
Near-Optimal Distributed Computation of Small Vertex Cuts

Merav Parter *

Weizmann Institute

merav.parter@weizmann.ac.il

Asaf Petruschka
Weizmann Institute

asaf.petruschka@weizmann.ac.il

Abstract

We present near-optimal algorithms for detecting small vertex cuts in the CONGEST model
of distributed computing. Despite extensive research in this area, our understanding of the
vertex connectivity of a graph is still incomplete, especially in the distributed setting. To this
date, all distributed algorithms for detecting cut vertices suffer from an inherent dependency in
the maximum degree of the graph, ∆. Hence, in particular, there is no truly sub-linear time
algorithm for this problem, not even for detecting a single cut vertex. We take a new algorithmic
approach for vertex connectivity which allows us to bypass the existing ∆ barrier.

� As a warm-up to our approach, we show a simple Õ(D)-round1 randomized algorithm
for computing all cut vertices in a D-diameter n-vertex graph. This improves upon the
O(D +∆/ log n)-round algorithm of [Pritchard and Thurimella, ICALP 2008].

� Our key technical contribution is an Õ(D)-round randomized algorithm for computing all
cut pairs in the graph, improving upon the state-of-the-art O(∆ · D)4-round algorithm
by [Parter, DISC ’19]. Note that even for the considerably simpler setting of edge cuts,

currently Õ(D)-round algorithms are currently known only for detecting pairs of cut edges.

Our approach is based on employing the well-known linear graph sketching technique [Ahn,
Guha and McGregor, SODA 2012] along with the heavy-light tree decomposition of [Sleator
and Tarjan, STOC 1981] . Combining this with a careful characterization of the survivable
subgraphs, allows us to determine the connectivity of G \ {x, y} for every pair x, y ∈ V , using

Õ(D)-rounds. We believe that the tools provided in this paper are useful for omitting the
∆-dependency even for larger cut values.

*This project is funded by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 949083), and by the Israeli Science Foundation (ISF),
grant No. 2084/18.

1Throughout the paper, we use the notation Õ to hide poly-logarithmic in n terms.

1

Contents

1 Introduction and Our Contribution 3
1.1 Our Approach, in a Nutshell . 4
1.2 Preliminaries . 7

2 Single Cut Vertices 9

3 Dependent Cut Pairs 10

4 Independent Cut Pairs 14
4.1 Computing x-Connectivity Trees . 14
4.2 Component Classification Based on Sensitivity . 15
4.3 xy-Connectivity Algorithms Under a Promise . 16
4.4 Running the Light Ax,y Algorithms in Parallel . 22
4.5 Running the Heavy Ax,y Algorithms in Parallel . 23

A Missing Proofs 30
A.1 Missing Proofs for Section 1.2 . 30
A.2 Missing Proofs for Section 3 . 31
A.3 Missing Proofs for Section 4 . 33

2

1 Introduction and Our Contribution

The vertex connectivity of the graph is a central concept in graph theory and extensive attention
has been paid to developing algorithms to compute it in various computational models. Recent
years have witnessed an enormous progress in our understanding of vertex cuts, from a pure graph
theoretic perspective [PY21] to many algorithmic applications [NSY19, LNP+21, PY21, HLW21].
Despite this exciting movement, our algorithmic toolkit for handling vertex cuts is still somewhat
limited. A large volume of the work, in the centralized setting, has focused on fast algorithms
for detecting minimum vertex cuts of size at most k, for some small number k. Until recently,
near-linear time algorithms where known only for k ≤ 2 [Tar72, HT73]. A sequence of recent
breakthrough results [CKL+22, LNP+21] provides an almost-linear time sequential algorithm for
computing the vertex connectivity (even for large connectivity values).

As we see soon, the situation is considerably worse in distributed settings, where the problem
is still fairly open already for k = 1. Throughout, we consider the CONGEST model [Pel00]. In
this model, each node holds a processor with a unique and arbitrary ID of O(log n) bits, and
initially only knows the IDs of its neighbors in the graph. The execution proceeds in synchronous
rounds and in each round, each node can send a message of size O(log n) to each of its neighbors.
The primary complexity measure is the number of communication rounds. For n-vertex D-diameter
graphs, Pritchard and Thurimella [PT11] presented a randomized algorithm for detecting a (single)
cut vertex (a.k.a articulation point) within O(D + ∆/ log n) CONGEST rounds, where ∆ is the
maximum degree of the graph. [PT11] conclude their paper by noting:

[PT11] It would be interesting to know if our distributed cut vertex algorithm could
be synthesized with the cut vertex algorithm of [Thu97] to yield further improvement.
Alternatively, a lower bound showing that no O(D)-time algorithm is possible for finding
cut vertices would be very interesting.

No progress on the complexity of this problem has been done since then. For small cut values
k, Parter [Par19] employed the well-known fault-tolerant sampling technique [WY13, KP21] for
detecting k vertex cuts in (∆·D)Θ(k) deterministic rounds. Turning to approximation algorithms, for
k = Ω(log n), Censor-Hillel, Ghaffari and Kuhn [CHGK14] provided a O(log n) approximation for
computing the value of the vertex connectivity of the graph within Õ(D+

√
n) rounds. [CHGK14]

also presented a lower bound of Ω̃(D +
√
n/k) V -CONGEST rounds. In the V -CONGEST model,

each node (rather than an edge) is restricted to send only O(log n) bits, in total, in every round.
As shown in this paper, this lower bound does not hold in the standard CONGEST model.

We follow the terminology of [PT11]: a cut vertex is a vertex x such thatG\{x} is not connected.
A cut pair is a pair of vertices x, y such that G \ {x, y} is not connected. For brevity we call these
objects, small cuts. Our main results in this paper are near-optimal algorithms for detecting these
small cuts, in the sense that for every small cut, there is at least one vertex in the graph that learns
it. Our first contribution is in presenting a (perhaps surprisingly) simple randomized algorithm2

that can detect all cut vertices in the graph in Õ(D) rounds. The edge-congestion3 of the algorithm
is Õ(1) bits4.

2As usual, all presented randomized algorithms in this paper have success guarantee of 1 − 1/nc, for any given
constant c > 1.

3The edge congestion of a given algorithm is the worst-case bound on the total number of messages exchanged
through a given edge e in the graph.

4We exploit this bounded congestion for detecting cut pairs.

3

Theorem 1.1. There is a randomized algorithm that w.h.p. identifies all single cut-vertices
in G within Õ(D) rounds. The edge congestion is Õ(1). In the output, each vertex x ∈ V
learns if it is a cut vertex.

This settles the question raised by [PT11]. Our algorithm is based on the well-known graph-
sketching technique of Ahn et al. [AGM12]. This technique has admitted numerous applications
in the context of connectivity computation under various computational settings, e.g., [KKM13,
KW14, GKKT15, KKT15, MK18, GP16, DP17, DP21]. Yet, to the best of our knowledge, it
has not been employed before in the context of CONGEST algorithms for minimum vertex-cut
computation.

We then turn to consider the problem of detecting cut pairs. It has been noted widely in the
literature that there is a sharp qualitative difference between a single failure and two failures. This
one-to-two jump has been accomplished by now for a wide-variety of fault-tolerant settings, e.g.,
reachability oracles [Cho16], distance oracles [DP09], distance preservers [Par15, GK17, Par20] and
vertex-cuts [HT73, BT89, BT96, GILP15]. While it is relatively easy to extend our algorithm of
Theorem 1.1 to detect cut pairs in Õ(D2) rounds, providing a near-optimal complexity of Õ(D)
rounds, turns out to be quite involved. Our key technical contribution is:

Theorem 1.2. There is a randomized algorithm that w.h.p. identifies all cut pairs in G
within Õ(D) rounds. For each cut pair x, y, either x or y learns that fact.

We observe that even for the simpler problem of edge-connectivity (see Remark below), an Õ(D)-
round algorithm is currently only known for edge cuts of size at most two due to [PT11]. Hence, we
are now able to match the complexity of these two problems for small cut values. Our algorithm
is based on distinguishing between two structural cases depending on the locations of the cut pair
x, y in a BFS tree of G. The first case which we call dependent handles the setting where the x
and y have ancestry/descendant relations. The second independent case assumes that x and y are
not dependent, i.e., LCA(x, y) /∈ {x, y}, where LCA(x, y) is the lowest/least common ancestor of
x and y in the BFS tree. Each of these cases call for a different approach. We believe that the
tools provided in this paper should hopefully pave the way towards detecting larger vertex-cuts
with no dependency in the maximum degree ∆ (as it is the case for the state-of-the-art algorithm
by [Par19]). For a more in-depth technical overview, see Sec. 1.1.

Remark on the Edge-Connectivity. It is widely known that in undirected graphs, vertex con-
nectivity and vertex cuts are significantly more complex than edge connectivity and edge cuts,
for which now the following result are known: an Õ(m)-time centralized exact algorithm [Kar99,
GNT20, GMW20] and an Õ(D+

√
n) exact distributed algorithms [DEMN21]. For constant values

of edge-connectivity a poly(D)-round algorithm is given in [Par19].

1.1 Our Approach, in a Nutshell

We provide the key ideas of our algorithms. Our end goal is to simulate a connectivity algorithm
in the graph G \ {x, y} for every pair of vertices x, y ∈ V . Note that this is not trivial already for a
single x, y pair as the diameter of the subgraph G \ {x, y} might be as large as Ω(∆D), hence using

4

on-shelf connectivity algorithms lead to a round complexity of O(min{D +
√
n,∆D}). We bypass

this ∆ dependency by using the edges incident to the vertices x, y as shortcuts. Then, to minimize
the congestion imposed by running possibly n2 connectivity algorithms in parallel, we employ a
preprocessing phase in which we collect graph-sketch information (explained next) at each vertex x.
This information allows each vertex x to pinpoint at a bounded number of cut-mate suspects. In
addition, it allows x, in certain cases, to locally simulate connectivity queries without using further
communication. Throughout, let T be a BFS tree rooted at some source s, and denote the T -paths
by π(·, ·).

We start by employing the well-known heavy-light tree decomposition technique by Sleator and
Tarjan [ST83]. This classifies the edges of T into light and heavy edges. The useful properties
are that each vertex v has O(log n) light edges on its tree path π(s, v), and in addition, each v is
the parent of one heavy edge, connecting v to its unique heavy child. It is easy to compute this
decomposition on T in Õ(D) rounds. For a vertex x, let Tx be the subtree of T rooted at x.

Basic Tools: Graph Sketches and Bor̊uvka Algorithm. A graph sketch of a vertex v is a
randomized string of Õ(1) bits that compresses v’s edges [AGM12]. The linearity of these sketches
allows one to infer, given the sketches of subset of vertices S, an outgoing cut edge (S, V \ S) with
constant probability. A common approach for deducing the graph connectivity merely from the
sketches of the vertices is based on the well-known Bor̊uvka algorithm [NMN01]. This algorithm
works in O(log n) phases, where in each phase, from each growable component an outgoing edge is
selected. All these outgoing edges are added to the forest, while ignoring cycles. Each such phase
reduces the number of growable components by constant factor, thus within O(log n) phases a
maximal forest is computed. Since this algorithm only requires the computation of outgoing edges
it can simulated using O(log n) independent sketches for each of the vertices. In our algorithms,
we aggregate graph sketches over the BFS tree T which allows the vertices x to locally simulate
Bor̊uvka in the graph G \ {x}. This is illustrated in our algorithm for detecting a single cut vertex,
described next.

Warm Up: Detecting Single Cut Vertices. Our algorithm starts by letting each vertex v
locally compute its individual SketchG(v). Then, by aggregating the sketches (using their linearity)
from the leaf vertices to the root s over the BFS tree T , each vertex v learns its subtree-sketch
SketchG(V (Tv)). Once this is completed, it is easy to let each vertex x ∈ V learn the G-sketch
information of all the connected components in T \ {x}. We then show that x can locally modify
these G-sketches into (G \ {x}) sketches. At this point, the vertex x can locally apply the Bor̊uvka
algorithm in G \ {x} and deduce if G \ {x} is connected.

We now turn to consider the considerably more challenging task of detecting cut-pairs. We
classify these pairs into dependent and independent.

Detecting Dependent Cut Pairs. Our approach for the dependent case is based on designing
algorithms {Ay}y∈V , where Ay detects all xy cut pairs of the form x ∈ Ty. We show that each such

an algorithm Ay can be designed in a way that sends a total of Õ(1) messages only along edges

incident to V (Ty), and runs in Õ(D) rounds. The standard random delay technique allows us then

to schedule the execution of all n algorithms {Ay}y∈V within Õ(D) rounds. At a high level, each
algorithm Ay is based on employing the single-vertex cut algorithm in the graph G \ {y}. Our
challenge is then twofold: first, the diameter of the graph G \ {y} might be as large as Ω(∆D),

5

and second, communication is restricted to use only edges incident to V (Ty). We overcome these
challenges by using y as a coordinator, providing global computation services and communication
shortcuts that essentially enables efficient simulation (in both dilation and congestion) of the vertex
cut algorithm in G \ {y}.

Detecting Independent Cut Pairs. The most technically involved case is where x, y are in-
dependent, namely, do not have ancestry relations in T . A-priori, the number of such potential
cut-mates y for a given vertex x might be even linear in n. To filter out irrelevant options, the
algorithm starts by computing at each vertex x a tree T̂x that encodes the connectivity between
s and the vertices in Vx = V (Tx) \ {x} in the graph G \ {x}. Let Cx = {C1, . . . , Ck} denote the
collection of maximal connected components in the graph G[Vx]. The tree T̂x consists of k paths
of the form π(s, uC) ◦ (uC , vC) for every component C ∈ Cx, where vC is some representative ver-
tex in C. It is then easy to observe that the potential cut mates y must appear on the paths
{π(s, uC) | C ∈ Cx}. For a given suspect y, we call the Cx-components C for which y ∈ π(s, uC),
y-sensitive. Our argument has the following structure.

Multiple xy-Connectivity Algorithms, Under a Promise. For a fixed xy pair, we design an
algorithm AP

x,y that determines the connectivity in G \ {x, y} given an x-y path Πx,y (on which

x, y can exchange messages). The algorithm AP
x,y has the special property that it sends messages

either along Πx,y, or else along edges incident to a restricted subset of vertices in Tx, Ty, defined as
follows. Let LDS(x, y) ⊂ V (Tx) be the set of all vertices which are descendants of the light children
of x, and belong to a y-sensitive component in Cx. The set LDS(y, x) is defined in an analogous
manner. The algorithm AP

x,y is then guaranteed to send Õ(1) messages only along Πx,y and along
edges incident to the vertices of LDS(x, y) ∪ LDS(y, x). This restriction is crucial in order to run
multiple AP

x,y algorithms, for distinct x, y, in parallel. Using the properties of the heavy-light tree
decomposition and our sensitivity definition, one can show that each vertex w ∈ V belongs to the
LDS(x, y) sets of at most Õ(D) pairs xy. The main challenge is in bounding the overlap between
the Πx,y paths, cross distinct xy pairs. We show that given a subset Q ∈ V × V , the collection of

{AP
x,y | (x, y) ∈ Q} algorithms can be scheduled in parallel in Õ(D) rounds, given that following

promise holds for Q:

[Promise:] There is a path collection PQ = {Πx,y | (x, y) ∈ Q} such that each path has

length O(D), and each edge appears on Õ(D) paths in PQ.

One can show, using the properties of heavy-light decomposition, that each vertex belongs to the
LDS(x, y) sets of at most Õ(D) pairs x, y. Hence, by combining this fact with the promise, the
algorithms for all the Q pairs can be run in parallel, using the random delay approach [LMR94,
Gha15].

On a high level, each algorithm AP
x,y works by letting x and y jointly simulating the Bor̊uvka

algorithm in G \ {x, y}. The main challenge is that the communication is restricted to the edges
incident to LDS(x, y) ∪ LDS(y, x), despite the fact that one should also take into account the
remaining vertices in Tx, Ty, e.g., descendants of the heavy children of x, y. In each Bor̊uvka phase,
we maintain the invariant that x, y jointly hold the sketches of connected-subsets (denoted as
parts) in G \ {x, y}, where we split the responsibility between x, y in a careful manner. We mainly
distinguish between parts that contain a heavy child of x, y and the remaining light parts that
are contained in LDS(x, y) ∪ LDS(y, x). The merges of the light parts are implemented by using
communication between vertices in LDS(x, y) ∪ LDS(y, x). The merges concerning the heavy parts
are implemented by using the direct xy communication over the Πx,y path. Each such Bor̊uvka

6

phase is implemented in Õ(D) rounds. At the end of the simulation, x, y both learn whether
G \ {x, y} is connected.

Omitting the Promise Based on Classification Into Light and Heavy Independent Pairs.
While the promise clearly holds for Õ(D) pairs, it clearly does not hold for all n2 pairs, in general.
Our approach is based on classifying the collection of the xy pairs into two classes: light and heavy.
This classification is based on the trees T̂x, T̂y, as well as, on the heavy-light decomposition of T .
Informally, for a light pair xy, one can define a Πx,y that intersects a light subtree of either x or y.
These paths can be shown to have a bounded overlap, hence satisfying the promise. Handling the
heavy pairs is more involved. Here we take a mixed approach. We define a special subset of the
heavy pairs for which the promise can be satisfied (denoted as mutual pairs). This subset is chosen
in a careful way that guarantees the following, perhaps surprising, property: the remaining (not
mutual) heavy pairs x, y can be decided locally, at either x or y. Our key observation is that for a
xy heavy pair, the graph G\{x, y} is connected iff one of the heavy children of x, y is connected to s
in G\{x, y}. Hence, it is mainly essential for x, y to collect a sketch information on the components
of these heavy children in Cx, Cy. This information can be then aggregated over T .

1.2 Preliminaries

Throughout the paper, we fix a connected n-vertex graph G = (V,E), and a BFS tree T for G
rooted at some arbitrary source vertex s ∈ V . We denote the unique tree path from u to v by
π(u, v, T). When the tree T is clear from context, we may omit it and simply write π(u, v). We
use the ◦ operator for path-concatenation. An (undirected) edge between vertices u,v is denoted
by (u, v). For x, y ∈ V , a vertex subset S ⊆ V is said to be xy-connected if all the vertices of S
belong to the same connected component of G \ {x, y}.

Heavy-Light Tree Decomposition. We now present our heavy-light terminology, the notion
of compressed paths, and their distributed computation.

Definition 1.1 (Heavy-light decomposition). For a non-leaf vertex v ∈ V (T), its heavy child,
denoted vh, is the child v′ of v maximizing5 the number of vertices in its subtree Tv′ . Any other
v-child of v is a light child. A tree vertex is heavy if it is the heavy child of its parent, and light
otherwise (so the root s is light). A tree edge is heavy if it connects a vertex to its heavy child, and
light otherwise. If (u, u′) is a heavy (resp., light) edge in the path π(s, v), then u is a heavy ancestor
(resp., light ancestor) of v, and v is a heavy descendant (resp, light descendant) of u. (Note that
e.g. a ‘heavy ancestor’ need not be a heavy vertex itself.) We denote by LA(v) (resp., LD(v)) the
set of v’s light ancestors (resp., descendants). It is easy to show that π(s, v, T) contains O(log n)
light vertices/edges, hence also |LA(v)| = O(log n).

Definition 1.2 (Compressed paths). Let v ∈ V (T). Let L = [s = v0, v1, . . . , vk] be the ordered
list of the light vertices on the root-to-v path π(s, v, T). The compressed path of v with respect to
T , denoted π∗(s, v, T) consists of the list L, along with a table mapping each vi to the number of
heavy vertices appearing between vi and vi+1 in π(s, v, T) (where we define vk+1 = v). Note that
the compressed path π∗(s, v, T) has bit-length O(log2 n).

Observe that the compressed paths can be used as ancestry labels in T : Given the compressed
path π∗(s, u, T) and π∗(s, v, T), one can check whether π(s, u, T) is a prefix of π(s, v, T), and hence
determine whether u is an ancestor of v.

5Ties are broken arbitrarily and consistently.

7

Lemma 1.3. For every tree T , there is an Õ(D(T))-rounds Õ(1)-congestion algorithm letting each
vertex v of T learn its heavy/light classification and its compressed path π∗(s, v, T).

Missing proofs in this section are deferred to Appendix A.1.

Graph Sketches. We now give a formal but brief definition of graph sketches. We follow [DP21],
and refer the reader to Section 3.2.1 therein for a detailed presentation of the subject. Throughout,
let ⊕ denote the bitwise-XOR operator. The first required ingredients are randomized unique edge
identifiers:

Lemma 1.4 (Modification of Lemma 3.8 in [DP21]). Using a random seed SID of O(log2 n) random
bits, one can compute a collection of M =

(
n
2

)
O(log n)-bit identifiers for the pairs in

(
V
2

)
, denoted

I = {UID(e1), . . . ,UID(eM)}, with the following property: For any nonempty subset E′ ⊆ E,
Pr[⊕e∈E′ UID(e) ∈ I] ≤ 1/n10. Furthermore, for any e = (u, v), the identifier UID(e) can be
computed from ID(u), ID(v) and the random seed SID.

Next, we define the notion of extended edge identifiers, formed by augmenting the UID(e) with
the IDs and the T -ancestry labels of the endpoints based on compressed paths, namely ANCT (v) =
π∗(s, v, T). Formally, an edge e = (u, v) we have

EIDT (e) = [UID(e), ID(u), ID(v),ANCT (u),ANCT (v)] . (1.1)

Equipped with these definitions, we are ready to define the sketches. We now follow [DP16,
DP17, DP21] and use pairwise independent hash functions for this purpose. Choose L = c log n
pairwise independent hash functions h1, . . . , hL : {0, 1}Θ(logn) → {0, . . . , 2logM − 1}, and for each
i ∈ {1, . . . , L} and j ∈ [0, logM] define the edge set Ei,j = {e ∈ E | hi(e) ∈ [0, 2logM−j)}. Each
of these hash functions can be defined using a random seed of logarithmic length [Vad12]. Thus, a
random seed Sh of length O(L log n) can be used to determine the collection of all these L functions.
For each vertex v and indices i, j, let Ei,j(v) be the edges incident to v in Ei,j . The i

th basic sketch
unit of each vertex v is then given by:

SketchG,i(v) = [⊕e∈Ei,0(v) EIDT (e), . . . ,⊕e∈Ei,logM (v) EIDT (e)].

We extend the sketches to be defined on vertex subsets by XORing. Namely, for every subset of
vertices S, we define SketchG,i(S) = ⊕v∈SSketchG,i(v). The sketch of each vertex v is defined by a
concatenation of L = Θ(log n) basic sketch units:

SketchG(v) = [SketchG,1(v),SketchG,2(v), . . .SketchG,L(v)] .

Again, we extend this definition to vertex subsets S ⊆ V by SketchG(S) = ⊕v∈SSketchG(v). The
main use of graph sketches is in finding outgoing edges:

Lemma 1.5. [Modification of Lemma 3.11 in [DP21]] For any subset S, given a basic sketch unit
SketchG,i(S) and the seed SID one can compute, with constant probability6 EIDT (e) for an outgoing
edge e from S in G, if such exists.

Lemma 1.6. Let S ⊆ V , and let E′ ⊆ E be a set of outgoing edges from S. Then, given SketchG(S),
the random seed Sh, and the extended identifiers EIDT (e) of all e ∈ E′, one can compute the
SketchG\E′(S).

6Over the choice of the random seeds SID and Sh.

8

Distributed Scheduling. The congestion of an algorithm A is defined by the worst-case upper
bound on the number of messages exchanged through a given graph edge when simulating A.
Throughout, we make an extensive use of the following random delay approach of [LMR94], adapted
to the CONGEST model.

Theorem 1.7 ([Gha15, Theorem 1.3]). Let G be a graph and let A1, . . . ,Am be m distributed
algorithms, each algorithm takes at most d rounds, and where for each edge of G, at most c messages
need to go through it, in total over all these algorithms. Then, there is a randomized distributed
algorithm that w.h.p. runs all the algorithms in Õ(c+ d) rounds.

2 Single Cut Vertices

In this section we describe the distributed algorithm for detecting single vertex cuts of Theorem
1.1. This serves both as a warm-up to our approach in the subsequent sections devoted to dual
vertex cuts detection, as well as for a detailed presentation of basic tools used in these next sections.
We assume each vertex v is equipped with its heavy/light classification in T and with its ancestry
label which is its compressed path, ANCT (v) = π∗(s, v, T). This can be achieved in Õ(D) rounds
by Lemma 1.3.

Step 0: Computing Extended Edge IDs. The source s samples a random seed SID of Õ(1)
bits and shares it with all vertices. Then, using Lemma 1.4, each vertex v can then locally compute
the unique edge-ID UID(e) for each of its incident edges. By letting all neighbors in G exchange
their ANCT -labels, each UID(e) can be concatenated with the required information to create EID(e).

Step 1: Computing Subtree Sketches. The source s locally samples the random seed Sh of
Õ(1) bits and sends it to all the vertices. Along with the extended edge IDs, this provides all
the required information for the computation of SketchG(v) locally in each vertex v. By XOR-
aggregation of the individual sketches from the leaves of T up to the root s, each vertex v obtains
its subtree sketch, given by SketchG(V (Tv)) = ⊕u∈TvSketchG(v). Next, within Õ(1) rounds, each
vertex passes its subtree sketch to its parent, so that each vertex now holds the subtree sketch for
each of its children. Finally, the source s also broadcasts its subtree sketch, which is SketchG(V),
to all the other vertices.

Step 2: Local Connectivity Computation. This step is locally applied at every vertex x,
and requires no additional communication. We show that each vertex x, given the received sketch
information in Step 1, can locally simulate the Bor̊uvka’s algorithm [NMN01] in the graph G \ {x},
and consequently determine if G \ {x} is connected. Let x1, . . . , xk be the children of x in T . We
assume that x ̸= s; the case x = s is easier and requires only slight modifications. The connected
components in T \ {x} are denoted by Cx = {V (Txj) | j = 1, . . . , k} ∪ {V \ V (Tx)}. By Step 1,
x holds the G-sketch of each component in Cx: It has explicitly received SketchG(V (Txj)) from
each child xj . In addition, it can locally infer Sketch(V \ V (Tx)) = Sketch(V)⊕ Sketch(V (Tx)). To
implement Bor̊uvka’s algorithm on these components, we first need to update these G-sketches into
(G \ {x})-sketches.

2.1: Obtaining Sketch Information in G\{x}. Recall x knows the random seed Sh as well
as the extended identifiers of its incident edges (from Step 0). For each such edge (x, u), it first uses
the ancestry label of u and of its T -children (found in the EIDT ’s) to determine the component C

9

of u in Cx. It then cancel this edges from the sketch of the component C using Lemma 1.6. This
allows x to obtain SketchG\{x}(C) for every C ∈ Cx.

2.2: Simulating Bor̊uvka in G\{x}. The input to this step is the (G\{x})-sketch information
of the components in Cx,0 = Cx. The desired output is determining the connectivity of G \ {x}.
The algorithm consists of O(log n) phases of the Bor̊uvka algorithm, and is very similar to the
(centralized) decoding algorithm of [DP21]. Each phase i will be given as input a partitioning
Cx,i = {Ci,1, . . . , Ci,ki} of (not necessarily maximal) connected components in G \ {x} along with
their sketch information SketchG\{x}(Ci,j). The output of the phase is a coarser partitioning Cx,i+1,
along with the sketch information of the new parts. A component Ci,j ∈ Cx,i is said to be growable
if it has at least one outgoing edge to a vertex in V \(Ci,j∪{x}). To obtain outgoings edges from the
growable components in Cx,i, the algorithm uses the ith basic-unit sketch SketchG\{x},i(Ci,j) of each
Ci,j ∈ Cx,i. By Lemma 1.5, from every growable component Ci,j ∈ Cx,i, we get one outgoing edge
e = (u, v) with constant probability. To find the component Ci,j′ containing the other endpoint of e
(to be merged with Ci,j), we use the T -ancestry labels found in EIDT (e). Say this endpoint is v. We
determine the component of v in T \ {x}, i.e. the component C0,q containing v in Cx,0, by querying
the ancestry relation between v and each child of x using ANCT (v) and the labels of x’s children.
Then v belongs to the unique component Ci,j′ ∈ Cx,i containing C0,q. The sketch information for the
next phase i+1 is given by XORing over the sketches of the components in Cx,i that got merged into
a single component in Cx,i+1. Note that it is important to use fresh randomness (i.e., independent
sketch information) in each of the Bor̊uvka phases [AGM12, KKM13, DP16]. Since each growable
component gets merged with constant probability, the expected number of growable components
is reduced by a constant factor in each phase. Thus after O(log n) phases, the expected number of
growable components is at most 1/n5, and by Markov’s inequality we conclude that w.h.p. there
are no growable components. The partitioning at this point corresponds to the maximal connected
components in G \ {x}, so its connectivity can be inferred. This concludes the proof of Theorem
1.1.

Finally, we note that by tracking the merges throughout the Bor̊uvka simulation, x can also
find a subset Ẽ of the outgoing edges received throughout the simulation such (T \ {x}) ∪ Ẽ is a
maximal spanning forest of G \ {x}. This becomes useful in next sections.

3 Dependent Cut Pairs

In this section we present an Õ(D)-rounds distributed algorithm for detecting dependent cut pairs
in G, i.e. pairs xy where x is a descendant of y in the BFS tree T rooted at s. Recall that our
approach is based on scheduling the execution of algorithms {Ay}y∈V , where Ay detects all cut
pairs xy such that x ∈ Ty (see Section 1.1). By employing the single-vertex cut algorithm from
Section 2 as a common preprocessing phase prior to the execution of the {Ay}y∈V algorithms,
we may assume that there are no 1-vertex cuts in G. Furthermore, by carefully examining the
properties of this algorithm, we may assume that every v ∈ V holds the following preprocessing
information:

� The random seeds SID and Sh.

� EIDT (e) for every edge e incident to v.

� |V (Tv)| and |V (Tv′)| for every T -child v′ of v.

10

� SketchG(v), SketchG(V), SketchG(V (Tv)) and SketchG(V (Tvi)) for every T -child v′ of v.

� An edge set Ẽ(v) ⊆ E \E(T) such that T̃ (v) = (T \ {v})∪ Ẽ(v) is a spanning tree of G \ {v}.
For each e ∈ Ẽ(v), its extended identifier EIDT (e) is known.

We next describe the algorithms Ay:

Lemma 3.1. Assuming all vertices know their preprocessing information, there is an Õ(D)-rounds
Õ(1)-congestion algorithm Ay that detects all cut pairs xy where x ∈ V (Ty). The algorithm Ay

sends messages only on edges incident to V (Ty).

Step 0: Local Computation of Component Tree for T̃ (y) in y. Throughout, let Ẽ = Ẽ(y)
and T̃ = T̃ (y), and denote the T -children of y by y1, . . . , yk. This preliminary step is executed by

local computation in y. It constructs the component tree C̃T in which every connected component
of T̃ \ Ẽ is contracted into a single node. Note that T̃ \ Ẽ = T \ {y}, namely the nodes in

C̃T correspond to connected components of T \ {y}. More concretely, for every i = 1, . . . , k the

component Ci = V (Tyi) is a node of C̃T , and (unless y = s) there is another node for the component

C0 = V (T) \ V (Ty). Each edge (Ci, Cj) in C̃T correspond to the unique Ẽ-edge incident to both
Ci and Cj . Observe that the extended edge identifiers known to y by preprocessing contain the

T -ancestry labels of all endpoints of Ẽ-edges, as well as those of the yi’s. Using these ancestry
labels, y can determine the components incident to each edge e ∈ Ẽ, and therefore construct C̃T .

For clarity of presentation we assume y ̸= s; the special case y = s is easier, and requires only
slight modifications. We set s as the root of T̃ , and accordingly C0 is the root of C̃T . For each
i = 1, . . . , k, denote by ei = (ri, pi) the unique edge in Ẽ connecting Ci to its parent in C̃T , where
ri is the endpoint of ei inside Ci, and pi is the endpoint lying in the parent component. See Fig. 1
for an illustration.

Figure 1: Left: Illustration of the trees T and T̃ . The dashed edges are T -edges adjacent to y, and
the solid edges are Ẽ-edges. The components C0, C1, . . . , C5 are each internally connected via original
T -edges. The tree T̃ is obtained by removing y and its incident edges from the T and adding the Ẽ
edges. Right: The component tree C̃T .

Step 1: Construction of T̃ . The goal of this step is for each vertex in V (Ty) \ {y} to learn its

parent in T̃ . First, y sends its children their corresponding edges from Ẽ, namely each yi learns

11

EIDT (ei). The yi’s then propagate (in parallel) their received edges down their T -subtrees, so
that for all i = 1, . . . , k, all the vertices of component Ci know EIDT (yi). Then, a BFS procedure
initilized in ri is executed inside each tree Tyi (in parallel). This completes the step, since the T̃ -

parent of each vertex in Ci is its BFS-parent from this last procedure, except for ri whose T̃ -parent
is pi.

Step 2: Computing T̃ -Ancestry labels. In later steps, we will locally simulate Bor̊uvka’s
algorithm similarly to Section 2, but with the initial components being parts of T̃ . In order to
identify which components get merged by the outgoing edges, we will need ancestry labels with
respect to the tree T̃ rather than T . As we are restricted to send messages only on V (Ty)-incident

edges, we would like the T - and T̃ -labels to coincide for vertices in C0 (as some of them cannot be
informed of new labels). Note that the compressed paths of v ∈ C0 w.r.t. T and T̃ are generally
different, even though π(s, v, T) = π(s, v, T̃), as the these trees have different heavy-light notions.
Hence, instead of relying solely on compressed paths in T̃ , we take a hybrid approach and define
new labels based on breaking each T̃ -path to a T -part and a strictly T̃ -part, and compressing
them accordingly. We still have the challenge of computing (at least part of) the heavy-light
decomposition of T̃ . As the diameter of T̃ might be Ω(∆D), we cannot use simple bottom-up or
top-down computations on T̃ . The key for overcoming this is utilizing y as a coordinator, enabling
the parts Ci to work in parallel. The full details appear in the proof of the next lemma, found in
Appendix A.2.

Claim 3.2. In Õ(D)-rounds of computation with Õ(1) congestion, in which messages are sent only
on V (Ty)-incident edges, one can compute T̃ -ancestry labels ANC

T̃
(·) of Õ(1) bits, such that every

vertex v of T̃ learns ANC
T̃
(v).

Step 3: Computing Sketches w.r.t. G \ {y} and T̃ . First, we define new extended edge
identifiers for the edges of G \ {y} based on the spanning tree T̃ . Namely, for an edge e = (u, v) of
G \ {y}, let

EID
T̃
(e) = [UID(e), ID(u), ID(v),ANC

T̃
(u),ANC

T̃
(v)].

Now, for every vertex v ∈ V \ {y} we define its sketch SketchT̃G\{y}(v) similarly to SketchG(v), only
ignoring edges incident to y in the sampling, and using the EID

T̃
identifiers for the edges. By this

point of the algorithm, computing these new sketches requires Õ(1) rounds of communication, in
which every v ∈ C1∪· · ·∪Ck sends ANC

T̃
(v) to all its (G\{y})-neighbors. As the T - and T̃ -ancestry

labels coincide on the vertices of C0, every vertex v ∈ V \{y} can now determine EID
T̃
(e) for every

edge e incident to it in G \ {y}, and use the random seed Sh to compute SketchT̃G\{y}(v).

3.1: Computing T̃ -Subtree Sketches. Our next goal is for every x ∈ C1 ∪ · · · ∪ Ck

to learn the (G \ {y})-sketch of its T̃ -subtree (not T -subtree), namely SketchT̃G\{y}(V (T̃x)) =

⊕
v∈T̃x

SketchT̃G\{y}(v). This is done by using y as a coordinator similarly to the T̃ -subtree sum
computation of Step 2.1. We start by bottom-up XOR-aggregation of the sketches on each Tyi (in

parallel), which produces the component sketches SketchT̃G\{y}(Ci). Next, within Õ(1) rounds, the
component sketches are all passed to y from its children. Observe that now y can locally compute

the T̃ -subtree sketch of each ri as follows: SketchT̃G\{y}(V (T̃ri)) = ⊕j∈J(i)Sketch
T̃
G\{y}(Cj) where

J(i) is the set of all indices j such that Cj is the subtree of Ci in the component tree C̃T . Then

12

y sends each of its children yi the T̃ -subtree sketch of ri, and this information is then propagated
down on each Tyi (in parallel), so that each ri learns its T̃ -subtree sketch. The ri’s then send their

T̃ -subtree sketches to their T̃ -parent, which are the pi’s. For each vertex v of T̃ , let

βv =

{
if v = pj : SketchT̃G\{y}(v) + SketchT̃G\{y}(V (T̃rj))

otherwise: SketchT̃G\{y}(v)

Then by this point of the algorithm, every v ∈ C1 ∪ · · · ∪Ck know its βv value. For i = 1, . . . , k, let
T̃ (i) be the tree induced on Ci by T̃ , where the parents in T̃ (i) are the same as in T̃ . Equivalently, T̃ (i)

is the tree obtained by rerooting Tyi at the vertex ri. Each of its leaves is either an original T̃ -leaf

or a pj vertex for some j. The crux is that for each x ∈ Ci it holds that Sketch
T̃
G\{y}(x) = ⊕

v∈T̃ (i)
x
βv.

That is, the T̃ -subtree sketch of x is equal to the sum-of-β’s in its T̃ (i)-subtree. Hence, we complete
the computation in this step by executing bottom-up XOR-aggregation of the βv values in each of
the trees T̃ (i) in parallel.

3.2: Computing the Sketch of V \ {y}. The last required sketch ingredient for the local
simulation of Bor̊uvka in the next step is letting all vertices x ∈ C1 ∪ · · · ∪ Ck to learn the global

sum-of-sketches in G \ {y}, i.e. SketchT̃G\{y}(V \ {y}). To this end, we carefully examine the
contribution of the vertices in C0 to this sum, as some of them are not V (Ty)-adjacent and cannot
participate in the computation. This enables us to transform the global sketch SketchG(V) (known
from preprocessing) to the desired global sketch in G \ {y}. The details appear in the appendix, in
the proof of the following claim:

Claim 3.3. In Õ(D)-rounds of computation with Õ(1) congestion, in which messages are sent only

on V (Ty)-incident messages, each vertex x ∈ C1 ∪ · · · ∪ Ck can learn SketchT̃G\{y}(V \ {y}).

Step 4: Local Bor̊uvka Simulation In G\{x, y}. This entire step is executed by local compu-
tation in which each x ∈ C1∪· · ·∪Ck determines whether it is a cut vertex in G\{y}, or equivalently
if xy is a cut pair in G. This is done by locally simulating Bor̊uvka’s algorithms using the sketches
of the components of T̃ \ {x} (which are known to x by Step 3) in an identical manner to the
last step of the (single) cut vertex detection algorithm of Section 2, replacing G and T there with
G \ {y} and T̃ . We note that the new ancestry labels, extended identifiers and sketches, computed
with respect to T̃ , are important for this simulation to follow through exactly as in Section 2. This
completes the proof of Lemma 3.1.

We conclude this section by describing the scheduling of the algorithms {Ay}y∈V :

Lemma 3.4. The collection of algorithms {Ay}y∈V can be executed simultaneously within Õ(D)
rounds, w.h.p.

Proof. The key observation is that every edge e participates in O(D) algorithms. Specifically,
since each algorithm Ay exchanges messages only on edges incident to V (Ty), we get that the
algorithms using e = (u, v) are exactly {Ay | y ∈ π(s, u, T) ∪ π(s, v, T)}. Therefore, the total
number of messages sent through e = (u, v) in the collection of n algorithms {Ay}y∈V is at most

Õ(1) · (|π(s, u, T)| + |π(s, v, T)|) = Õ(D). The proof follows by employing Theorem 1.7 with
congestion and dilation bounds of Õ(D).

13

4 Independent Cut Pairs

We now turn to consider the case where the cut pair xy is independent, i.e., x, y have no ancestor-
descendant relations. Throughout this section, for every vertex x ∈ V , let Vx = V (Tx) \ {x}.
Recall that we assume that there is no single cut vertex in the graph. Our algorithm is based on
the introduced notion of x-connectivity trees, T̂x, computed locally at each vertex x. Let Cx =
{C1, . . . , Ck} denote the maximal connected components in the induced graph G[Vx]. For each
C ∈ Cx, the tree T̂x contains a path πx(s, C) = π(s, uC) ◦ (uC , vC), where (uC , vC) is a G-edge such
that vC ∈ C, and x /∈ πx(s, C). Therefore, T̂x encodes the connectivity of s to Vx in the graph
G \ {x}. See Fig. 3 for illustrations of these trees. We next describe the computation of these T̂x

trees, and later on show how they guide the identification of independent cut pairs. Throughout,
we assume that the ID of each vertex v contains also its compressed-path information π∗(s, v). For
every v ∈ Vx, let Cx,v denote the component containing v in Cx. When v = xh, we let Hx = Cx,xh

and denote it as the heavy component of x.

4.1 Computing x-Connectivity Trees

The computation has two main steps, both are based on the bottom-up aggregation of certain
graph sketches over the BFS tree T . The purpose of first step is to allow every x ∈ V to determine
the connected components Cx in G[Vx] where each such component C is identified by the vertex of
largest ID among all the T -children of x in C. In addition, in the output of this step each vertex
u ∈ Vx learns the ID of its component Cx,u ∈ Cx. The second step aggregates a special form of

graph sketches that provide x with the required path information in order locally compute T̂x.

Step 1: Computing Connectivity in G[Vx]. For ease of notation, let D = depth(T) and
dx = depth(x) denote the depth of x in T . We say that an edge e = (u, v) has depth d if
depth(LCA(u, v)) = d. To locally simulate the connectivity Bor̊uvka algorithm in G[Vx] at every
x, it is required for x to learn SketchG[Vx](V (Tw)) for each T -child w of x. Observe that the
edges of G[Vx] can be identified as G-edges in Vx × (V \ {x}) of depth at least dx. For this
purpose, the algorithm is based on aggregating the information of D graph sketches, for every
depth d ∈ {1, . . . , D}. The computation of dth sketch SketchdG(·) will be restricted to sampling only
edges of depth at least d.

In Appendix A.3, we show:

Lemma 4.1. There is a randomized Õ(D)-round algorithm that w.h.p. computes connectivity in
each G[Vx] for every x ∈ V simultaneously. At the end of the execution, each u holds a component-
ID in the graph G[Vx] for every x ∈ π(s, u). Moreover, within additional Õ(D) rounds, each u can
send its entire component-ID information (for every x ∈ π(s, u)) to all its neighbors.

Step 2: Computing x-Connectivity Trees T̂x via Path-Sketches. Our next goal is to
provide each vertex x with the path information πx(s, C), for every component C ∈ Cx. Such a
path connects a vertex vC ∈ C to the source s in G \ {x}. As we assume that x is not a cut vertex,
such a path indeed exists. Towards that goal, we augment the identifier of each edge (u, v) with
the tree paths π(s, u), π(s, v). Formally,

EIDP
T (e) = [UID(e), ID(u), ID(v),ANCT (u),ANCT (v), π(s, u), π(s, v)] . (4.1)

14

In contrast to the extended-ID of Eq. (1.1) which have Õ(1) bits, the latter EIDP
T (e) identifiers

have Õ(D) bits. The sketches obtained with these EIDP
T (e) IDs are called path-sketches, denoted

as SketchPG(S) for S ⊆ V . The advantage of these path-sketches is that any detected outgoing edge
(u, v) obtained from SketchPG(Q) includes the path information π(s, u) and π(s, v). Note that the
path-sketches SketchPG(S) have Õ(D) bits, since the edge IDs have now Õ(D) bits.

Our goal is to let each x learn the path-sketches SketchPG(C) for each component C ∈ Cx.
Since each path-sketch has Õ(D) bits, we cannot allow to compute D sketches for each depth
d ∈ {1, . . . , D}. Instead we only aggregate the SketchPG(u) information in a bottom-up manner on
T , which allows every vertex x to learn SketchPG(V (Tw)) for each of its T -children w. By combining
with the output of the first step, x can then determine SketchPG(C) for every C ∈ Cx. The proof of
the following lemma, which appears in the appendix, explains this process in further detail.

Lemma 4.2. W.h.p., all vertices x can compute the x-connectivity trees T̂x within Õ(D) randomized
rounds.

For each x ∈ V and C ∈ Cx, we define the compressed path of πx(s, C) as π∗
x(s, C) = π∗(s, vC)◦

(vC , uC) (hence, π
∗
x(s, C) has Õ(1) bits). We conclude the computation regarding the connectivity

trees by letting each vertex v learn the compressed-path π∗
x(s, Cx,v) for each of its ancestors x ∈

π(s, v). Since the compressed-path has Õ(1) bits, a vertex is required to receive Õ(D) bits of
information, which can be done in Õ(D) rounds:

Lemma 4.3. There is an Õ(D)-round algorithm that allows each vertex v to learn the compressed
path π∗

x(s, Cx,v) for each x ∈ π(s, v), as well as the entire path πx(s, Cx,v) for each x ∈ LA(v). In
addition, each vertex v can share all of this information with neighbors.

Proof. We let every vertex x send the full path πx(s, Cx,x′) to each light child x′ of x, and the
compressed path π∗

x(s,Hx) to its heavy child xh. This information is propagated towards the leaf
vertices of Tx. Since each vertex is required to receive Õ(D) bits of information from each of its
light ancestors, as well as Õ(1) bits from each of its heavy ancestors, overall it is required to receive
Õ(D) bits. This can be done in Õ(D) rounds, by standard pipeline techniques. Since each v
learns Õ(D) bits of information, the learned information can be exchanged between every pair of
neighbors within Õ(D) rounds, as well.

4.2 Component Classification Based on Sensitivity

We next use the structure of the x-connectivity tree T̂x to classify the xy pairs into several types.
We also filter-out possibly many irrelevant xy pairs (for which we deduce immediately that xy is
not a cut) using the notion of sensitivity.

Definition 4.1 (Sensitivity Notions of Cx Components). Fix an independent pair x, y. A compo-
nent C ∈ Cx is y-sensitive if y ∈ πx(s, C). The y-sensitive components of Cx are further classified
into two types: pseudo-sensitive and fully-sensitive, as follows. A component C ∈ Cx is pseudo y-
sensitive if the tree path πx(s, C) contains some edge (y, y′) such that x /∈ πy(s, Cy,y′), where Cy,y′

is the component containing y′ in Cy. Finally, a y-sensitive component C ∈ Cx is fully y-sensitive if
C is not pseudo-sensitive.

Hence, in particular a component C ∈ Cx is fully y-sensitive if either that last edge of πx(s, C)
is incident to y, or that there is an edge (y, y′) ∈ πx(s, C) such that the component Cy,y′ ∈ Cy is

15

x-sensitive. Note that non-y-sensitive components are clearly connected to s in G\{x, y}. We later
on show that this is true also for pseudo y-sensitive components, therefore their sensitivity to y is
superficial. Let S(x, y),PS(x, y),FS(x, y) denote the components in Cx that are y-sensitive, pseudo
y-sensitive and fully y-sensitive, respectively7. We next show that each vertex x can determine, for
every C ∈ Cx, certain y vertices for which C is fully y-sensitive by running the procedure described
in the following lemma (whose proof is in the appendix). Note that by having the compressed-path
π∗
y(s, Cy,y′) and the π∗(s, x), it is possible to determine if x ∈ πy(s, Cy,y′), hence determining if Cy,y′

is x-sensitive.

Lemma 4.4. There is an Õ(D)-round algorithm that computes the following for every x ∈ V (in
parallel):

� π∗
y(s, Cy,y′) for every edge (y, y′) ∈ πx(s, C) and every C ∈ Cx \ {Hx}.

� π∗
y(s, Cy,y′) for every light edge (y, y′) ∈ πx(s,Hx).

4.3 xy-Connectivity Algorithms Under a Promise

Throughout, we assume that all vertices applied the pre-processing steps of computing the x-
connectivity trees T̂x, as well as, applied the Õ(D)-round procedures of Lemma 4.3 and 4.4. From
this point on, we explain how to determine the connectivity in G \ {x, y}, first for a single pair xy,
and then for all pairs that satisfy a given promise.

Recall that LD(x) is the collection of light descendants of x in T . For a vertex y, let LDS(x, y)
be the collection of light descendants of x that are sensitive to y. Formally, the light x-descendants
y-sensitive vertices are defined by:

LDS(x, y) = {v ∈ LD(x) | y ∈ πx(s, Cx,v) \ V (Tx)} . (4.2)

Observation 4.1. Every vertex v belongs to a total of O(D log n) sets LDS(x, y) for x, y ∈ V .

Proof. A vertex v ∈ V has O(log n) light ancestors (i.e., belongs to O(log n) sets of LD(x)). In
addition, for each light ancestor x ∈ π(s, v), there are O(D) vertices y ∈ πx(s, Cx,v). Therefore, it
belongs to O(D log n) sets as required.

Theorem 4.5 (xy-Connectivity Given an x-y Path). Fix x, y ∈ V and assume that there is an x-y
path Πx,y ⊆ G (known in a distributed manner) of length O(D). Then, there is an xy-connectivity

algorithm AP
x,y (i.e., that determines the connectivity in G \ {x, y}) in Õ(D) and Õ(1)-congestion,

by sending messages only along on the edges of Πx,y or edges incident to LDS(x, y)∪ LDS(y, x). At
the end of the computation, both x and y know whether G \ {x, y} is connected or not.

Before proving Theorem 4.5, we show that given a set of pairs Q ⊆ V × V , then all algorithms
{AP

x,y | (x, y) ∈ Q} can be scheduled simultaneously when provided a path collection PQ = {Πx,y |
(x, y) ∈ Q} that satisfies the following promise:

[Promise:] PQ-paths have length O(D), and each edge appears on Õ(D) paths in PQ.

By a straightforward application of the random delay approach, we show:

7Notice that these notations are not symmetric in x, y, e.g. S(x, y) is different than S(y, x).

16

Corollary 4.6. [All Pairs xy-Connectivity Under a Promise] Let Q ⊆ V × V be a collection
of independent pairs and let PQ = {Px,y | (x, y) ∈ Q} be a collection of x-y paths that satisfy
the promise. Then, the collection of algorithms {AP

x,y | (x, y) ∈ Q}, where each Ax,y uses the

corresponding path Πx,y ∈ PQ, can be scheduled simultaneously within Õ(D) rounds, w.h.p.

Proof. We use the standard random delay technique of Theorem 1.7 by showing that the total
congestion of all these algorithms is bounded by Õ(D). By the properties of algorithm AP

x,y,

the algorithm sends Õ(1) messages on Πx,y ∈ Q, and along each edge incident to the vertices in

LDS(x, y) ∪ LDS(y, x). By Obs. 4.1, each v can belong to the LDS(x, y) sets of at most Õ(D)
pairs x, y ∈ V . In addition, each edge appears on Õ(D) paths in PQ. We get that the total edge

congestion and dilation of each algorithm AP
x,y is Õ(D) as needed.

Description of the Connectivity Algorithm AP
x,y. The algorithm is based on simulating the

Bor̊uvka algorithm using the sketch information of connected subsets in G \ {x, y}, held jointly
by x and y. Throughout, we refer to the given x-y path Πx,y as the xy channel. Recall that the

algorithm can send only Õ(1) bits on that channel. The input for the i ≥ 1 phase of Bor̊uvka is the
following. There is a partitioning Pi−1 = {Pi−1,1, . . . , Pi−1,ki−1

} of the vertices in V \ {x, y} into
connected subsets (in G \ {x, y}). We call each P ∈ Pi−1 a part (to avoid confusion with the term
‘component’ reserved for sets in Cx and Cy). We mark a special vertex in each Pi,j ∈ Pi, called the
leader of the part. The source vertex s is the leader of its own part (called the s-part), and the
leaders of the other parts are some chosen T -children of x or y in these parts. The part-ID is the
ID of its leader. The part containing xh (resp., yh) is called x-heavy (resp., y-heavy)8. The parts
that are free of s, xh, yh are called light. Hence every light part is contained in LD(x) ∪ LD(y). A
part P is denoted as growable if there is an outgoing G-edge connecting P to V \ (P ∪{x, y}). The
Bor̊uvka algorithm has K = O(log n) forest growing phases in G \ {x, y}, each phase reduces the
number of growable parts by a constant factor, in expectation. We maintain the following invariant
for the beginning of each phase i ∈ {1, . . . ,K}:

(I1) x, y know SketchG\{x,y}(P) of the part P ∈ Pi−1 containing s.

(I2) z ∈ {x, y} knows SketchG\{x,y}(P) for every light part P ∈ Pi−1 whose leader is in Tz.

(I3) x, y know SketchG\{x,y}(P) as well as the part-IDs of the heavy parts P in Pi−1.

(I4) z ∈ {x, y} knows, for each T -child z′ of z, the part-ID of the part containing z′ in Pi−1.

Satisfying the Invariant for the First Bor̊uvka Phase. We start by defining the partitioning
P0 and in particular, focus first on the definition of the part containing s. Recall Def. 4.1 and
that S(x, y),PS(x, y),FS(x, y) ⊆ Cx are the y-sensitive, pseudo y-sensitive and fully y-sensitive
components, respectively. Let NS(x, y) =

⋃
C∈Cx\FS(x,y)C. The set NS(y, x) is defined in an

analogous manner. Then the s-part in P0 is given by U(x, y) = (V \ (V (Tx) ∪ (Ty))) ∪ NS(x, y) ∪
NS(y, x) . The next observation exploits the fact that the pseudo y-sensitive components in Cx and
the pseudo x-sensitive components in Cy are all connected to s in G \ {x, y}.

Observation 4.2. G[U(x, y)] is connected.

8A part can be both x-heavy and y-heavy.

17

Proof. Let S = V \ (V (Tx) ∪ (Ty)), so s ∈ S. Note that G[S] is connected (T \ (Tx ∪ Ty) is a
spanning tree). We fix v ∈ NS(x, y), so Cx,v /∈ FS(x, y), and show that it is connected to s in
G[U(x, y)]. First assume that y /∈ πx(s, Cx,v). In such a case, it indeed holds that v is connected to
s in G[S ∪ NS(x, y)], as Cx,v ⊆ NS(x, y). Otherwise, Cx,v is pseudo y-sensitive, so there is an edge
(y, y′) ∈ πx(s, Cx,v) such that x /∈ πy(s, Cy,y′). Therefore, y′ is connected to s in G[S ∪ NS(y, x)],
as Cy,y′ ⊆ NS(y, x). Since y′ and v are also connected in G[Cy,y′ ∪ Cx,v], we get that s and v are
connected in G[U(x, y)]. The same argument holds in a symmetric manner for every v ∈ NS(y, x).

We partition the responsibilities on the parts in P0 between x and y, as follows. Let P0,x =
FS(x, y) be the components in Cx that are fully-sensitive to y. Similarly, P0,y = FS(y, x). The 0th
partitioning of V \{x, y} is given by P0 = {U(x, y)}∪P0,x∪P0,y. For every z ∈ {x, y}, the leader of
each C ∈ P0,z is chosen as the vertex of largest ID among all the T -children of x, y in C. The leader
of U(x, y) is the root s. To satisfy the invariants for the beginning of phase i ≥ 1, it is sufficient to
show the following claims for x (the proofs, found in Appendix A.3, work in a symmetric manner
for y):

Claim 4.7. Within Õ(D) rounds, the vertex x can compute SketchG\{x,y}(C) for every component
C ∈ S(x, y). In addition, the vertex y can determine its neighbors in {v ∈ Vx | y /∈ πx(s, Cx,v)}.
The communication is restricted to the edges of LDS(x, y) ∪ LDS(y, x) and using the xy channel.

Claim 4.8. By exchanging Õ(1) bits of information (using the promised channel), invariants (I1-
I4) hold w.r.t P0.

Simulation of the ith Bor̊uvka Phase. We now describe the execution of phase i ≥ 1 assuming
that at the beginning of the phase the invariant holds w.r.t Pi−1. The output of the execution will
be the partitioning Pi, for which we later show that the invariant holds as well. Our goal is to let
x, y simulate a Bor̊uvka phase in which parts of Pi−1 are merged along their outgoing edges. The
main objective of this phase is to reduce the number of growable parts by a constant factor, in
expectation. Throughout, we use the following auxiliary claim which allows the vertices in every
light part to exchange Õ(1) bits, in parallel.

Claim 4.9. Let P be a light part in Pi−1 such that each vertex v ∈ P holds a Õ(1)-bit value val(v).
Then, there is an Õ(D)-round algorithm that allows all vertices in P to compute any aggregate
function of the val(v) values for v ∈ P , by sending messages only along edges incident to P .
Consequently, all light parts in Pi−1,x ∪ Pi−1,y can compute their respective aggregate functions, in
parallel.

For efficiency of computation, we restrict the merge shapes to be star shapes by using random
coins (see e.g., [GH16]). Such star merges are obtained by letting each part Pi−1 toss a random
coin, and allowing only merges centered on head-parts, each accepting incoming suggested merge-
edges from tail-parts. The leader of this head-part becomes the leader of the merged part. We
show that under the promise and the (i − 1)th invariant, this merging phase can be implemented
in Õ(D) rounds as follows. W.l.o.g., we make x be responsible for the s-part Ps ∈ Pi−1.

Implementing Merges. Each vertex z ∈ {x, y} tosses a (fresh) random coin for each of its parts
in Pi−1,z. In addition, x tosses a coin for the s-part Ps. Next, for each of the tail part P ∈ Pi−1,z,
z locally computes an outgoing edge for each of its tail parts in Pi−1,z. In addition, x computes an

18

outgoing edge for the s-part (in case that the coin toss of that part is tail). For each growable part
P ∈ Pi−1,z, such an edge can be detected from SketchG\{x,y}(P) with constant probability. The
parts of Pi are formed by merging every head part P ∗ ∈ Pi−1 with all the tail parts in Pi−1 whose
outgoing edges point at P ∗. The leader of the merged part is the leader of the head part P ∗. For
every tail part P ∈ Pi−1,x, let eP = (uP , vP) be the detected outgoing edge obtained by x from
SketchG\{x,y}(P).

Claim 4.10. Using Õ(D) rounds of communication over edges incident to LDS(x, y) and the given
xy channel, z can determine for all its tail parts P ∈ Pi−1,z with an outgoing edge eP = (uP , vP),
the following information: (i) the part-ID of the second endpoint vP /∈ P and, (ii) the coin-toss of
the part of vP .

Proof. We first let x, y send the part-ID information for all vertices in LDS(x, y) ∪ LDS(y, x). In
addition, for each light part P ∈ Pi−1 we propagate the coin flip to the entire part, using Claim
4.9. We now focus on z = x (the proof works in the same manner for y). Let Ps be the s-
part in Pi−1. We show that x can learn the part-IDs and coin-toss outcomes of the vertices in
Zx = {vP | P ∈ Pi−1,x ∪ {Ps}, P is tail}.

First, we use the xy channel to let y sending x the part-ID and coin-toss of its heavy child yh.
In addition, y also sends, over the channel, the coin tosses of its heavy parts in Pi−1,y. Note that
for every vertex in Zx, x can locally determine which of these endpoints are descendants9 of yh.
Also note that x knows the part-IDs of all the vertices in Zx ∩ (V \ V (Ty)) (using Invariant (I4)).

Next, x considers (at most three) special tails parts: at most two tail heavy parts in Pi−1,x, and
the s-part. For each of these parts P , x sends (uP , vP) over the xy channel, and y-responds with
the part-ID of the uP , vP vertices that belong to Ty, as well as, with the coin-tosses of these parts
in case, they belong to Pi−1,y.

Finally, it remains to consider the light parts. Using Claim 4.9, for every light part P , the
edge-ID (uP , vP) is broadcast over P . This happens for all light parts in parallel. Consequently,
the uP vertex in each such part P is informed (and can also inform x that vP /∈ P). It remains to
consider the case where vP is not a heavy descendant of y. The interesting case is when vP ∈ LD(y).

Since the algorithm applied, in the preprocessing step, the procedure of Lemma 4.3, uP can
determine if Cy,vP is x-sensitive (as uP holds π∗

y(s, Cy,vP) and the ID of x). If it is not x-sensitive,
then this information can be broadcast on P (using Claim 4.9), and x then concludes that vP is in
the s-part.

If Cy,vP is x-sensitive, then by the first paragraph, vP knows its part-ID (as vP ∈ LDS(y, x))
and it can send it to uP . If vP belongs to a light part in Pi−1,y, then vP also knows the coin-toss
of that part and can send it to uP . Finally, if vP belongs to a heavy part or to part in Pi−1,x, then
x already knows the coin toss of this part. The information acquired by uP can be then sent to x
using Claim 4.9. Altogether x receives that part-ID of vP for each outgoing edge (uP , vP), and in
the case where that part is in Pi−1,y, x receives in addition also the coin-toss of that part. This
completes the proof.

To implement the merges and satisfy the invariant, it is required for z ∈ {x, y} to learn the
updated sketch information of their head parts in Pi−1,z. We next explain how y can compute the
sketch information of each of its head parts P ∗ ∈ Pi−1,y. (A similar procedure would work for x).

9E.g., as the ancestry labels can be provided as part of the vertex ID.

19

By Claim 4.10, x knows for every head part P ∗ ∈ Pi−1,y, the collection of tail parts in Pi−1,x

that should be merged with P ∗.
Any → Non-Light Merges. There are (at most three) non-light parts in Pi−1, corresponding to
at most two heavy parts and the s-part10. For each of these non-light part P ∗, x aggregates that
sketch information of the corresponding tail parts P ∈ Pi−1,x, and send it to y over the xy channel.

From the point on, x considers the transfer of information concerning the light head parts P ∗

in Pi−1,y.
Non-Light → Light Merges. It uses the xy channel to send y the sketch information of its non-
light tail parts P , along with the part-ID of their head parts (to which they should be merged).
Light → Light Merges. The sketch of all other (light) parts in Pi−1,x are communicated to
y over the edges incident to the light sensitive xy descendants, LDS(x, y) ∪ LDS(y, x), as follows.
Using Claim 4.9, each light and tail part P ∈ Pi−1,x can learn SketchG\{x,y}(P) (as x holds this
information, by the invariant). Note that by definition P, P ∗ ⊆ LDS(x, y)∪LDS(y, x). The vertices
of P then send this received information to all their neighbors. At this point, for every light head
part P ∗ in Pi−1,y, and for every tail light part P in Pi−1,x, there is a vertex vP ∈ P ∗ that holds
SketchG\{x,y}(P). By applying Claim 4.9, all vertices in P ∗ can learn the sum of all these sketches.
This provides y with all the required information from x to compute SketchG\{x,y}(P

∗) for each
head part P ∗ ∈ Pi−1,y. In a symmetric manner, x can compute the sketch of the merged parts for
all its head parts in Pi−1,x. Using the xy channel, x and y can exchange the part-ID and sketch
information of the heavy parts and the s-part in Pi. This satisfies (I1,I2,I3) for the partitioning Pi.

To satisfy (I4), note that the part-ID has changed only for tail parts in Pi−1. For the tail-parts
in Pi−1,z, z holds their new part-ID using Claim 4.10 (i.e., this is the part-ID of the detected
outgoing edges). This completes the description for phase i.

We are now ready to complete the proof of Theorem 4.5.

Proof of Theorem 4.5. By the description of the ith phase, the invariant holds w.r.t Pi. We next
show that the ith phase sends Õ(1) messages along edges incident to LDS(x, y)∪ LDS(y, x), as well
as over the xy channel. It is also easy to see that given the promised channel that running time is
Õ(D) using Claim 4.9. Finally, we show that within k = O(log n) phases it holds that there are no
growable components in Pk.

Recall that a part P in Pj is denoted as growable if there is aG-edge (u, v) ∈ P×(V \({x, y}∪P)).
We claim that the number of growable part reduces by a constant factor in each Bor̊uvka phase.
Given a sketch information SketchG\{x,y}(P) for a growable part P , one can infer an outgoing edge
(u, v) from P with constant probability. In addition, with probability 1/4 this edge is valid (i.e.,
P is a tail part and v is in a head part). Therefore, overall the number of growable parts reduces
by a constant factor, in expectation. By the Markov inequality, w.h.p. there is no growable part
after O(log n) phases. Since x, y jointly hold the sketch information of all parts in Pk they can
determine if there is more than one part in Pk by exchanging information along their channel (i.e.,
if G \ {x, y} is not connected, then w.h.p. either x or y holds a part whose leader is not s). The
theorem follows.

10The latter is held by x, so when revering the roles of x, y, y might be required to send x the sum of sketch
information of the tail parts in Pi−1,y that got merged with the s-part.

20

𝑠

𝑦ℎ 𝑦1 𝑦2𝑥3
𝑥ℎ

𝑥 𝑦

𝑥2 𝑥1

𝐿𝐷𝑆(𝑥, 𝑦) 𝐿𝐷𝑆(𝑦, 𝑥)

𝑈(𝑥, 𝑦)

Figure 2: Simulating the first Bor̊uvka phase in algorithm AP
x,y. Each triangle corresponds to a light

component in Cx, Cy. The square boxes correspond to the heavy components Hx, Hy. The framed
triangles correspond the subtrees of x, y that belong to the set LDS(x, y) ∪ LDS(y, x). The dashed
green bidirectional arrow represents the xy channel given by the promise. The dashed black arrows
correspond to the outgoing edges obtained by x, y from the sketch information of their components.
In the example, the light subtrees Tx2 and Ty1 exchange information over their outgoing edge, which
allows y to compute the sketch of the merged component V (Tx2)∪ V (Ty1). The sketch of the merged
component V (Tyh) ∪ V (Tx1) ∪ V (Txh

) is computed by y by letting x send SketchG\{x,y}(V (Tx1)) ⊕
SketchG\{x,y}(V (Txh

)).

Omitting the Promise by Classification to Light and Heavy Pairs. In the next subsec-
tions, we omit the promise by partitioning the xy pairs into two classes: light and heavy, defined
as follows.

Definition 4.2 (Light and Heavy Independent Pairs). An independent pair x, y is denoted as a
light-pair if either (i) there is a path πx(s, C) ⊆ T̂x such that either the last edge of the path (y, vC)
for vC ∈ C or else, there is a light edge (y, y′) ∈ πx(s, C) such that x ∈ πy(s, Cy,y′), or (ii) there is

a path πy(s, C) ⊆ T̂y such that either the last edge of the path (x, vC) for vC ∈ C or else, there is
a light edge (x, x′) ∈ πy(s, C) and y ∈ πy(s, Cx,x′). The remaining independent pairs are denoted
as heavy-pairs. See Fig. 3 for an illustration.

The following observation provides a more explicit characterization of the heavy pairs.

Observation 4.3. For every heavy pair xy the following holds: for every fully y-sensitive compo-
nent C ∈ Cx it holds that (y, yh) ∈ πx(s, C), and similarly for every fully x-sensitive component
C ∈ Cy it holds that (x, xh) ∈ πy(s, C).

Proof. Consider a fully y-sensitive component C ∈ Cx, and recall that πx(s, C) = π(s, uC)◦(uC , vC)
(see Def. 4.1). Then, since xy is not light, we have that uC ̸= y. In addition, as C is fully y-sensitive
and uC ̸= y, there is an edge (y, y′) ∈ π(s, uC). Since xy is not light, we conclude that y′ = yh.
The proof works similarly for C ∈ Cy.

21

𝑠

𝑦
𝑦1 𝑦ℎ

෠𝑇𝑥 𝑠

𝑥ℎ

𝑥1

𝑥2

𝑦2

𝑥1

𝑥3
𝑥3

𝑥

𝑦ℎ

𝑦1

෠𝑇𝑦

𝑠

𝑦
𝑦2 𝑦ℎ

𝑠

𝑥ℎ

𝑥1

𝑥2

𝑦2

𝑥ℎ

𝑥3
𝑥3

𝑥

𝑦ℎ

𝑦1

෠𝑇𝑥 ෠𝑇𝑦

Figure 3: Top: An illustration of a light xy pair. Shown are the trees T̂x, T̂y. The pair xy is light since

tree T̂x contains a light edge (y, y1) and x ∈ πy(s, Cy,y1). Bottom: Illustration of a heavy pair xy. For

the light child y2 of y in T̂x, we have that x /∈ πy(s, Cy,y2). Similarly, for the light child x3 of x in T̂y,

we have that y /∈ πx(s, Cx,x3). Hence, the fully y-sensitive components in Cx are connected in T̂x to
the heavy child yh (and vice-versa).

4.4 Running the Light Ax,y Algorithms in Parallel

For each light pair xy, we describe an algorithm Ax,y which implements a channel of communication
between x, y, by defining a path Πx,y, in a way that replaces the promise of AP

x,y. Algorithm Ax,y

works in the exact same manner as AP
x,y, with the only distinction that the messages that all the

messages exchanged in AP
x,y over the promised channel, will be sent instead along the path Πx,y.

For every (ordered) light pair x, y, assume w.l.o.g. that there is a component C ∈ Cx such that
either uC = y (i.e., the last edge of πx(s, C) is (y, vC) for vC ∈ C), or that there is a light edge
(y, y′) ∈ πx(s, C) such that x ∈ πy(s, Cy,y′). Note that there might be multiple such components

22

C ∈ Cx that satisfies the above, and in the following x picks one such C arbitrarily. Then, define11:

Πx,y = π(x, vC) ◦ (vC , uC) ◦ π(uC , y) . (4.3)

Let Qlight be the collection of xy light pairs. We first show that the collection of {Πx,y | (x, y) ∈
Qlight} paths satisfies the promise.

Lemma 4.11. The collection of paths {Πx,y | (x, y) ∈ Qlight} satisfies the promise: all paths are of

length O(D) and each edge appears on Õ(D) paths.

Proof. The length bound on Πx,y is immediate, and so we consider the edge congestion. An edge
(a, b) appears in the first segment, (i.e., π(x, vC) of Eq. (4.3)) of at most O(D log n) many paths:
For every ancestor x ∈ π(s, a) and every light edge (y, y′) on the path πx(s, Cx,a). In the case
where the second segment (i.e., π(uC , y) of Eq. (4.3)) consists of a single vertex, we have that
Πx,y consists of only edges incident to V (Tx). In the remaining case, (a, b) appears on the second
segment (i.e., π(uC , y) of Eq. (4.3)) of O(D log n) paths: for every light ancestor y on π(s, b, T)
and every vertex on x ∈ πy(s, Cy,b).

Finally, we show in Appendix A.3 that we can perform an handshake between each such pair,
that allows the vertices x, y to distributively define their xy-channel, and thus execute the collection
of Ax,y algorithms for all light pairs.

Lemma 4.12. One can schedule the collection of the Ax,y algorithms for all light pairs x, y in

Õ(D) rounds.

4.5 Running the Heavy Ax,y Algorithms in Parallel

We now consider the most challenging configuration of heavy pairs. Our strategy is based on
identifying a limited number of carefully chosen pairs for which we implement the promise using
bounded-congestion xy-paths. We then show that in order to handle all remaining pairs, it is suffi-
cient for the vertices to collect a small amount of information over the tree T . Perhaps surprisingly,
this information enables x, y to run a local simulation of Bor̊uvka in G \ {x, y} with no further
communication (between the subtrees of x and y). We use the following key notion.

Definition 4.3 (Doubly-Connected Sets). Let x ∈ V and C ∈ Cx. Denote by Nx(C) the set of
vertices in V \ V (Tx) which have a neighbor inside C. We say C is doubly-connected to a vertex u,
if there exist two distinct vertices a, b ∈ Nx(C) s.t. LCA(a, b) = u.

Observation 4.4. Fix x and C ∈ Cx and let y′ be a vertex on πx(s, C) = π(s, uC) ◦ (uC , vC) such
that C is doubly connected to y′. Then, s and all vertices in C are connected in G\{x, y} for every
vertex y ̸= y′ in π(y′, uC).

Proof. Since C is doubly-connected to y′, there are two distinct vertices a, b ∈ Nx(C) with LCA(a, b) =
y′. Therefore, as y is below y′ in T , y cannot be a common ancestor of a, b. Without loss of gen-
erality, assume that y /∈ π(s, a). Now let a′ be a neighbor of a in C, which exists as a ∈ Nx(C).
Then π(s, a) ◦ (a, a′) is a path connecting s to C in G \ {x, y}.

11In the below Πx,y definition, uC might be equal y.

23

For every vertex x, recall that Hx ∈ Cx is the component that contains the heavy child of x,
namely, xh. We then focus on the collection of vertices on πx(s,Hx) that are doubly connected to
Hx. Let TD(x) be the topmost vertex on πx(s,Hx) that is doubly connected to Hx. If there are
no such vertex, define TD(x) = uHx . By Observation 4.4, for every vertex y that lies strictly below
TD(x) on πx(s,Hx) it holds that Hx is connected to s in the graph G \ {x, y}. See Fig. 4.

𝑥ℎ

𝑠

𝑦′

𝑇𝐷 𝑥 = 𝑦

𝜋𝑥(𝑠, 𝐻𝑥)

𝑠

𝑦ℎ 𝑦1 𝑦2
𝑥2 𝑥ℎ

𝑥 𝑦

𝐻𝑥 𝐻𝑦

Π𝑥𝑦

Figure 4: Left: An failure of a vertex y′ that lies below TD(x) on πx(s,Hx) does not disconnect Hx

from s. Right: Illustration of the Πx,y path for a heavy xy pair.

Claim 4.13. There is an Õ(D)-round algorithm that allows each vertex x compute TD(x).

Definition 4.4. An ordered heavy pair x, y is mutual if TD(x) = y and TD(y) = x.

To handle the mutual and non-mutual heavy pairs, our approach is based on having preliminary
Õ(D)-round procedure that equipped each vertex x with useful information on each vertex y ∈ T̂x.
In particular, we apply the following:

Lemma 4.14. There is an Õ(D)-round algorithm that allows every vertex x learn the follow-
ing for each y ∈ V (T̂x) \ V (Tx): (i) TD(y), (ii) π∗

y(s,Hy) and (iii) a fresh sketch information
Sketch′G\{y}(Hy).

Handling the Mutual Heavy Pairs. Our goal is to show that one can implement the promised
channel for all the mutual pairs ⟨x,TD(x)⟩ using Õ(D) rounds. First observe that every x can locally
recognize its mutual mate y (if exists). This holds as by Claim 4.13, x knows y = TD(x), and by
Lemma 4.14 it also knows TD(y). Similarly to the light pairs, we handle the mutual pairs xy by
defining a collection of path Πx,y as follows. Let u = uHx , v = vHx , so (u, v) is the last edge of
πx(s,Hx). Then Πx,y = π(x, v)◦(v, u)◦π(u, y) , see Fig. 4. For every mutual pair xy, the algorithm
Ax,y is AP

x,y with the xy-channel being Πx,y.

Lemma 4.15. The collection of algorithms Ax,y, for all mutual xy pairs, can be run in Õ(D)
rounds, w.h.p.

Proof. Let Qmutual be the collection of mutual pairs. We show first that the collection of paths
Pmutual = {Πx,y | (x, y) ∈ Qmutual} satisfies the promise of Cor. 4.6. Clearly, the length of each
path in Pmutual is O(D). We now show that each edge appears on O(D) many paths. Every vertex

24

a can appear only on paths of the form Πx,y for every x ∈ π(s, a). Hence, each vertex a appears on
O(D) many paths, and consequently, each edge appears on O(D) paths. Since the length of each
Πx,y path is O(D), using the random delay approach of Theorem 1.7, we can exchange Õ(1) bits

between all mutual pairs x, y within Õ(D) rounds, w.h.p. This establishes the paths Pmutual in a
distributed manner. The proof then follows by Cor. 4.6.

Handling the Remaining Heavy Pairs. We next show that the connectivity in G \ {x, y} of
the remaining pairs can be now determined locally, w.h.p., by either x or y. We start by noting
the following property for every heavy pair x, y:

Observation 4.5. For every heavy pair xy it holds that G \ {x, y} is connected iff there exists
zh ∈ {xh, yh}, such that s is connected to zh in G \ {x, y}.

Proof. It is sufficient to show that if s is connected to zh in G \ {x, y}, then the following holds:
(i) all the vertices in the fully y-sensitive components in Cx are connected to s in G \ {x, y}, and
(ii) all the vertices in the fully x-sensitive components in Cy are connected to s in G \ {x, y}. We
next assume that zh = yh, but the same proof works in a symmetric manner for the case where s
is connected to xh in G \ {x, y}.

By Obs. 4.3, for every fully y-sensitive component C in Cx, it holds that (y, yh) ∈ πx(s, C).
Therefore, yh is connected to every fully y-sensitive component C ∈ Cx in G \ {x, y}. Since yh is
connected to s in G \ {x, y}, (i) holds. We now turn to show (ii).

From (i), we know that xh is connected to s in G \ {x, y}. By Obs. 4.3, for every fully x-
sensitive component C in Cy, it holds that (x, xh) ∈ πx(s, C). Therefore, xh is connected to every
fully x-sensitive component of Cy in G \ {x, y}, concluding that (ii) holds.

From that point on, we fix a non-mutual heavy pair xy. We break the symmetry between x
and y by assuming w.l.o.g. that TD(y) ̸= x (but possibly, TD(x) = y). We show that y can locally
determine in this case the connectivity in G \ {x, y}, by distinguishing between the following cases.

Case 1: TD(y) is not below x on πy(s,Hy). We claim that y can safely deduce that G\{x, y}
is connected. By Obs. 4.5, it is sufficient to show that yh is connected to s in G \ {x, y}. This
indeed holds by Obs. 4.4.

Case 2: TD(y) is below x on πy(s,Hy). We first claim that if either (x, xh) /∈ πy(s,Hy) or
that (y, yh) /∈ πx(s,Hx), then G \ {x, y} is connected. Assume that (x, xh) /∈ πy(s,Hy). Since xy is
a heavy pair, for every fully x-sensitive component C ∈ Cy, it holds that (x, xh) ∈ πy(s, C). Hence,
by the assumption, Hy is not fully x-sensitive component, and therefore yh is connected to s in
G \ {x, y}, and the claim holds by Obs. 4.5.

Assume that (y, yh) /∈ πx(s,Hx). Since xy is a heavy pair, by the assumption, Hx is not fully
y-sensitive component, and therefore xh is connected to s in G\{x, y}, and the claim holds by Obs.
4.5.

Assume from now on that (x, xh) ∈ πy(s,Hy) and that (y, yh) ∈ πx(s,Hx). Let Cy,x = {C ∈
Cy | (x, xh) ∈ πy(s, C)} be the collection of y-components in the subtree of T̂y rooted at xh.

In addition, let Ĉ =
⋃

C∈Cy,x C. See Fig. 5 for an illustration. We will show that y can locally

determine the connectivity in G \ {x, y} by noting the following:

Observation 4.6. G\{x, y} is connected iff Hx∪Ĉ has an outgoing edge to (V \(Hx∪Ĉ∪{x, y})).

25

Proof. Since x is above TD(y) on πy(s,Hy), we know that Hy is connected only to Hx among all
other components in Cx. Also, we know that for every fully y-sensitive component C ∈ Cx, it holds
that yh ∈ πx(s, C). Therefore, we conclude that there is exactly one fully y-sensitive component in
Cx, namely, Hx. In other words, all components of Cx \ {Hx} are connected to s in G \ {x, y}. In
addition, we know that all the vertices in Ĉ are connected to xh in G \ {x, y}, and thus also to the
heavy component Hx. As xy is a heavy pair, every C ′ ∈ Cy \ Cy,x is connected to s in G \ {x, y}.
Therefore, any outgoing edge of Hx ∪ Ĉ must be to a vertex that connected to s in G \ {x, y}.

It remains to show that y can compute Sketch′G\{x,y}(Hx ∪ Ĉ). This would conclude the claim

as using this sketch information, y can determine w.h.p. if Hx∪ Ĉ has an outgoing edges (i.e., using
O(log n) basic-sketch units). We first show that y can compute the sketches Sketch′G\{x,y}(Q) for

Q ∈ {Hx, Hy}. From the extended-ID of x, y knows Sketch′G\{x}(Hx). In addition, y can determine
its edges in Hx and cancel them (using Lemma 1.6). This holds since every vertex v knows its
component-ID of Cx,v ∈ Cx for every x ∈ π(s, v). This total amount of Õ(D)-bit information
can be sent from each v to all the neighbors of v. Therefore, y knows its edges in the x-heavy
component Hx. The sketch information of these edges can be omitted from Sketch′G\{x}(Hx) and

obtain Sketch′G\{x,y}(Hx).

We now show that y can also compute Sketch′G\{x,y}(Hy). Since Hy is not doubly-connected to

x, andHx is connected toHy, we get that x has no neighbors inHy. Therefore, Sketch
′
G\{x,y}(Hy) =

Sketch′G\{y}(Hy). Finally, we show that y can determine Sketch′G\{x,y}(C) for every light component
C ∈ Cy,x. We need the following claim:

Claim 4.16. All vertices v ∈ V can compute Sketch′G\{x}(V (Tv)), for every x ∈
⋃

y∈LA(v) πy(s, Cy,v),

within Õ(D) rounds.

By Claim 4.16, every light child y′ ∈ C of y knows Sketch′G\{x}(V (Ty′)). Therefore, by sending

this information to y, y can compute Sketch′G\{x}(C) (as C is a union of Ty′ subtrees). In addition,

y can locally cancel-out its incident edges in C, resulting in Sketch′G\{x,y}(C) (using Lemma 1.6).

We have that y knows Sketch′G\{x,y}(Hx ∪ Ĉ) and can therefore determine connectivity w.h.p.

This concludes the Õ(D)-round algorithm for detecting independent cut pairs. By Sec. 3,
within another Õ(D) rounds we can also detect all dependent cut pairs. Theorem 1.2 follows.

References

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via
linear measurements. In Proceedings of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms, pages 459–467. SIAM, 2012.

[BT89] Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing (extended
abstract). In 30th Annual Symposium on Foundations of Computer Science, Research
Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages 436–441.
IEEE Computer Society, 1989.

[BT96] Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected
components with spqr-trees. Algorithmica, 15(4):302–318, 1996.

26

𝑠

෨𝑇𝑦

𝑦2𝑥ℎ

𝑦ℎ

𝑦1
𝑇𝐷(𝑦)

𝑥

𝑦2
𝐻𝑦

𝑠

𝑦

𝑦ℎ

෨𝑇𝑥

𝑥ℎ

𝑥1

𝐻𝑥

𝑥1

Figure 5: Illustration for Obs. 4.6 where x appears above TD(y) on πy(s,Hy). Since xy is a heavy pair
and as Hy is not doubly-connected to x, it must hold that Hx is the only component in Cx connected

to xh (see T̂x). Consequently, any outgoing edge of the component Hx ∪ Ĉ must connect to a vertex
that is xy-connected to s.

[CHGK14] Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. Distributed connectivity
decomposition. In Proceedings of the 2014 ACM symposium on Principles of distributed
computing, pages 156–165. ACM, 2014.

[Cho16] Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In Ioannis
Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors,
43rd International Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 130:1–130:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[CKL+22] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time.
CoRR, abs/2203.00671, 2022.

[DEMN21] Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai. Dis-
tributed weighted min-cut in nearly-optimal time. In Samir Khuller and Virginia Vas-
silevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on The-
ory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1144–1153. ACM,
2021.

[DP09] Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Pro-
ceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages
506–515. SIAM, 2009.

[DP16] Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures.
CoRR, abs/1607.06865, 2016.

[DP17] Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex fail-
ures. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
490–509, 2017.

27

[DP21] Michal Dory and Merav Parter. Fault-tolerant labeling and compact routing schemes.
In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:
ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July
26-30, 2021, pages 445–455. ACM, 2021.

[GH16] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, MST, and min-cut. In Robert Krauthgamer, editor, Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 202–219. SIAM, 2016.

[Gha15] Mohsen Ghaffari. Near-optimal scheduling of distributed algorithms. In Proceedings
of the 2015 ACM Symposium on Principles of Distributed Computing, PODC, pages
3–12, 2015.

[GILP15] Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura, and Nikos Parotsidis. 2-vertex
connectivity in directed graphs. In Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming
- 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Pro-
ceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages 605–616.
Springer, 2015.

[GK17] Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BFS trees. In
Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 127:1–127:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[GKKT15] David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph
connectivity with improved worst case update time and sublinear space. CoRR,
abs/1509.06464, 2015.

[GMW20] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in o(m log2 n)
time. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 57:1–57:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[GNT20] Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge
connectivity via random 2-out contractions. In Shuchi Chawla, editor, Proceedings of
the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020, pages 1260–1279. SIAM, 2020.

[GP16] Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique. In Pro-
ceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
2016, Chicago, IL, USA, July 25-28, 2016, pages 19–28, 2016.

[HLW21] Zhiyang He, Jason Li, and Magnus Wahlström. Near-linear-time, optimal vertex cut
sparsifiers in directed acyclic graphs. In Petra Mutzel, Rasmus Pagh, and Grzegorz Her-
man, editors, 29th Annual European Symposium on Algorithms, ESA 2021, September

28

6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 52:1–
52:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[HT73] John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected com-
ponents. SIAM J. Comput., 2(3):135–158, 1973.

[Kar99] David R Karger. Random sampling in cut, flow, and network design problems. Math-
ematics of Operations Research, 24(2):383–413, 1999.

[KKM13] Bruce M Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in
polylogarithmic worst case time. In Proceedings of the twenty-fourth annual ACM-
SIAM symposium on Discrete algorithms, pages 1131–1142. SIAM, 2013.

[KKT15] Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu repair of
an MST in a distributed network with o(m) communication. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San
Sebastián, Spain, July 21 - 23, 2015, pages 71–80, 2015.

[KP21] Karthik C. S. and Merav Parter. Deterministic replacement path covering. In Dániel
Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 704–723. SIAM, 2021.

[KW14] Michael Kapralov and David Woodruff. Spanners and sparsifiers in dynamic streams.
In Proceedings of the 2014 ACM symposium on Principles of distributed computing,
pages 272–281, 2014.

[LMR94] Frank Thomson Leighton, Bruce M Maggs, and Satish B Rao. Packet routing and
job-shop scheduling ino (congestion+ dilation) steps. Combinatorica, 14(2):167–186,
1994.

[LNP+21] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sor-
rachai Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows. In
Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 317–329. ACM, 2021.

[MK18] Ali Mashreghi and Valerie King. Broadcast and minimum spanning tree with o(m)
messages in the asynchronous CONGEST model. In 32nd International Symposium
on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018,
pages 37:1–37:17, 2018.

[NMN01] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar Bor̊uvka on minimum
spanning tree problem translation of both the 1926 papers, comments, history. Discrete
Mathematics, 233(1):3–36, 2001.

[NSY19] Danupon Nanongkai, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai.
Breaking quadratic time for small vertex connectivity and an approximation scheme.
In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June
23-26, 2019, pages 241–252. ACM, 2019.

29

[Par15] Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, pages 481–490, 2015.

[Par19] Merav Parter. Small cuts and connectivity certificates: A fault tolerant approach. In
33rd International Symposium on Distributed Computing, 2019.

[Par20] Merav Parter. Distributed constructions of dual-failure fault-tolerant distance pre-
servers. In Hagit Attiya, editor, 34th International Symposium on Distributed Comput-
ing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages
21:1–21:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Pel00] David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.

[PT11] David Pritchard and Ramakrishna Thurimella. Fast computation of small cuts via cycle
space sampling. ACM Transactions on Algorithms (TALG), 7(4):46, 2011.

[PY21] Seth Pettie and Longhui Yin. The structure of minimum vertex cuts. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scot-
land (Virtual Conference), volume 198 of LIPIcs, pages 105:1–105:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021.

[ST83] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees.
J. Comput. Syst. Sci., 26(3):362–391, 1983.

[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Com-
put., 1(2):146–160, 1972.

[Thu97] Ramakrishna Thurimella. Sub-linear distributed algorithms for sparse certificates and
biconnected components. Journal of Algorithms, 23(1):160–179, 1997.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Com-
puter Science, 7(1–3):1–336, 2012.

[WY13] Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles
via fast matrix multiplication. ACM Transactions on Algorithms (TALG), 9(2):14,
2013.

A Missing Proofs

A.1 Missing Proofs for Section 1.2

Proof of Lemma 1.3. First, each vertex v learns its subtree size |V (Tv)| by bottom-up aggregation
on T . By passing these sizes to the parents, within another round each vertex can classify its
children as heavy/light. Within one more round, each vertex is informed on its classification by its
parent. Computing the compressed paths can now be executed in a top-down fashion, as a vertex
can deduce its compressed path from the compressed path of its father and its own heavy/light
classification.

30

Proof of Lemma 1.6. Let Out(S) be the set of outgoing edges from S in G, and Outi,j(S) =
Out(S) ∩ Ei,j . Observe that for each i ∈ {1, . . . , L}:

SketchG,i(S) = [⊕v∈S,e∈Ei,0(v) EIDT (e), . . . ,⊕v∈S,e∈Ei,logM (v) EIDT (e)]

= [⊕e∈Outi,0(S) EIDT (e), . . . ,⊕e∈Outi,logM (S) EIDT (e)]

where the last equality is true as each edge e with both endpoints inside S appears either 0 or 2
times in each XOR. Now let Out′(S) and Out′i,j(S) be defined exactly as Out(S) and Outi,j(S),
but with respect to G \ E′ instead of G. Then as Out(S) is the disjoint union of Out′(S) and E′,
we obtain

SketchG,i(S)⊕ SketchG\E′,i(S) = [⊕e∈E′∩Ei,0
EIDT (e), . . . ,⊕e∈E′∩Ei,logM

EIDT (e)].

The right-hand side of the above equation can be computed from the given extended IDs of E′ and
the random seed Sh, and by XORing it with SketchG,i(S) we obtain SketchG\E′,i(S). Concatenating
these basic sketch units yields the required.

A.2 Missing Proofs for Section 3

Proof of Claim 3.2. We define the labels ANC
T̃
as follows. If v ∈ C0, we simply take its T -ancestry

label, i.e. ANC
T̃
(v) = ANCT (v) = π∗(s, v, T). We now define ANC

T̃
(v) for the case v ∈ Ci, i ̸= 0.

Observe that the s-v path in T̃ decomposes as π(s, v, T̃) = π(s, pj , T) ◦ (pj , rj) ◦π(rj , v, T̃rj) for the

unique pj ∈ C0 which is an ancestor of v in T̃ . The T̃ -ancestry label of v is obtained by heavy-light

compression of the paths as ANC
T̃
(v) = π∗(s, pj , T)◦ (pj , rj)◦π∗(rj , v, T̃rj). Given the ANC

T̃
-labels

of any u, v ∈ V (T̃), one can easily determine if π(s, u, T̃) is a prefix of π(s, v, T̃), and thus if u
is an T̃ -ancestor of v. As compressed paths require O(log2 n) bits, each ANC

T̃
-label consists of

O(log2 n) = Õ(1) bits.
We now present the computation of these labels. The vertices of C0 already hold their labels,

as they are equal to their ANCT labels, so it remains to compute them for the C1∪· · ·∪Ck vertices.
The algorithm proceeds by the following 3 steps.

Step 1: Heavy-Light Decomposition of T̃ . Our first task is for every vertex in C1∪· · ·∪Ck

to learn its heavy/light classification in the tree T̃ , which essentially involves computing subtree
sizes in T̃ . At first glance, one might consider computing these by simple aggregation on T̃ . This
approach fails as it requires Ω(D(T̃)) rounds, and the diameter of T̃ might be Ω(∆·D). To overcome
this, we use y as a coordinator to jump-start the aggregation. Recall that all component sizes |Ci|
are known to y by the preprocessing. Therefore, y can locally compute the T̃ -subtree sizes of all
the ri’s: |V (T̃ri)| is the sum-of-sizes of components lying in the subtree of Ci in the component tree

C̃T . Then, y sends each child yi the T̃ -subtree size of ri, and this information is propagated down
on each Tyi (in parallel), so that each ri learns its T̃ -subtree size. Upon receiving this information,

each ri passes it also to its T̃ -parent pi. Next, for any vertex v of T̃ , denote

αv =

{
if v = pi: |V (T̃ri)|+ 1,

otherwise: 1.

Then by this point, every vertex v ∈ C1∪· · ·∪Ck knows its corresponding value αv. For i = 1, . . . , k,
let T̃ (i) be the tree induced on Ci by T̃ , where the parents in T̃ (i) are the same as in T̃ . Equivalently,

31

T̃ (i) is the tree obtained by rerooting Tyi at the vertex ri. Each of its leaves is either an original

T̃ -leaf or a pj vertex for some j. The crux is that for each v ∈ Ci it holds that |V (T̃v)| =
∑

u∈T̃ (i)
v

αu.

That is, the T̃ -subtree size of v is equal to the sum-of-α’s in its T̃ (i)-subtree. By executing bottom-
up sum-aggregation of the αv’s in each of the trees T̃ (i) in parallel, each vertex v ∈ C1 ∪ · · · ∪ Ck

learns its T̃ -subtree size. In another communication round, each such vertex passes its T̃ -subtree
size to its parent, enabling each vertex to classify each of its children into light or heavy. Within
another round, all vertices in C1 ∪ · · · ∪ Ck are informed of their heavy-light classification by their
parent.

Step 2: Computing Compressed T̃ -Paths Inside the Ci’s. In this substep, each v ∈ Ci,
i ̸= 0, learns the compressed path π∗(ri, v, T̃ri). The main observation is that if a vertex is given
the compressed path of its parent, it can easily deduce its own compressed path (as it know its
own heavy/light classification). Therefore, the required compressed paths can be computed in a
top-down fashion on each T̃ (i) (in parallel).

Step 3: Obtaining The ANC
T̃
-labels. For j = 1, . . . , k define

πj =

{
if pj ∈ Ci with i ̸= 0: π∗(ri, pj , T̃ri),

if pj ∈ C0: π∗(s, pj , T) = ANCT (pj).

Observe that by Step 2.2, the pj ’s know their corresponding πj ’s. To send this information to y,
each pj sends πj to rj , and the messages are then forwarded upwards on each Tyj (in parallel),
along with the heavy/light classification of the rj ’s. Using the information of {πj}j , the component

tree C̃T and the heavy/light classifications of the rj ’s, y can locally compute ANC
T̃
(ri) for each ri,

and send this label to the corresponding child yi. Then, ANC
T̃
(ri) is broadcasted on each Tyi (in

parallel), so that each vertex v ∈ Ci learns this label. Finally, ANCT̃
(v) can be locally deduced in v

from the information in ANC
T̃
(ri) and π∗(v, T̃ri), where the latter is known to v by Step 2.2.

Proof of Claim 3.3. We focus on letting y learn SketchT̃G\{y}(V \ {y}), as it can then broadcast it

down Ty. First, by bottom-up aggregation of the sketch information on Ty, y can learn SketchT̃G\{y}(C1∪
· · · ∪Ck). So, it remain to let y learn SketchT̃G\{y}(C0), as the XOR of these two sketches yields the
required. To this end, we partition C0 to interior and boundry. The interior C◦

0 consists of all C0-
vertices with all G-neighbors inside C0. The boundary ∂C0 consists of the remaining C0-vertices,
namely those that have some G-neighbor inside Ty. Each boundary vertex v ∈ ∂C0 chooses an

arbitrary Ty-neighbor and sends to it its old sketch SketchG(v) and its new sketch SketchT̃G\{y}(v).
Then, by bottom-up aggregation of these (old and new) sketches on Ty, y learns SketchG(∂C0) and

SketchT̃G\{y}(∂C0). We assert that by this point, y has all the required information to complete the
computation. First, observe that

SketchT̃G\{y}(V \ {y}) = SketchT̃G\{y}(C1 ∪ · · · ∪ Ck)⊕ SketchT̃G\{y}(∂C0)⊕ SketchT̃G\{y}(C
◦
0).

The first two terms in the expression are already known to y. We now show how to deduce the

last term SketchT̃G\{y}(C
◦
0). Observe that by our definitions of the T̃ -ancestry labels and the EID

T̃
-

identifiers, the old and new sketches of vertices in C◦
0 coincide. That is, for all v ∈ C◦

0 we have

SketchT̃G\{y}(v) = SketchG(v). We therefore obtain that

SketchT̃G\{y}(C
◦
0) = SketchG(C

◦
0) = SketchG(V)⊕ SketchG(V (Ty))⊕ SketchG(∂C0).

32

The first two terms in the latter expression are known to y by the prepossessing, and the last has
been previously computed in this step.

A.3 Missing Proofs for Section 4

Proof of Lemma 4.1. This is implemented as follows. The source s locally samples a random seed,
and broadcast this information to all the vertices. For every d ∈ {1, . . . , du}, a vertex u computes
its d-depth sketch SketchdG(u) by restricting the edge sampling only to edges of depth ≥ d:

Ed(u) = {(u, v) ∈ E | depth(LCA(u, v)) ≥ d} .

This edge set Ed(u) can be computed locally by u, by letting each vertex learn its tree path π(s, u)
and exchanging this path information with its neighbors. Using the seed information, u computes
du sketches Sketch1G(u), . . . ,Sketch

du
G (u), where the edges in the d’th sketch SketchdG(u) are based

on using the seed to implement the sampling of the edges in Ed(u).
Next, the algorithm aggregates these D sketches. This can be done in a pipeline manner from

the leaf vertices up to the root, in increasing ordering of the depth d of the sketches. At the end
of this computation, each vertex x of depth dx holds the the sketch SketchdxG (V (Tw)) for each of
its T -child w. The final sketch SketchG[Vx](V (Tw)) is obtained locally at x by canceling-out the

sampled x’s edges from Sketchdx(V (Tw)).
At this point, x has all the required sketch information to locally simulate the Bor̊uvka algorithm

in G[Vx]. As a result of this computation, x holds a component-ID of Cx,w ∈ Cx for each T -child w
of x. This information is then propagated down the tree T in a pipeline manner, where each vertex
u eventually learns the component-ID of Cx,u for each of its ancestors x ∈ π(s, u). It is easy to see

that this entire computation takes Õ(D) rounds.

Proof of Lemma 4.2. The path-sketches SketchPG(V (Tx)) for every vertex x are computed by a
standard aggregation of D-length vectors, which can be done in Õ(D) rounds via standard pipeline.
At the end of this computation, each vertex x holds that path-sketch SketchPG(V (Tw)) for each of
its T -children w. Again, x can locally cancel-out12 its edges to obtain SketchPG\{x}(V (Tw)). Then,
by combining with connectivity information obtained in Step 1, it can locally computes the path-
sketch SketchPG\{x}(C) for every C ∈ Cx. Specifically, letting N(x,C) be the children of x in the
component C, then

SketchPG\{x}(C) = ⊕w∈N(x,C)Sketch
P
G\{x}(V (Tw)) .

Note that any outgoing edge (uC , vC) of a component C ∈ Cx connects uC ∈ C to vC ∈
V \ V (Tx). In addition, a detected outgoing edge e = (uC , vC) from SketchPG\{x}(C) includes as
part of EIDT (e) the path edges π(s, uC) ∪ π(s, vC). This allows x to compute, w.h.p., the path
πx(s, C) = π(s, vC) ∪ (vC , uC) for each C. The final tree is given by T̂x =

⋃
C∈Cx πx(s, C). The

running time is dominated by the time to compute the path-sketches.

Proof of Lemma 4.4. First, we let each vertex v learn the compressed-path π∗
x(s, Cy,y′) for every

edge (y, y′) ∈ π(s, v). This information can be downcasted on T within Õ(D) rounds (in the same
manner that u learns its tree path edges π(s, v). This total amount of Õ(D)-bits held by each v
can be then sent to all v’s neighbors, using Õ(D).

12This holds as x knows the seed of the sketch as well as the EIDT (e) (see Eq. (4.1)) of its incident edges e.

33

Consider (i) where it is required for each x to learn for every light component C ∈ Cx, the
collection of compressed paths π∗

y(s, Cy,y′) for every edge (y, y′) ∈ πx(s, C). We show that for every

x, there is an Õ(D)-round algorithm Ax that has a total congestion Õ(D). The algorithm Ax

sends messages only along edges incident to LD(x), namely, the light descendants of x. Since each
vertex v belongs to O(log n) sets LD(x) (for each light ancestor x of v), we get that each vertex
participates in O(log n) algorithms. Using the random delay approach of Theorem 1.7, we can then
schedule all these Ax algorithms in Õ(D) rounds.

We next describe algorithm Ax for a fixed x. For component C ∈ Cx \ {Hx}, let

QC = {π∗
y(s, Cy,y′) | (y, y′) ∈ π(s, uC)}.

Our goal is to let x learn QC for every C ∈ Cx. This can be done as follows. By the preliminary
step, vC receives QC from uC for every C ∈ Cx. We then let vC send this Õ(D)-bit information to
x along π(x, vC). Note that the collection of tree paths {π(x, vC) | C ∈ Cx} are edge-disjoint, and
therefore, the communication over these paths can be done in parallel.

Consider (ii). We define an algorithm A′
x for every x and show that its congestion is Õ(1).

Moreover, A′
x only sends messages along V (Tx). Altogether, we get that each vertex v participates

in O(D) algorithms, and using Theorem 1.7, all A′
x algorithms can be scheduled in Õ(D) rounds.

Similarly to part (i) of the proof, for C = Hx, there is a vertex vC ∈ C that holds the information
on Q′

C = {π∗
y(s, Cy,y′) | (y, y′) ∈ π(s, uC), (y, y

′) ∈ L(T)} where L(T) are the light edges of the

tree T . Note that Q′
C has Õ(1) bits, and therefore, vC can send this information to x along the

tree path π(vC , x). The communication is indeed restricted to edges incident to Hx.

Proof of Claim 4.7. Clearly, x knows SketchG\{x}(C) for every C ∈ Cx. To compute SketchG\{x,y}(C),
one needs to cancel-out the sketch information of the edges in (C × {y}) ∩ E(G). We show that
this can be done by exchanging information along edges incident to LDS(x, y) and by using the
promised channel (e.g., to exchange information related to the heavy component in Cx).

First, by Lemma 4.3, we can also assume that each v ∈ LD(x) knows πx(s, Cx,v) and every
v knows π∗

x(s, Cx,v) with respect to its (heavy) ancestors. By exchanging this total amounts of

Õ(D)-bit information with their neighbors, y can locally determine which of its neighbors v in Vx

are y-sensitive and which are not.
By Lemma 4.3, y knows π∗

x(s, Cx,v) for each of its neighbors v ∈ Vx. Therefore, by using also
its own compressed path π∗(s, y), it can determine if it appears in πx(s, Cx,v), and hence determine
if Cx,v is y-sensitive or not. Also, as y knows π∗(s, v) (since v is its neighbor) and π∗(s, x) (since
x’s ID is augmented with this information), it can determine whether v ∈ LD(x). Thus, y can
determine all its neighbors in LDS(x, y).

Altogether, y can determine the edge set E(y, x′) = {(y, v) | v ∈ Tx′} for every child x′ of x
(where y identifies x′ by the unique identity π∗(s, x′)). For every light child x′ such that Cx,x′ is

y-sensitive, y sends to one of its neighbors in Tx′ the sketch information of E(y, x′) which has Õ(1)
bits. This information can be then sent to x using communication inside Tx′∪{(x′, x)}. In addition,
y sends over the promised channel sketch information of the edges E(y, xh) (which consists of Õ(1)
bits). This allows x to cancel-out the edges of y from the sketch information of every y-sensitive
components in S(x, y).

Proof of Claim 4.8. We first show that x and y can compute SketchG\{x,y}(U(x, y)), hence satisfying

(I1). Consider x and its x-connectivity tree T̂x. We start by showing how x can determine the

34

components in Cx \ FS(x, y). The x-connectivity tree T̂x provides x with the knowledge on the
y-sensitive components S(x, y). It remains to distinguish between pseudo y-sensitive and fully
y-sensitive components.

By Lemma 4.4(i), for every component C ∈ Cx \ {Hx}, x knows π∗
y(s, Cq,q′) for every edge

(q, q′) ∈ πx(s, C). Therefore, x can determine if C is fully y-sensitive for every C ̸= Hx. We then
let y send π∗

y(s, Cy,yh) over the xy channel, and by combining with Lemma 4.4(ii), x can determine
also if Hx is fully y-sensitive.

We now explain how to obtain the required sketch information. By Claim 4.7, x can compute
SketchG\{x,y}(C) of every component C ∈ S(x, y). By Claim 4.7, y also know E′

x,y = {(y, v) |
v ∈ Vx, y /∈ πx(s, Cx,v)}. Using the xy channel, y can send the sketch information of E′

x,y to
x. This allows x to compute the sketch information in G \ {x, y} of the union of components
Cns
x,y =

⋃
C∈Cx,y /∈πx(s,C)C.

Let Cps
x,y =

⋃
C∈PS(x,y)C be the union of all pseudo y-sensitive components in Cx. Then, by

Claim 4.7, x can compute SketchG\{x,y}(C
ps
x,y). As NS(x, y) = Cns

x,y∪C
ps
x,y, x knows SketchG\{x,y}(NS(x, y)).

It remains to compute SketchG\{x,y}(Q) for Q = V \(V (Tx)∪V (Ty)). We first explain how x can
compute SketchG(Q). We assume that all vertices know SketchG(V). Using the channel, y can send
x, SketchG(V (Ty)). Therefore, x can compute SketchG(U(x, y)) = SketchG(V)⊕ SketchG(V (Tx))⊕
SketchG(V (Ty)). Let E(x, y) be the set of x edges incident to vertices in Q. (I.e., the edges
connecting x to its non-children in T). In the same manner, y can compute, E(y, x), be the set
of y-edges incident to vertices in Q. By letting y send the sketch information of E(y, x) over the
channel, x can compute SketchG\{x,y}(Q) (by canceling the edges E(y, x) and E(y, x), see Lemma
1.6). Altogether, x now knows SketchG\{x,y}(Q),SketchG\{x,y}(NS(x, y)). In a symmetric manner,
y knows SketchG\{x,y}(Q), SketchG\{x,y}(NS(y, x)). By letting x, y exchange SketchG\{x,y}(Q

′) for
Q′ ∈ {NS(x, y),NS(y, x)}, both can compute SketchG\{x,y}(U(x, y)).

Next consider (I2,I4). Since z knows its components in P0,z, by Claim 4.7, it can compute
SketchG\{x,y}(C) for every C ∈ P0,z for z ∈ {x, y}, as well as their part-IDs. By exchanging the
sketch and part-ID information of the x-heavy and y-heavy parts over the xy channel, invariant
(I3) holds as well.

Proof of Claim 4.9. First consider the case where P is a subset of either Vx or Vy. W.l.o.g., assume
that P ⊆ Vx, and since P is light, we have that P ⊆ LD(x). In such a case P is a union of Tu

subtrees for a subsets of light children u of x. The aggregation of the val(v) values is performed,
in parallel, in each Tu tree. Each root vertex u then sends the aggregate value of the vertices in
Tu to x, which allows x to compute the output for the entire part P . This output can be then
propagated down the Tu trees. The same procedure can be applied when P ⊆ Vy.

We next turn to consider the case where P contains vertices from both Vx and Vy. Since P
is xy-connected and s /∈ P , there is some non-tree edge (u, v) connecting u ∈ P ∩ LD(x) and
v ∈ P ∩ LD(y).

Let Px = P ∩ LD(x) and Py = P \ Px and let qx, qy be the output of the aggregate function
restricted to the val(v) values in Px, Py respectively. We first let the vertices in Px, Py compute
the values qx, qy, as described above. We then let P compute the non-tree edge (u, v) connecting
u ∈ P ∩ LD(x) and v ∈ P ∩ LD(x) of maximum ID, among all possible such edges. This again can
be done internally inside Px, Py. At the end of this step, all nodes in P know the identity of the
selected (u, v) edge. By exchanging qx, qy over the edge (u, v), u and v can obtain the combined
output value w.r.t P . This can be broadcast on P by letting u, v sending this information to x, y

35

respectively, and then broadcasting it in each x, y subtrees in P . Since the communication for a
part P uses only edges incident to P (without using the promise channel), and since the parts in
Pi are vertex-disjoint, this computation can be done for all the light parts in Pi, in parallel.

Proof of Lemma 4.12. In order to apply Cor. 4.6, it remains to show that both x, y can learn that
they are a light pair, and that their Πx,y can be established in a distributed manner.

We starting by observing that for each light pair x, y at least one of the vertices (either x or
y) can learn (with no communication) that x, y is a light pair. Assume w.l.o.g. that there is a
component C ∈ Cx such that either (i) uC = y (i.e., the last edge of πx(s, C) is (y, vC) for vC ∈ C),
or that (ii) there is a light edge (y, y′) ∈ πx(s, C) such that x ∈ πy(s, Cy,y′). Then, by Lemma 4.4,
x can determine that xy is a light pair.

We now describe algorithm Ax for a fixed x and show that x can notify all its light-mates y
using the paths Πx,y. Note that all the vertices a ∈ Vx know π∗(s, Cx,a) and therefore they know
the edge (uCx,a , vCx,a). For each light-mate y of x, let Cx,y ∈ Cx be the chosen component that
satisfies (i) or (ii) w.r.t y. We then let x send a message to the vCx,y ∈ Cx,y vertices. Note that
the edge-congestion of this procedure is O(log n) as each vertex v ∈ Vx receives messages regarding
light edges on πx(s, Cx,v), and there are only O(log n) such edges. Once vCx,y is informed, this
information can be sent to the second endpoint uCx,y ∈ Ty. Overall, we can schedule all Ax

algorithms in Õ(D) rounds, using random delays.
At this point, for each y, there is a vertex uCx,y ∈ Ty that is required to upcast this information

to y. Since uCx,y is a light descendant of y, and since the component of uCx,y in Cy is x-sensitive,

each vertex is required to send Õ(D) messages. Using random delays (or just pipeline) this can
be done in Õ(D), as well. At the end of this procedure, the promised channel Πx,y is known in a
distributed manner. The collection of Ax,y algorithms can be then scheduled using Cor. 4.6.

Proof of Claim 4.13. By using Õ(D) rounds, each vertex v can learn the compressed-path π∗
x(s,Hx)

for each of its ancestors x ∈ π(s, v). Since each v also knows the ID of Cx,v, it can tell if its belongs
to Hx.

We now focus on x ∈ V and show that TD(x) can be computed by an algorithm Ax that
sends information only incident to Hx and Õ(1) congestion. Let (uHx , vHx) be the last edge of
π∗
x(s,Hx) (where vHx ∈ Hx). The goal is to compute an edge (c, d) ∈ Hx × V \ V (Tx) such that

LCA((uHx , d) is of minimal possible depth. Note that this LCA must fall on πx(s,Hx) and that
(uHx , vHx) is known to all vertices in Hx as it is part of the compressed-path π∗

x(s,Hx). We show
that by aggregating information on Tx from the leaf up to the vertex x, one can compute TD(x).
Initially, each vertex v ∈ Hx that has incident edges to V \ V (Tx) keep the edge (v, d) such that
the depth of LCA(uHx , d) is minimized. By sending this information along Tx the best edge in
(c, d) ∈ Hx × V \ V (Tx) can be detected. This allows x to determine TD(x). The computation of
all vertices x can be done in O(D) rounds, using a standard pipeline technique.

Proof of Lemma 4.14. First, we let each vertex v define a fresh sketch information Sketch′G(v). By
aggregating this information from the leaf vertices towards the root s, every vertex y can compute
Sketch′G\{y}(Hy) where Hy = Cy,yh ∈ Cy.

We next repeat the algorithm for computing the x-connectivity trees T̂x with the only distinction
that we augment the ID of each vertex y with

EID′(y) = ⟨ID(y), Sketch′G\{y}(Hy),TD(y), π
∗
y(s,Hy)⟩.

36

The extend-ID of each edge (u, v) includes in-addition the EID′(u),EID′(v). Note that Sketch′(.) is
a fresh sketch information, that is independent of the sketch information Sketch(.) used to compute
the T̂x trees (using independent seeds). Also, the extended-ID EID′(y) has only Õ(1) bits. Since
we use the same sketch information for computing the T̂x trees, for each vertex y in T̂x , x also
learns its extended-ID EID′(y) which satisfies the claim.

Proof of Claim 4.16. Let Qv =
⋃

y∈LA(v) πy(s, Cy,v). By Lemma 4.3, v knows all edges in Qv. In
addition, we let each v send Qv to all its neighbors which can be done within our time budget as
Qv has Õ(D) bits. Note that for every descendant u of v in T , it holds that Qv ⊆ Qu. Next, we
compute these sketches by aggregating the information from the leaf vertices up to the root (and
using Lemma 1.6). Each vertex v starts by computing Sketch′G\{x}(v) for each x ∈ Qv. In each
subtree Tv we then need to compute |Qv| aggregate functions inside Tv, since Qv ⊆ Qu for every
u ∈ Tv, this computation can be done by a standard pipeline using Õ(D) rounds.

37

	Introduction and Our Contribution
	Our Approach, in a Nutshell
	Preliminaries

	Single Cut Vertices
	Dependent Cut Pairs
	Independent Cut Pairs
	Computing x-Connectivity Trees
	Component Classification Based on Sensitivity
	xy-Connectivity Algorithms Under a Promise
	Running the Light Ax,y Algorithms in Parallel
	Running the Heavy Ax,y Algorithms in Parallel

	Missing Proofs
	Missing Proofs for Section 1.2
	Missing Proofs for Section 3
	Missing Proofs for Section 4

