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Network Decomposition – Part II

We continue with network decomposition and focus on (d, c) decompositions for d, c = O(log n). We first de-
scribe a sequential deterministic construction, and then show how to get an efficient distributed construction
when introducing randomness.

Sequential Alg. for Network Decomposition. The algorithm has O(log n) iterations, in each iteration
i, it outputs a collection of clusters Ci. These clusters are vertex disjoint, non-neighboring, and have diameter
of O(log n). Since all the clusters in Ci are not neighbors1, we can color all these clusters with the same color
i. Since there are O(log n) iterations, we will use O(log n) colors over all.

We now zoom into the first iteration, and later on explain the general case. We will compute the clusters one
by one as follows. Pick a vertex u and grow a ball around it until reaching to the smallest value r satisfying
that:

|BG(u, r + 1)| ≤ 2|BG(u, r)| . (2.1)

Add the ball BG(u, r) to the list of clusters, and omit the ball BG(u, r+1) from G. We repeat this procedure,
and pick the next vertex u′, grow a ball around it, until the entire graph G is empty. This completes the
description of a single iteration. Note that we do not require the graph G to be connected, and in fact
throughout the iterations, the graph induced on the unclustered graph might indeed be disconnected. This
thus not affect the behavior of the algorithm. By Eq. (2.1), we immediately get:

Observation 2.1 (1) The diameter of all clusters is O(log n), and (2) the number of clustered vertices (in
this iteration) is at least as large as the number of unclustered vertices.

Property (2) of Observation 2.1 implies that after O(log n) iterations, all vertices are clustered. It remains to
see that indeed all clusters C,C ′ generated in a given iteration do not have a neighboring pair, i.e., that there
exists no u ∈ C and v ∈ C ′ such that (u, v) ∈ E. This follows by our construction: whenever we add the
cluster BG(u, r), we omit all the neighbors of this clusters from G, by removing the larger ball BG(u, r + 1).
The code for the ith iteration is in Fig. 2.2. See Fig. 2.1 for an illustration of the clusters created in the first
iteration.

Randomized Dist. Alg. for (Weak) Network Decomposition. The above mentioned algorithm
provides us network decomposition with essentially the best possible bounds (why? see here [LS93] if you
are curios). The only drawback of this algorithm is that it is highly non-distributed: clusters are computed
one after the other. We next see a distributed construction which follows the same high-level idea but uses
randomness to allow the parallelism of the ball growing procedure.

Lemma 2.2 [LS93] For every graph G = (V,E), there is a randomized distributed algorithm that computes
an (O(log n), O(log n)) weak network decomposition using O(log2 n) rounds, w.h.p.

The construction has been “fixed” by Elkin and Neiman [EN16] to provide a strong decomposition with the
same bounds on c, d and round complexity.

1In the cluster graph
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Figure 2.1: The labels of the vertices describe the traversal order of the algorithm. The first vertex picked is
u1, the algorithm grows a ball around it as long as some expansion criteria is satisfied. The shell of the ball
(shown in gray) is omitted from the graph. This is important in order to make sure that the output clusters
are not neighbors in the cluster graph, and thus can be given the same color. All nodes that fall in the gray
regions will be handled in future iterations.

The ith Iteration of Algorithm SeqBallGrowing(G):

Input: Graph Gi induced on all vertices that are not yet clustered.
Output: Collection of clusters Ci = {C1, . . . , C`} of vertices in Gi, such that all clusters are vertex
disjoint, with depth O(log n), and are non-neighboring in Gi.

• Initialize Ci ← ∅.

• While Gi is not empty do:

– Pick an arbitrary node u in Gi.

– Grow a ball around u in Gi up to the smallest value r satisfying:

|BGi(u, r + 1)| ≤ 2|BGi(u, r)| .

– Add BGi
(u, r) to Ci and omit BGi

(u, r + 1) from Gi

• Color all clusters in Ci with color i.

Figure 2.2: Sequential Construction of (O(log n), O(log n)) Network Decomposition via Ball Growing

Just like in the sequential algorithm, this algorithm too has O(log n) phases. In each phase i, it computes
a collection Ci of non-neighboring vertex disjoint clusters of weak diameter O(log n). All the clusters in Ci
will be given a color i.

We now describe the ith phase, and let Gi be the current graph of the yet unclustered vertices (initially,
G1 = G). Instead of growing the balls one by one, we lets them all grow together as follows. Every vertex u



Lecture 2: April 4 2-3

samples a radius ru from the geometric distribution2 with parameter p = 0.5. That is, for every y:

Pr[ru = y] = p · (1− p)y−1.

The vertex u then sends a message to all nodes in its ru-ball in Gi. Since we are in the LOCAL model this can
be done in O(ru) rounds. The message sent by u contains the ID of u and the value of its radius. Now, every
vertex v considers all the messages that it got, and defines Center(v) = {min ID(u) | ru ≥ dist(u, v)}.
That is, v selects as its center the vertex of minimum ID out of all vertices from which it has received messages.
Finally, v becomes unclustered if dist(Center(v), v) = rCenter(v). This defines clusters potentially around
vertex u. The phase ends by eliminating all clustered vertices from Gi.

Observation 2.3 (Small diameter) W.h.p. ru = O(log n) for every u and thus the weak diameter of all
clusters is O(log n).

Note that since we omit the last layer from every cluster, the clusters computed in iteration i are non-
neighbors and can be colored with color i. The most interesting part is to show that after O(log n) iterations
all vertices are clustered, and thus O(log n) colors are sufficient. Towards that goal, we show:

Lemma 2.4 Pr[v is unclustered] ≤ p

Proof: For simplicity, we consider the probability that v becomes unclustered in the first iteration. Same
analysis applies for any other iteration. We have:

Pr[v is unclustered] =
∑
u∈V

Pr[v is unclustered | Center(v) = u] · Pr[Center(v) = u] .

We will now zoom into a fixed node u and bound the probability Pr[v is unclustered | Center(v) = u].
Define three events:

• Du: ru = dist(u, v,G),

• Eu: ru ≥ dist(u, v,G), and

• Fu: for all u′ < u, ru′ < dist(u′, v,G).

We then have the following:

Pr[v is unclustered | Center(v) = u] =
Pr[v is unclustered and Center(v) = u]

Pr[Center(v) = u]

=
Pr[Du and Fu]

Pr[Eu and Fu]
= Pr[Du]/Pr[Eu] = p ,

where the penultimate inequality is due to the fact that Fu is independent of the events Du and Fu, the
last inequality is by the definition of the geometric variable. Overall, we get that Pr[v is unclustered] =
p ·

∑
u∈V Pr[Center(v) = u] = p.

By Lemma 2.4, we get that the probability that a vertex is unclustered for c log n phases is at most pc logn ≤
1/nc. Therefore, we have at most O(log n) phases, each phase is implemented in maxu ru = O(log n) rounds
w.h.p., thus the total round complexity is O(log2 n).

2Imagine the node flips a coin that comes up heads with probability p. The radius of the vertex is the first time that the
coin flip came out heads.
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