
 

Thesis for the degree 

Master of Science 

By 
Yam Eitan 

Advisor: Prof. Bo'az Klartag 

October 2021 

Submitted to the Scientific Council of the 
Weizmann Institute of Science 

Rehovot, Israel 

ף הקמור הממורכז עם ההטלות  הגו
הזנב הגדול   ותמדיות בעלמ-החד 

 ביותר 
The Centered Convex Body 
Whose Marginals Have The 

Heaviest Tails 
 

 עבודת גמר )תזה( לתואר 

 מוסמך למדעים 

 מאת 

 ים איתן 

 חשוון תשפ"ב 

למועצה המדעית של תמוגש  
 מכון ויצמן למדע 
 רחובות, ישראל

בועז קלרטג פרופ'  :המנח  



THE CENTERED CONVEX BODY WHOSE MARGINALS HAVE

THE HEAVIEST TAILS

YAM EITAN

Chapter 1. Main Results

abstract

Given any real numbers 1 < p < q, we study the norm ratio (i.e. the ratio
between the q-norm and the p-norm) of marginals of centered convex bodies. We
first show that some marginal of the simplex maximizes said ratio in the class of
n-dimensional centered convex bodies. We then pass to the dimension independent
(i.e. log-concave) case where we find a 1-parameter family of random variables
in which the maximum ratio must be attained, and find the exact maximizer of
the ratio when p = 2 and q is even. In addition, we find another interesting
maximization property of marginals of the simplex involving functions with positive
third derivatives.

1. introduction

Let 1 < p < q, K ⊂ Rn be a convex body and X ∼ Uni(K) be a random vector
uniformly distributed over K. From here forth we shall assume K is centered (i.e.
E[X] = 0). Define:

α(K) := max
θ∈Sn−1

‖X · θ‖q
‖X · θ||p

.

Here, Sn−1 is the (n − 1)−dimensional unit sphere, centered at the origin of Rn.
This quantity can be thought of as a measurement of the “heaviest tail” of any
1-dimensional projection of X. Our main result is the following:

Theorem 1. Let K ⊂ Rn be a centered convex body and let ∆n be an n-dimensional
centered simplex. Then:

(1.1) α(K) ≤ α(∆n).

While one might not be surprised that the simplex is a maximizer of α(·), as
it is a maximizer of many other functionals over the family of convex bodies (e.g.
[17]), the unit vector for which the maximum ratio is achieved is not always one
of the normals of the simplex. In other words, for certain values of p and q there
exist non-conic maximizers of α(·). The relation between p, q, n, and the unit vector
maximizing the norm ratio for the simplex remains elusive thus far. Recall now the
definition of a random vector in isotropic position:

Definition 2. A random vector X = (X1, . . . , Xn) is said to be in isotropic position
if :

E[X] = 0, E[XiXj ] = δi,j , (∀0 ≤ i, j ≤ n),
1



THE CENTERED CONVEX BODY WHOSE MARGINALS HAVE THE HEAVIEST TAILS 2

where δi,j is the Dirac delta. A convex body is said to be in isotropic position if
X ∼ Uni(K) is in isotropic position.

Any convex body can be transformed into an isotropic one through an affine
map (see [3] for proof). Our second main result is the following:

Theorem 3. Let K ⊂ Rn be a convex body in isotropic position and X ∼ Uni(K) be
a random variable uniformly distributed over K. Then for any k ∈ {3, 4}, φ ∈ Ck(R)
such that φ(k)(x) > 0 ∀x ∈ R, we have:

(1.2) max
θ∈Sn−1

E[φ(X · θ)] ≤ max
θ∈Sn−1

E[φ(Γn · θ)],

where Γn ∼ Uni(∆n) is also in isotropic position.

Here if k = 3, then the inequality is strict unless K is a cone, in which case the
maximizing unit vector is normal to (one of) the cone’s base(s). However, if k = 4
this isn’t the case, as for some φ there exist non-conic maximizers. A version of
Theorems 1 and 3 for the symmetric log-concave case can be found in Eskenazis,
Nayar, and Tkocs [5]. In fact, we shall use techniques similar to those presented in
the said paper here. Recall that a random variable X is called log-concave if it has
a density fX with respect to the Lebesgue measure such that log (fx(·)) is concave
on the support of fX , where log is the natural logarithm. The set of log-concave
random variables can be defined equivalently as the closure of the set of random
variables of the form X ·θ for all convex bodies (regardless of the dimension). Thus
our main result concerning the dimension independent case is the following:

Theorem 4. Let X be a centered log concave random variable, and let n be an even
integer. We then have:

(1.3)
‖X‖n
‖X‖2

≤

(
n!

n∑
i=0

(−1)k

k!

) 1
n

= (!n)
1
n ,

with equality if and only if X coincides with ±Γ in law. Here, !n is the subfactorial
of n and Γ is a random variable with density g(x) = e−(x+1) supported on the line
[−1,∞).

In addition, we prove the following result regarding odd moments of log-concave
random variables:

Theorem 5. Let X be a centered log-concave random variable. If q is an odd
integer, and p is a real number such that 1 < p < q, then we have:

(1.4)
|E[Xq]|

1
q

‖X‖p
≤ |E[Γq]|

1
q

‖Γ‖p
,

with equality if and only if X coincides with Γ in law (The difference here is that
the absolute value in the numerator is taken outside of the expectation).

A different proof of Theorem 5 for the case p = 2, q = 3 can be found in Bubeck
and Eldan [4]. The problem of finding the maximum norm ratio over different
families of random variables has been discussed in several other instances in the
mathematical literature. The fact that the norm ratios of marginals of convex
bodies are bounded by some universal constant was proven first by Berwald in
[1] and then by Borell in [1] (one can also find this result in a survey [14] by
Milman and Pajor). Borel and Berwald also found the maximum norm ratio of
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log-concave random variables supported on the real half-line (see [15] for proof).
Another example for a problem of a similar type is the Khintchine inequality, which
deals with the maximum norm ratio of linear combinations of independent Bernoulli
random variables. The sharp Khintchine inequality for p = 2 was established by
Haagerup in [6]. A simpler proof by Nazarov and Podkorytov can be found in [16].
The case where p and q are even numbers was also solved. For a more in-depth
history of the Khintchine inequality as well as a proof of the even case see [15].
Eskenazis, Nayar, and Tkocs also found the maximum norm ratio for the s-norm
ball when p = 2 in the aforementioned [5]. Throughout this paper, by a convex
body we mean a convex compact set with non-empty interior, and by a cone we
mean the convex hull of a subset of a an affine space of co-dimension one and a
point outside of the said affine space.

2. the dimension dependent case

Recall X ∼ Uni(K) for some n-dimensional, centered, convex body K. We start
by stating the well-known Brunn principle (see e.g. [18] for proof):

Lemma 6. For any θ ∈ Sn−1, the random variable X · θ has a density fθ(x) w.r.t.

the Lebesgue measure. In addition fθ is supported on a compact interval and f
1/n−1
θ

is concave in its support. Finally, if f
1/n−1
θ is affine in its support, then K is a

(pherhaps truncated) cone and θ is normal to K’s base.

Bruun’s principle gives us valuable information about the way the graph of fθ
can intersect the graphs of other certain functions of interest. We shall make use
of this information in conjunction with the theory of Chebyshev systems (for an
in-depth discussion on Chebyshev systems see [10]):

Definition 7. A system of real functions {ui(t)}k0 is called a Chebyshev system of
order k if any linear combination:

(2.1) p(t) =

k∑
i=0

aiui(t) (

k∑
i=0

a2
i > 0)

has at most k roots.

One readily sees that {ui(t)}k0 is a Chebyshev system if and only if the determi-
nant of the matrix {ui(tj)}i×j doesn’t vanish for any t0 < · · · < tk ∈ R. This in

turn is equivalent to the existence of a linear combination of the form (2.1) whose
roots are exactly t1, . . . , tk. For a fixed set of numbers p0 < · · · < pk where p0 = 0,
p1 = 1 we define:

(2.2) ui(t) =

{
|t|pisgn(t) i is odd

|t|pi i is even
.

Lemma 8. For k < 5, {ui(t)}k0 is a Chebyshev system.

Proof. We shall prove the lemma for k = 4 (the other cases can be proved in a
similar yet easier way). Let p(t) be of the form (2.1), we may assume a4 = 1 since
if a4 = 0 we get the case k = 3. By Rolle’s theorem it is enough to show p′(t) has
at most 3 roots. Define:

q(t) = a2u
′
2(t) + a3u

′
3(t) + u′4(t).
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It is enough to show that there exists a line segment [b, c] ⊂ R such that q is
monotonically decreasing in [b, c] and monotonically increasing both in [c,∞) and
in (−∞, b]. For t > 0 we have:

(2.3) q′(t) = ã2t
p2−2 + ã3t

p3−2 + ã4t
p4−2

ãi = aipi(pi − 1).

Notice that ai and ãi have the same sign. Again by normalizing we may assume
ã4 = 1. We now have q′(t) = 0 if and only if:

ã2 + ã3t
p3−p2 + tp4−p2 = 0.

Changing variables to x = tp3−p2 and defining β = p4−p2
p3−p2 > 1 we get:

(2.4) ã2 + ã3x+ xβ = 0.

Since xβ is strictly convex, it intersects any affine function at most twice. Further
inspection shows that the number of positive roots of (2.4) depends on a2, a3 in the
following way (depicted in figure 2.1):

(1) If a2 ≤ 0, then (2.4) has exactly one positive solution, since the function
|x|β is strictly convex in all of R, but the line −ã2 − ã3x must intersect it
once in (0,∞) and one in (−∞, 0].

(2) If a2 > 0, a3 ≤ 0, then (2.4) has at most two positive solutions.

(3) If a2 > 0,a3 > 0, then (2.4) has no positive solutions, since in this case, the
left-hand side of (2.4) is positive.

We now examine t < 0. Setting s = −t > 0 we get:

(2.5) q′(s) = ã2s
p2−2 − ã3s

p3−2 + ã4s
p4−2.

But this is just (2.3) with the sign of a3 changed. Thus, if case 1 holds, for t > 0,
q(t) can only decrease up to some point c ≥ 0 and then must increase for t > c (the
limit of q at infinity is infinity). For t < 0, q(t) must increase up to some point b ≤ 0
and may only decrease when t > b. Thus the claim of the lemma holds for case 1.
If case 2 holds, for t > 0, q(t) may change its monotonicity at most twice, but for
t < 0, q(t) must be monotonically increasing (since for t < 0 when checking our list
of possible roots of the derivative, we change the sign of a3). Thus the claim of the
lemma still holds. Case 3 is just a reflection of case 2 and so the lemma holds for
all cases. �

Now let θ1, θ2 be two outer normal unit vectors to the centered simplex ∆n and
recall that Γn ∼ Uni(∆n). Define:

(2.6) Γsn =
sθ1 − (1− s)θ2

|sθ1 − (1− s)θ2|
· Γn 0 ≤ s ≤ 1
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and let gsn(t) be the density of Γsn. We now state a few important properties of gsn:

Lemma 9. The following properties hold for gsn:

(1) g0
n(x) = g1

n(−x).

(2)
(
g0
n(x)

) 1
n−1 is affine on its support.

(3) For 0 < s < 1, let Supp gsn = [as, bs], then ∃cs ∈ [as, bs] such that (gsn(x))
1

n−1

is affine in [as, cs] and in [cs, bs]. In addition, gsn is continuous.

Proof. (1) follows from the symmetry of the simplex. (2) follows from the equality
case of Brunn’s principle. To see (3) holds notice that we can split ∆n into two

simplices whose intersection is a face orthogonal to the unit vector sθ1−(1−s)θ2
|sθ1−(1−s)θ2| .

Thus, using the equality case of Brunn’s principle once again, we see that the claim
holds (see e.g. [12] for more details). �

Before proving Theorem 1, we give a similar result with regard to the following
auxiliary operator:

(2.7) α∗(K) := max
θ∈Sn−1

|E[|X · θ|qsgn(x)]|
1
q

‖X · θ‖p
.

This operator can be thought of as measuring the largest asymmetry between tails
of the marginals of K.

Theorem 10. For any centered convex body K ⊂ Rn:

(2.8) α∗(K) ≤ α∗(∆n),

where equality holds if and only if K is a cone. In addition, the unit vectors in
which the maximum is achieved are normal to (one of the) the base(s) of the cone.

Proof. As before, for some θ ∈ Sn−1, let fθ(x) be the density of X · θ. We shall also
abbreviate g0

n by gn for the duration of this proof. By the homogeneity of (2.8) we
may assume:

(2.9)

∫
|x|pfθ(x)dx =

∫
|x|pgn(x)dx = 1.

Assume by contradiction that:

(2.10)

∫
|x|qsgn(x)fθ(x)dx >

∫
|x|qsgn(x)gn(x)dx.

Our general idea is to use Lemma 8 to interlace the difference function h := gn −
fθ with appropriate linear combinations of {1, x, |x|p, |x|qsgn(x)}. We then use
four linear constraints (i.e. (2.9) (2.10) and the fact that fθ and gn are centered
densities), to force h to change sign at least four times. This will contradict Lemmas

6 and 9, which state that (gn)
1

n−1 is non-negative, affine on [a0, b0] and continuous

at every point but a0, and (fθ)
1

n−1 is non-negative and concave on its support. Thus
h may change sign at most twice at (a1,∞) and not at all at (−∞, a1), making
for a maximum of three possible sign changes. We now show (2.10) implies h must
change sign at least four times. First, since fθ and gn are densities, we get:∫

h(x)dx = 0.
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Thus h must change sign at least once. Now if h changes sign only once, say at a
point x1 ∈ R, then (x−x1)h(x) never changes sign, but since fθ and gn are centered
densities, we get: ∫

(x− x1)h(x)dx = 0,

which contradicts (2.10). Assume now h changes sign exactly twice at points x1, x2.
Then by Lemma 8 there exists p(x) = d1 +d2x+ |x|p whose roots are exactly x1, x2

and so p(x)h(x) never changes sign. Using (2.9) we now get:∫
p(x)h(x)dx = 0,

which contradicts (2.10). Finally, assume h changes sign exactly three times at
points x1, x2, x3, again by Lemma 8 there exists p(x) = d1+d2x+d3|x|p+|x|qsgn(x),
whose roots are exactly x1, x2, x3. Also note that in this case fθ and gn must
intersect twice on (a1,∞) and so h(x) must be non-negative for large values of x,
thus h(x)p(x) ≥ 0 for all x ∈ R. However (2.9) and (2.10) give us:∫

p(x)h(x)dx < 0,

which is a contradiction. We thus showed:

E[|X · θ|qsgn(X · θ)]
‖X · θ‖p

≤ E[|Γ1
n|qsgn(Γ1

n)]

‖Γ1
n‖p

and that equality implies that X · θ coincides with Γ1
n in law, which in turn implies

K is a cone and θ is normal to K’s base by the equality case of Brunn’s principle. �

Proof of Theorem 1. The proof is very similar to that of Theorem 10. Using the
same notations as before we can again assume by homogeneity :

(2.11)

∫
|x|pfθ(x)dx =

∫
|x|pgsn(x)dx = 1 ∀0 ≤ s ≤ 1

and assume by contradiction:

(2.12)

∫
|x|qfθ(x)dx >

∫
|x|qgsn(x)dx ∀0 ≤ s ≤ 1.

Now choose some p < r < q. Theorem 10 tells us:∫
|x|rsgn(x)g1

n(x)dx ≤
∫
|x|rsgn(x)fθ(x)dx ≤

∫
|x|rsgn(x)gon(x)dx,

where the first inequality just follows from property (1) in Lemma 9. Thus from
continuity we may choose some 0 ≤ s0 ≤ 1 such that:

(2.13)

∫
|x|rsgn(x)fθ(x)dx =

∫
|x|rsgn(x)gs0n (x)dx.

We now proceed exactly as we did before; by Lemmas 6 and 9 the difference function
h = gs0n − fθ can change sign at most 4 times. The same arguments as before
show that h must change sign at least 4 times, but if h changes sign exactly 4
times at points x1, . . . , x4, again by Lemma 8 there exists p(x) = d1 + d2x +
d3|x|p + d4|x|rsgn(x) + |x|q, whose roots are exactly x1, . . . , x4. Since gs0n and fθ
must intersect twice in [cs0 , bs0 ] we have h(x) ≥ 0 for large values of x and so
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p(x)h(x) ≥ 0. But (2.11) (2.12) and the fact gs0n and fθ are centered densities give
us: ∫

p(x)h(x)dx < 0,

which is a contradiction. We thus showed:

‖X · θ‖q
‖X · θ‖p

≤ ‖Γn · θs0‖q
‖Γn · θs0‖p

and so:

α(K) ≤ α(∆n).

�

As mentioned in the Introduction, the proof of Theorem 1 shows that the mar-
ginal for which the maximum norm ratio in the simplex (and in any other convex
body) is achieved belongs to the 1-parameter family Γsn and thus any convex body
which maximizes α can be split into two cones by some hyperplane. Quite unex-
pectedly, calculations show that for different values of p and q, the maximum norm
ratio is achieved in different values of s.

Notice also that all we needed for the proof of Theorem 1 was the Chebyshev sys-
tem property of {1, x, |x|p, |x|rsgn(x), |x|q}. Thus, using other Chebyshev systems
might bring forth new inequalities. Let us give one more example of a Chebyshev
system:

Lemma 11. For any k ∈ N, let φ ∈ Ck(R), if φ(k) > 0 the set {1, x, ..., xk−1, φ} is
a Chebyshev system.

Proof. We use Rolle’s Theorem iteratively. If for some p(x) =
∑k−1
i=0 dix

i + dkφ(x)

there are more then k roots, then p(k)(x) = φ(k)(x) has at least one root, which is,
of course, a contradiction (this proof is taken from [10, Chapter 2, Example E]). �

Proof of Theorem 3. The proofs when k = 3, 4 are identical to those of Theorems
10 and 1 respectively.

�

3. the dimension independent case

Looking at the log-concave case, we notice the role of our one-parameter family
Γsn is taken by following simpler family of random variables:

(3.1) Γs = sΓ− (1− s)Γ′.

Here, Γ,Γ′ are i.i.d with density g(x) = e−(x+1)1[−1,∞). Indeed, replacing the

power of 1
n−1 by log, Lemma 6 becomes the definition of a log-concave random

variable, and Lemma 9 is easy to verify for gs(x), the densities of Γs. Thus, one
can reformulate theorems 1,3 and 10 for the log-concave case and prove them in
the exact same way:

Theorem 12. Let X be a centered log concave random variable, then:

(3.2)
‖X‖q
‖X‖p

≤ max
0≤s≤1

‖Γs‖q
‖Γs‖p

.
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Theorem 13. Let X be a log concave random variable in isotropic position and let
φ ∈ Ck(R) and φ(k)(x) > 0, ∀x ∈ R where k ∈ {3, 4}. We then have:

(3.3) E[φ(X)] ≤ max
0≤s≤1

E[φ(Γs)].

If k = 3 the maximum is achieved at s = 0 and equality implies X coincides with
Γ in law.

Theorem 14. Let X be a centered log concave random variable, then:

(3.4)
E[|X|qsgn(X)]

‖X‖p
≤ E[|Γ|qsgn(Γ)]

‖Γ‖p
,

with equality if and only if X coincides with Γ in law.

Note that Theorem 5 follows from Theorem 14. The following question naturally
arises: which is the maximizer of the norm ratio among Γs for 0 ≤ s ≤ 1? We shall
use the new convenient formula (3.1) to answer this question when p = 2 and q is
an even integer, but first, let us recall that the cumulants {kn(X)}∞n=0 of a random
variable X are defined by:

(3.5) log
(
E[etX ]

)
=

∞∑
n=0

kn(X)

n!
tn.

See e.g. [9] for proof that when X is log-concave E[etX ] is analytic in a small
neighborhood of zero. Let us also define µn(X) to be the n-th moment of X. Two
useful properties of the cumulants of a random variable are the following:

(1) For any X,Y independent random variables, a, b ∈ R and n ∈ N, we have:

(3.6) kn(aX + bY ) = ankn(X) + bnkn(Y ).

(2) Knowing the value of the cumulants of X (and assuming again that X
is centered) we can restore the value of its moments using the following
formula:

(3.7) µn(X) =

n∑
i=1

(
n− 1

i− 1

)
ki(X)µn−i(X).

We now calculate the cumulants of Γ:

log
(
E[etΓ]

)
= log

(∫ ∞
−1

e−x−1 · etxdx
)

= log

(
e−t

1− t

)
= −t− log(1− t) =

∞∑
n=2

tn

n
,

and so:

(3.8) k0(Γ) = k1(Γ) = 0, and kn(Γ) = (n− 1)! n ≥ 2.

Proof of Theorem 4. Reparametrizing (3.2) in Theorem 12, we get:

(3.9)

(
‖X‖n
‖X‖2

)n
≤ max

0≤t≤π2
µn (cos(t)Γ− sin(t)Γ′) ,

with equality if and only if ∃0 ≤ t0 ≤ π
2 such that:

(3.10)
X

‖X‖2
= cos(t0)Γ− sin(t0)Γ′.

Thus, the only remaining thing to prove is:

µn (cos(t)Γ− sin(t)Γ′) < µn(Γ) ∀0 < t <
π

2
.
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From the discussion above we see that:

|kn (cos(t)Γ− sin(t)Γ′)| = |cosn(t) + (− sin(t))n|(n− 1)!

< (n− 1)! = |kn(Γ)| ∀n ≥ 2, 0 < t <
π

2
.(3.11)

Here, the strict inequality comes from the classic norm inequality ‖x‖n < ‖x‖2 for
any vector x with at least two non zero coordinates. We now assume by induction
that:

|µi (cos(t)Γ− sin(t)Γ′)| < |µi(Γ)| ∀2 < i < n, 0 < t <
π

2
.

We thus have:

|µn (cos(t)Γ− sin(t)Γ′)| ≤
n∑
i=1

(
n− 1

i− 1

)
|ki(cos(t)Γ− sin(t)Γ′)||µn−i(cos(t)Γ− sin(t)Γ′)|

<

n∑
i=1

(
n− 1

i− 1

)
|ki(Γ)||µn−i(Γ)| = |µn(Γ)|.

This completes our proof.
�

Theorem 12 reduces the problem of finding the maximum norm ratio over all
log-concave random variables into finding the maximum norm ratio over Γs. If p
and q are even integers, this problem is equivalent to finding:

(3.12) max
0≤s≤1

(rq(s))
p

(rp(s))
q ,

where rp(s) = E[sΓ + (s − 1)Γ′]p is a family of polynomials. We now present a
technique, which worked for all even integers up to 100, to prove the maximum is
achieved exactly at s = 0 and s = 1.

Theorem 15. Let X be a centered log concave random variable and let p, q be even
numbers such that p < q < 100 then:

(3.13)
‖X‖q
‖X‖p

≤ ‖Γ‖q
‖Γ‖p

=
(!q)

1
q

(!p)
1
p

,

where equality holds if and only if X coincides with ±Γ in law.

Proof. Unfortunately, this proof is computer-assisted. First notice that the rational
function in (3.12) is symmetric with respect to 1

2 , and that it is enough to prove
our hypothesis for p = q − 2. Thus our goal will be to show:

d

ds
log

(
(rq(s))

q−2

(rq−2(s))
q

)
≤ 0 ∀0 ≤ s ≤ 1

2
,

or equivalently:

(3.14) hq(s) := (q − 2) · r′q(s) · rq−2(s)− q · r′q−2(s) · rq(s) ≤ 0 ∀0 ≤ s ≤ 1

2
.

Define now:

h̃q(s) =
hq(s− 1

2 )

s(s− 1
2 )(s+ 1

2 )
=
∑

ai,qs
2i.
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Calculating the coefficients of the first few polynomials we get:

h̃4(s) = −96

h̃6(s) = −720(15 + 8s2 + 144s4)

h̃8(s) = −1680(1485− 2880s2 + 105696s4 + 104448s6 + 268544s8)

h̃10(s) = −5040(269325− 1323000s2 + 72560880s4 + 280339200s6

+ 1409629440s8 + 1162622976s10 + 1050406912s12).

One can easily check that when q ≤ 10, ai.q ≤ 0 for all i 6= 1 and a2
1 − 4a0a2 < 0.

Thus h̃q never changes sign and hq(s) has the same sign as s(s − 1)(s + 1), which
proves the theorem. Using computer assistance one can see the same proof still
holds for q < 100. �

We finish this paper with a conjecture which generalizes these empiric results:

Conjecture 16. Let X be a centered log-concave random variable. Then for even
integers p < q, we have:

(3.15)
‖X‖q
‖X‖p

≤ ‖Γ‖q
‖Γ‖p

=
(!q)

1
q

(!p)
1
p

,

with equality if and only if X coinsides with ±Γ in law, where Γ is a random variable
with density g(x) = e−(x+1)1[−1,∞).

Chapter 2. Empirical data and other results

4. introduction

In the first part of this chapter, we present other results which use intersection
arguments similar to those we presented before, as well as a recursion formula for
the polynomials rn defined in the last chapter. The results will be stated for the
log-concave case but can be easily stated for the dimensional-dependent case as well.
In the second part of this chapter, we present different calculations, techniques, and
empirical data which we could not turn into rigorous proofs, but which we still feel
give insight into the unanswered problems presented in chapter 1.

5. other results

We start with a few quick propositions which can be easily proven by the same
methods used thus far.

Proposition 17. Let X be a centered log-concave random variable, whose density
function f(x) is supported on the interval [−α,∞) for some α > 0, and let φ(x) be
a strictly convex function. Then:

(5.1) E[φ(X)] ≤ E[φ(α · Γ)],

where equality holds if and only if X coincides with α · Γ in law.

Proof. Letting gα(x) be the distribution function of α · Γ, one easily verifies that
gα and f may intersect at most twice. Using Lemma 11 to see that {1, x, φ} is a
Chebyshev system, we reach a contradiction using the same arguments we saw in
the last chapter. �
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Proposition 18. Let f(x) be the density of a log-concave centered random variable
X. Then:

(5.2) f(x) ≤ 1

|x|
∀x 6= 0,

where equality at a point α implies that X coincides with α · Γ in law.

Proof. Again, for any α > 0, since X is centered and log-concave, f and gα must
intersect at least twice. Assume now that 1

α = gα(α) < f(α). This implies that gα
and f cannot intersect at all in the ray (−∞,−α] and at most once at [−α,∞), a
contradiction. The case of α < 0 follows by symmetry. �

We can also provide an elementary proof of the one-dimensional case of a result
by Harge [7] and Hu [8].

Proposition 19. Let X be a centered random variable with density f(x) such that
log (f(x)) ∈ C2 (R) and for some α > 0 we have:

(5.3)
d2

dx2
log (f(x)) ≤ −α ∀x ∈ R.

Then for every convex function φ we have:

(5.4) E[φ(X)] ≤ E[φ(N (0,
1

α
))],

with equality if and only if X coincides with N (0, 1
α ) in law (here N (0, 1

α ) is the
normal distribution with variance α).

Proof. Let zα(x) be the density of N (0, 1
α ) and define h(x) = zα(x) − f(x). In-

equality (2.3) implies h can change sign at most twice, and so we can repeat the
argument used in Proposition 18. �

Proposition 20. Let X be a log-concave (not necessarily centered) random variable.
If ∃a, b, t0, t1 ∈ R are such that b > 0, t0 < t1 and:

(5.5) E[etiX ] = E[eti(a+bΓ)] i ∈ {0, 1}.

Then for every t > max{0, t1}, we have:

(5.6) E[etX ] ≤ E[et(a+bΓ)],

with equality if and only if X coincides with a+ bΓ in law.

Proof. Using Rolle’s Theorem inductively, one readily verifies that {ea0x, ea1x, . . . , eanx},
(a0 < a1 < . . . < an) is a Chebyshev system. Following the usual technique one
proves the proposition. �

Let us now focus our efforts towards a better understanding of the polynomials
rn and hn in hopes of proving Conjecture 16 presented in the first chapter. First,
we provide a recursive formula for the polynomials rn. Abusing the notation, we
redefine rn in the following way:

(5.7) rn(z) =

{
1 n = 0

1
(n−1)!E[zΓ + (z − 1)Γ

′
]n n > 0

.

Here we just multiplied the original polynomials by 1
(n−1)! .
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Proposition 21. The following recursion formula holds:

(5.8) rn(z) = zn + (z − 1)n +

n−2∑
i=0

ri(z)

i

(
(z − 1)n−i + zn−i

)
.

Proof. Recalling the moment-cumulant formula we have:

rn(z) =
1

(n− 1)!
µn (zΓ + (z − 1)Γ′)

=
1

(n− 1)!

n−2∑
i=0

(
n− 1

i

)
µi

(
zΓ + (z − 1)Γ

′
)
kn−i

(
zΓ + (z − 1)Γ

′
)

=

n−2∑
i=0

µi

(
zΓ + (z − 1)Γ

′
)

i!
·

(n− 1− i)!
(
zn−i + (z − 1)n−i

)
(n− 1− i)!

= zn + (z − 1)n +

n−2∑
i=0

ri(z)

i

(
zn−i + (z − 1)n−i

)
.

�

We now present useful empirical data regarding properties of the polynomials rn
as well as other related polynomials.

6. Empirical data

Calculating the roots of rn for all values of n smaller than 100 with computer
assistance, we found, to our surprise, that they all lie on the line Re(z) = 1

2 . This
leads us to the following conjecture:

Conjecture 22. All roots of the polynomials {rn(z)}∞n=0 lie on the line Re(z) = 1
2 .

We now present a few of our best attempts to prove this conjecture. By (5.7)

and the fact that Γ and Γ
′

are independent i.i.d with moments

(6.1) µn(Γ) =!n =

(
n!

n∑
i=0

(−1)k

k!

) 1
n

=

[
n!

e

]
where [·] is the nearest integer function, we get

(6.2) rn(z) = n

n∑
i=0

!i

i!

!(n− i)
(n− i)!

zi(z − 1)n−i.

As the Mobius map z → z
z−1 maps the unit circle to the line Re(z) = 1

2 , it is
enough to prove the roots of the polynomials

qn(z) =
1

n
(z − 1)nrn(

z

z − 1
) =

n∑
i=0

!i

i!

!(n− i)
(n− i)!

zi

all lie in the unit circle. Equation (6.1) suggests that the coefficients of qn are close
to being equal and so qn can be thought of as close to the polynomial

∑n
i=0 z

i whose
roots all lie in the unit circle. Notice also that the coefficients of qn are symmetric
around n

2 , and so by [11] it is enough to show that the roots of the derivative q′n
all lie in the unit disc. Unfortunately, we were not yet able to use the facts above
to prove the conjecture. Figure 6.1 depicts the coefficients
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of qn for different values of n. As can be seen, these coefficients are indeed almost
constant, but are not monotone or even unimodular.

Our second approach was the following: noticing that in the proof of Theorem 4
the only property of Γ we used was that it has positive cumulants, we conjectured
that this property might be enough to prove Conjecture 6. Combining this with the
moment-cumulant formula, we tried first to prove the following conjecture which
would have implied Conjecture 6:

Conjecture 23 (False). Let {λn,i}n,m∈N be a doubly indexed sequence of positive
numbers. Define:

pn(z) =


1 n = 0

0 n = 1∑n−2
m=0 λn,mpm(x) ((z − 1)n−m + zn−m) n ≥ 2

The roots of {pn(z)}∞n=0 all lie on the line Re(z) = 1
2 .

Unfortunately, (using arguments presented in [13, Section 2] for example) one
can easily verify that Conjecture 23 is equivalent to the following false claim: for
every n ∈ N the polynomials:{(

(z − 1)i1 + zi1
)
· . . . ·

(
(z − 1)ik + zik

)}
i1+...+ik=n

are commonly interlacing. However, empirical data shows that for many different
choices of λn,i Conjecture 23 is true, and we hope that some other (hopefully weak)
constraint on λn,i will make Conjecture 23 true. Specifically, we still hope to prove
the following:

Conjecture 24. Let X be a centered random variable with positive cumulants.
Then Conjecture 7 holds for λn,i =

(
n−1
i

)
kn−i(X) or equivalently, the roots of the

polynomials
pn(z) = E[zX + (z − 1)X ′]n

all lie on the line Re(z) = 1
2 , where X, X ′ are i.i.d.
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We now turn our discussion towards the polynomials hn(z) defined at the end of
the last chapter. The roots of hn are of greater importance to us since, as we saw
at the end of the last chapter, Conjecture 16 is equivalent to proving that the only
real roots of hn are 0, 1

2 , and 1. Theorem 15 documents some of the empirical data
we have gathered on this family of polynomials. For completeness, let us now give
a brief description of the computer-assisted part of the proof of Theorem 15.

Computer Assistance in Proof of Theorem 15: To verify the empirical data used to
prove theorem 15, we have used the following simple code in mathematica:

r[t , n ] := Sum[Binomial[n, k] Subfactorial[k] Subfactorial[n - k] Power[t

+ 1/2, k] Power[t - 1/2, n - k], {k, 0, n}];

h[t , n ] := (n - 2)*D[r[t, n], t]*r[t, n - 2] - n*D[r[t, n - 2], t]*r[t,

n];

a[i , k ] := CoefficientList[dkhin[t, i]/(t*(t - 1/2)*(t + 1/2)), t][[k]];

len[i ] := Length[CoefficientList[dkhin[t, i]/(t*(t - 1/2)*(t + 1/2)),

t]];

test = 0;

For[i = 2, i < 50, i++, For[k = 4, len[2*i] >= k, k++, If[a[2*i, k] >

0, test = 1]]];

For[i = 2, i < 50, i++, If[(a[2*i, 3])^2 - 4*a[2*i, 1]*a[2*i, 5] >= 0,

test = 1]];

test.

In addition to this, it appears that all other roots of hn lie on a hyperbola centered
at 1

2 with foci 0, 1 as can be seen in figure 6.2. The geometric nature of the positions
of the roots of both rn and hn made us wonder what will happen if we replace the
role of the random variable Γ in the definition of rn and hn with other random
variables. For a centered random variable X, we define:

rX,n(z) = E[zX + (z − 1)X ′]n

hX,n(z) = (n− 2) · r′X,n(z) · rX,n−2(z)− n · r′X,n−2(z) · rX,n(z).

We end this chapter by presenting the positions of the roots of these families of
polynomials for a variety of random variables. The geometric nature of all of these
is quite surprising.
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