Exercise 1 (List Coloring via Symmetric LLL). In the problem of list coloring, every vertex v is associated with a list (or palette) of colors $\text{Pal}(v)$. It is required to compute a legal vertex coloring where the color of each vertex v is taken from $\text{Pal}(v)$. (1a) Show that if for every v it holds that: (i) $|\text{Pal}(v)| \geq \ell$ (ii) each color $c \in \text{Pal}(v)$ appears in at most $\ell/8$ of its neighbors, then there is a legal coloring (i.e., solution to the list coloring instance).

(1b) We consider a weighted variant of the list coloring problem. Given is a graph G with maximum degree Δ where every vertex v has a palette of colors $\text{Pal}(v)$. Each color $c \in \text{Pal}(v)$ has a weight $w_v(c)$ such that $\sum_{c \in \text{Pal}(v)} w_v(c) = 1$. Prove that if for every edge (u, v) we have $\sum_{c \in \text{Pal}(u) \cap \text{Pal}(v)} w_v(c) \cdot w_u(c) \leq 1/(8\Delta)$ then G has a legal coloring.

(1c) Use the LLL algorithms shown in class (as a black box) to devise distributed algorithms for computing the coloring in (1a) and (1b).

Exercise 2 (MST and Connectivity). (2a) Show that one can compute an MST on the clique graph within $O(\log n)$ rounds w.h.p.

(2b) Let G be an n-vertex D-diameter graph and let H be a subgraph of G given in a distributed manner. I.e., each vertex v knows its incident edges in H. In the Connectivity Identification task, it is required for each vertex v to output the largest vertex identifier in its connected component in H. Show a distributed algorithm for this problem that runs in $\tilde{O}(D + \sqrt{n})$ rounds w.h.p.