Distributed Graph Algorithms

Spring 2021

Exercise 2: May 19

Lecturer: Merav Parter

Exercise 1 (Randomized Symmetry Breaking). For an *n*-vertex graph G = (V, E), and a vertex $u \in V$, let N(u) be the neighbors of u in G, and let deg(u) = |N(u)| be its degree. For integers $1 \le \alpha \le \beta$, a subset $V' \subseteq V$ is an (α, β) ruling-set if (i) $d_G(u, v) \ge \alpha$ for every $u, v \in V'$, and (ii) for every $u \in V$, there exists $v \in V'$ such that $d_G(u, v) \le \beta$.

Consider the following 1-round randomized LOCAL algorithm: each vertex v picks a number r_v u.a.r in [0,1], and joins a set R if it is a local minima, i.e., if $r_v < r_u$ for any neighbor $u \in N(v)$. We next prove two properties of this algorithm.

- (1a) Show that for each v it holds that $R \cap N^+(v) \neq \emptyset$ with probability at least $(deg(v)+1)/(deg(v)+deg_{max})$, where $N^+(v) = N(v) \cup \{v\}$ and deg_{max} is the maximum degree among nodes in $N^+(v)$.
- (1b) Assume that G is a nearly regular graph with all degrees in $[\Delta, 2\Delta]$. Show that w.h.p. R is a $(2, O(\log n))$ ruling set. **Bonus**: prove the above claim for any n-vertex graph G, i.e., without assuming that G is nearly regular.

Exercise 2 (Strong Network Decomposition). Let \mathcal{A} be the deterministic LOCAL algorithm for (c,d) weak network decomposition of [RG20], and let \mathcal{B} be the deterministic sequential algorithm for (c,d) strong network decomposition where $c,d=O(\log n)$. Both of these algorithms were presented in class. In this exercise, we will use algorithms \mathcal{A} and \mathcal{B} (in a black box manner) in order to compute strong network decomposition in the LOCAL model.

Show: There is a deterministic LOCAL algorithm for computing for computing $(O(\log n), O(\log n))$ strong network decomposition using $poly(\log n)$ rounds. Hint: focus on the construction of the first color class in the desired strong network decomposition. Apply algorithm \mathcal{A} on the power graph¹ G^q for some parameter q to be set carefully, and let the nodes locally apply the sequential algorithm \mathcal{B} on the output clusters of \mathcal{A} .

Exercise 3 (Low Diameter Ordering). The last exercise illustrates another combinatorial application of network decomposition which also sets a convenient platform for simulating SLOCAL (i.e., sequential local) algorithms in the LOCAL model.

Definition 2.1 Given a n-node graph G = (V, E), a d(n)-diameter ordering of G is an assignment of unique labels² to all nodes V such that any path P on which the labels are increasing along P, any two nodes of P are within a distance d(n) in the graph G.

- (2a) Show that any *n*-vertex graph has a d(n)-diameter ordering with $d(n) = O(\log^2 n)$.
- (2b) Show that given that all nodes are provided with d(n)-ordering w.r.t. the graph G^r , then any SLOCAL algorithm with locality r can be simulated in $O(r \cdot d(n))$ LOCAL rounds.

¹Recall that in the power graph G^q , $(u, v) \in E(G^q)$ iff $d_G(u, v) \leq q$.

²The label is simply a unique identifier to the vertices of $O(\log n)$ bits, i.e., a number in [1, poly(n)].