. Find (real) decompositions of the rational functions

1
x2(x− 1)

,
x3

x2 + 1
,

1
x4 + 1

.
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24. Complex exponential function

24.1. Absolutely convergent series. Here we deal with absolutely conver-
gent series

∑
ak with complex terms ak.

24.1.1. Rearrangement of the series. A series
∑

a′k is a rearrangement of the
series

∑
ak if every term in the first series appears exactly once in the second

and conversely. In other words, there is a bijection p : N → N such that
a′k = ap(k).

Theorem 24.1.1 (Dirichlet). If the series
∑

ak is absolutely convergent, then
all its rearrangements converge to the same sum.

Proof: First, we prove the result in the case when assume the terms ak are
non-negative. Set

S =
∞∑

k=1

ak , Sn =
n∑

k=1

ak .

Let {a′k} be an arbitrary rearrangement of the sequence {ak}. Set

S ′n =
n∑

k=1

a′k .

Then, for each n ∈ N, S ′n ≤ S. Hence, the series
∑

a′k converges to the sum
S ′, and S ′ ≤ S.

In turn, the series
∑

ak is a rearrangement of the series
∑

a′k, whence S ≤
S ′. Hence, S = S ′.

Now, consider the general case when the terms ak are complex. Observe
that

ak = αk + iβk = α+
k − α−k + iβ+

k − iβ−k .

Here we’ve used notations x+ = max{x, 0}, x− = max{−x, 0}. In these
notations, x = x+−x−, and |x| = x+ +x−. Hence, we can represent the series∑

ak by a linear combination of four convergent series with non-negative terms:
∑

ak =
∑

α+
k −

∑
α−k + i

∑
β+

k − i
∑

β−k .

Applying the special case proven above, we get the result. 2.

24.1.2. Multiplication of series. Having two absolutely convergent series

(A)
∑

k

ak

and

(B)
∑

l

bl ,

we want to learn how to multiply them. Intuitively, the product (AB) should
be a double sum

(AB)
∑

k,l

akbl .
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The first question is how to understand this expression? The second question
is does it converges to the product A ·B?

Consider the two-dimensional array of all possible products akbl:

a1b1 a1b2 a1b3 ... a1bn ...
a2b1 a2b2 a2b3 ... a2bn ...
a3b1 a3b2 a3b3 ... a3bn ...
... ... ... ... ... ...
... ... ... ... ... ...

amb1 amb2 amb3 ... ambn ...
... ... ... ... ... ...

Recall that we know how enumerate the elements of this array by the naturals
N and each enumeration leads to a different series. Luckily, the previous
theorem tells us, that if the series we get in this way are absolutely convergent,
then different enumerations will lead to the same answer, so we’ll be able to
choose the most convenient one.

Absolute convergence: observe that we can bound the finite sums

|ak1bl1|+ ... + |aksbls| ≤
(|a1|+ ... + |an|

)(|b1|+ ... + |bn|
)

with n = max{k1, ..., ks, l1, ..., ls}. Hence, an arbitrary finite sum |ak1bl1| +
... + |aksbls| is bounded by

(∑ |ak|
)(∑ |bl|

)
. Therefore, for any rearrangement

of the terms, the series (AB) is absolutely convergent, and its sum does not
depend on the rearrangement.

Cauchy’s product: the most popular rearrangement is the one called Cauchy’s
product:

a1b1 + (a1b2 + a2b1) + (a1b3 + a2b2 + a3b1) + ... ,

or
∞∑

k,l=1

akbl =
∞∑

n=1

∑

k+l=n

akbl =
∞∑

n=1

n∑

k=1

akbn−k .

Here is our chief example:

Example 24.1.2. Suppose we have two absolutely convergent Taylor series

∞∑

k=0

akz
k ,

∞∑

l=0

blz
l .

Then their product is represented by another absolutely convergent Taylor
series

∞∑

k=0

akz
k ·

∞∑

l=0

blz
l =

∞∑
n=0

cnzn

with

cn =
∑

k+l=n

akbl .
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24.2. The complex exponent. Define the functions

ez def
=

∞∑
n=0

zn

n!
, sin z

def
=

∞∑
n=0

(−1)n z2n+1

(2n + 1)!
, cos z

def
=

∞∑
n=0

(−1)n z2n

(2n)!
.

First, note that the series on the RHS absolutely converge at any point z ∈ C,
and that for real z’s the new definitions coincide with the ones we know. Now,
the miracle comes:

Claim 24.2.1 (Euler).

eiz = cos z + i sin z , z ∈ C .

Proof: by inspection. We have

eiz =
∞∑

n=0

(iz)n

n!
=

∞∑
m=0

i2m=(−1)m

︷ ︸︸ ︷
(iz)2m

(2m)!
+

∞∑
m=0

i2m+1=i(−1)n

︷ ︸︸ ︷
(iz)2m+1

(2m + 1)!

=
∞∑

m=0

(−1)m z2m

(2m)!
+ i

∞∑
m=0

(−1)m z2m+1

(2m + 1)!
= cos z + i sin z .

Done! 2

Note that the cosine function is even, while the sine function is odd. Hence,

Corollary 24.2.2. cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

Corollary 24.2.3. Any non-zero complex number z can be represented in the
form z = reiϕ where r = |z|, and ϕ = arg z.

Corollary 24.2.4. e2πi = 1.

Corollary 24.2.5 (Euler’s formula). eiπ = −1.

This miraculous identity connects the numbers e = limn→∞
(
1 + 1

n

)n
, π

defined as the quotient of the length of the circumference to its diameter, and
i =

√−1.

Exercise 24.2.6. Define

sinh z
def
=

∞∑
n=0

z2n+1

(2n + 1)!
, cosh z

def
=

∞∑
n=0

z2n

(2n)!
.

Check the following relations:

i. cosh z =
ez + e−z

2
, sinh z =

ez − e−z

2
.

ii. sin(iz) = i sinh z, cos(iz) = cosh z.

iii. sin2 z + cos2 z = 1, cosh2 z − sinh2 = 1.

iv. sin
(π

2
− z

)
= cos z.
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The fundamental properties of the exponential function ex on the real axis
are the functional equation ex+y = ex · ey and the differential equation (ex)′ =
ex. As we know, each of these properties characterizes the exponential func-
tion. Now, we’ll check that this two properties persist for the function ez on
C.

Claim 24.2.7. ez+w = ez · ew.

Proof: by inspection.

ez · ew =
∞∑

n=0

∑

k+l=n

zk

k!
· wl

l!

=
∞∑

n=0

n∑

k=0

zk

k!
· wn−k

(n− k)!

=
∞∑

n=0

1

n!

n∑

k=0

(
n

k

)
zkwn−k

=
∞∑

n=0

(z + w)!

n!
= ez+w

and we are done. 2

Corollary 24.2.8. ez+2πi = ez; i.e., ez is a periodic function with the period
2πi.

The function f : C→ C is said to be (complex) differentiable at the point z
if there exists the limit

f ′(z) = lim
C3ε→0

f(z + ε)− f(z)

ε
.

It is important that the limit does not depend on the direction at which ε
approaches 0.

Claim 24.2.9. The function ez is differentiable in C and (ez)′ = ez.

Proof: We have
ez+ε − ez

ε
= ez eε − 1

ε
.

Note that ∣∣∣∣
eε − 1

ε
− 1

∣∣∣∣ ≤
∞∑

n=1

|ε|n
(n + 1)!

= o(1)

as ε → 0. Done! 2


