Near-Optimal Distributed Computation of Small Vertex Cuts

Merav Parter * Asaf Petruschka
Weizmann Institute Weizmann Institute
merav.parter@weizmann.ac.il asaf.petruschka@weizmann.ac.il
Abstract

We present near-optimal algorithms for detecting small vertex cuts in the CONGEST model
of distributed computing. Despite extensive research in this area, our understanding of the
vertex connectivity of a graph is still incomplete, especially in the distributed setting. To this
date, all distributed algorithms for detecting cut vertices suffer from an inherent dependency in
the maximum degree of the graph, A. Hence, in particular, there is no truly sub-linear time
algorithm for this problem, not even for detecting a single cut vertex. We take a new algorithmic
approach for vertex connectivity which allows us to bypass the existing A barrier.

e As a warm-up to our approach, we show a simple 6(D)-r0undl randomized algorithm
for computing all cut vertices in a D-diameter n-vertex graph. This improves upon the
O(D + A/logn)-round algorithm of [Pritchard and Thurimella, ICALP 2008].

e Our key technical contribution is an 5(D)—round randomized algorithm for computing all
cut pairs in the graph, improving upon the state-of-the-art O(A - D)*-round algorithm
by [Parter, DISC ’'19]. Note that even for the considerably simpler setting of edge cuts,

currently O(D)-round algorithms are currently known only for detecting pairs of cut edges.

Our approach is based on employing the well-known linear graph sketching technique [Ahn,
Guha and McGregor, SODA 2012] along with the heavy-light tree decomposition of [Sleator
and Tarjan, STOC 1981] . Combining this with a careful characterization of the survivable
subgraphs, allows us to determine the connectivity of G \ {z,y} for every pair z,y € V, using
6(D)—r0unds. We believe that the tools provided in this paper are useful for omitting the
A-dependency even for larger cut values.

*This project is funded by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 949083), and by the Israeli Science Foundation (ISF),
grant No. 2084/18.

! Throughout the paper, we use the notation O to hide poly-logarithmic in n terms.

Contents

1 Introduction and Our Contribution
1.1 Our Approach, in a Nutshell 0 0oL
1.2 Preliminaries o e e e e e e e e

2 Single Cut Vertices
3 Dependent Cut Pairs

4 Independent Cut Pairs
4.1 Computing z-Connectivity Trees o oo oot i s
4.2 Component Classification Based on Sensitivity
4.3 xy-Connectivity Algorithms Under a Promise
4.4 Running the Light A, , Algorithms in Parallel
4.5 Running the Heavy A, , Algorithms in Parallel

A Missing Proofs
A.1 Missing Proofs for Section 1.2
A.2 Missing Proofs for Section 3 L
A.3 Missing Proofs for Section 4

10

14
14
15
16
22
23

1 Introduction and Our Contribution

The vertex connectivity of the graph is a central concept in graph theory and extensive attention
has been paid to developing algorithms to compute it in various computational models. Recent
years have witnessed an enormous progress in our understanding of vertex cuts, from a pure graph
theoretic perspective [PY21] to many algorithmic applications [NSY 19, LNP 21, PY21, HLW21].
Despite this exciting movement, our algorithmic toolkit for handling vertex cuts is still somewhat
limited. A large volume of the work, in the centralized setting, has focused on fast algorithms
for detecting minimum vertex cuts of size at most k, for some small number k. Until recently,
near-linear time algorithms where known only for £ < 2 [Tar72, HT73]. A sequence of recent
breakthrough results [CKL 22, LNP"21] provides an almost-linear time sequential algorithm for
computing the vertex connectivity (even for large connectivity values).

As we see soon, the situation is considerably worse in distributed settings, where the problem
is still fairly open already for & = 1. Throughout, we consider the CONGEST model [Pel00]. In
this model, each node holds a processor with a unique and arbitrary ID of O(logn) bits, and
initially only knows the IDs of its neighbors in the graph. The execution proceeds in synchronous
rounds and in each round, each node can send a message of size O(logn) to each of its neighbors.
The primary complexity measure is the number of communication rounds. For n-vertex D-diameter
graphs, Pritchard and Thurimella [PT11] presented a randomized algorithm for detecting a (single)
cut vertex (a.k.a articulation point) within O(D + A/logn) CONGEST rounds, where A is the
maximum degree of the graph. [PT11] conclude their paper by noting:

[PT11] It would be interesting to know if our distributed cut vertex algorithm could
be synthesized with the cut vertex algorithm of [Thu97] to yield further improvement.
Alternatively, a lower bound showing that no O(D)-time algorithm is possible for finding
cut vertices would be very interesting.

No progress on the complexity of this problem has been done since then. For small cut values
k, Parter [Parl19] employed the well-known fault-tolerant sampling technique [WY 13, KP21] for
detecting k vertex cuts in (A‘D)e(k) deterministic rounds. Turning to approximation algorithms, for
k = Q(logn), Censor-Hillel, Ghaffari and Kuhn [CHGK14] provided a O(logn) approximation for
computing the value of the vertex connectivity of the graph within O(D + +/n) rounds. [CHGK14]
also presented a lower bound of Q(D + y/n/k) V-CONGEST rounds. In the V-CONGEST model,
each node (rather than an edge) is restricted to send only O(logn) bits, in total, in every round.
As shown in this paper, this lower bound does not hold in the standard CONGEST model.

We follow the terminology of [PT'11]: a cut vertex is a vertex = such that G\{z} is not connected.
A cut pair is a pair of vertices x,y such that G \ {x,y} is not connected. For brevity we call these
objects, small cuts. Our main results in this paper are near-optimal algorithms for detecting these
small cuts, in the sense that for every small cut, there is at least one vertex in the graph that learns
it. Our first contribution is in presenting a (perhaps surprisingly) simple randomized algorithm”
that can detect all cut vertices in the graph in O(D) rounds. The edge-congestion® of the algorithm
is O(1) bits™.

2As usual, all presented randomized algorithms in this paper have success guarantee of 1 — 1 /nf, for any given
constant ¢ > 1.

3The edge congestion of a given algorithm is the worst-case bound on the total number of messages exchanged
through a given edge e in the graph.

4We exploit this bounded congestion for detecting cut pairs.

Theorem 1.1. There is a randomized algorithm that w.h.p. identifies all single cut-vertices
in G within O(D) rounds. The edge congestion is O(1). In the output, each vertexr x € V
learns if it is a cut vertex.

This settles the question raised by [PT11]. Our algorithm is based on the well-known graph-
sketching technique of Ahn et al. [AGM12]. This technique has admitted numerous applications
in the context of connectivity computation under various computational settings, e.g., [KKKMI13,
KW, GKKT15, KKT15, MK18, GP16, DP17, DP21]. Yet, to the best of our knowledge, it
has not been employed before in the context of CONGEST algorithms for minimum vertex-cut
computation.

We then turn to consider the problem of detecting cut pairs. It has been noted widely in the
literature that there is a sharp qualitative difference between a single failure and two failures. This
one-to-two jump has been accomplished by now for a wide-variety of fault-tolerant settings, e.g.,
reachability oracles [Chol6], distance oracles [DP09], distance preservers [Parl5, GK17, Par20] and
vertex-cuts [HT73, BT89, BT96, GILP15]. While it is relatively easy to extend our algorithm of
Theorem 1.1 to detect cut pairs in 6(D2) rounds, providing a near-optimal complexity of 6(D)
rounds, turns out to be quite involved. Our key technical contribution is:

Theorem 1.2. There is a randomized algorithm that w.h.p. identifies all cut pairs in G
within O(D) rounds. For each cut pair x,y, either x ory learns that fact.

We observe that even for the simpler problem of edge-connectivity (see Remark below), an 6(D)—
round algorithm is currently only known for edge cuts of size at most two due to [PT11]. Hence, we
are now able to match the complexity of these two problems for small cut values. Our algorithm
is based on distinguishing between two structural cases depending on the locations of the cut pair
z,y in a BFS tree of G. The first case which we call dependent handles the setting where the x
and y have ancestry/descendant relations. The second independent case assumes that x and y are
not dependent, i.e., LCA(z,y) ¢ {z,y}, where LCA(x,y) is the lowest/least common ancestor of
z and y in the BFS tree. Each of these cases call for a different approach. We believe that the
tools provided in this paper should hopefully pave the way towards detecting larger vertex-cuts
with no dependency in the maximum degree A (as it is the case for the state-of-the-art algorithm
by [Par19]). For a more in-depth technical overview, see Sec. 1.1.

Remark on the Edge-Connectivity. It is widely known that in undirected graphs, vertex con-
nectivity and vertex cuts are significantly more complex than edge connectivity and edge cuts,
for which now the following result are known: an O(m)-time centralized exact algorithm [Kar99,
GNT20, GMW20] and an O(D + /n) exact distributed algorithms [DEMN21]. For constant values
of edge-connectivity a poly(D)-round algorithm is given in [Parl19].

1.1 Our Approach, in a Nutshell

We provide the key ideas of our algorithms. Our end goal is to simulate a connectivity algorithm
in the graph G\ {z, y} for every pair of vertices x,y € V. Note that this is not trivial already for a
single z, y pair as the diameter of the subgraph G'\ {x, y} might be as large as Q(AD), hence using

on-shelf connectivity algorithms lead to a round complexity of O(min{D + y/n, AD}). We bypass
this A dependency by using the edges incident to the vertices x,y as shortcuts. Then, to minimize
the congestion imposed by running possibly n? connectivity algorithms in parallel, we employ a
preprocessing phase in which we collect graph-sketch information (explained next) at each vertex x.
This information allows each vertex x to pinpoint at a bounded number of cut-mate suspects. In
addition, it allows x, in certain cases, to locally simulate connectivity queries without using further
communication. Throughout, let T" be a BF'S tree rooted at some source s, and denote the T-paths
by m(-,-).

We start by employing the well-known heavy-light tree decomposition technique by Sleator and
Tarjan [ST83]. This classifies the edges of T" into light and heavy edges. The useful properties
are that each vertex v has O(logn) light edges on its tree path 7(s,v), and in addition, each v is
the parent of one heavy edge, connecting v to its unique heavy child. It is easy to compute this
decomposition on 7" in 6(D) rounds. For a vertex x, let T, be the subtree of T" rooted at x.

Basic Tools: Graph Sketches and Boruvka Algorithm. A graph sketch of a vertex v is a
randomized string of O(1) bits that compresses v’s edges [AGM12]. The linearity of these sketches
allows one to infer, given the sketches of subset of vertices S, an outgoing cut edge (S,V \ S) with
constant probability. A common approach for deducing the graph connectivity merely from the
sketches of the vertices is based on the well-known Bortuvka algorithm [NMNO1]. This algorithm
works in O(logn) phases, where in each phase, from each growable component an outgoing edge is
selected. All these outgoing edges are added to the forest, while ignoring cycles. Each such phase
reduces the number of growable components by constant factor, thus within O(logn) phases a
maximal forest is computed. Since this algorithm only requires the computation of outgoing edges
it can simulated using O(logn) independent sketches for each of the vertices. In our algorithms,
we aggregate graph sketches over the BFS tree T which allows the vertices x to locally simulate
Boruvka in the graph G\ {z}. This is illustrated in our algorithm for detecting a single cut vertex,
described next.

Warm Up: Detecting Single Cut Vertices. Our algorithm starts by letting each vertex v
locally compute its individual Sketchg(v). Then, by aggregating the sketches (using their linearity)
from the leaf vertices to the root s over the BFS tree T', each vertex v learns its subtree-sketch
Sketchg(V (T,)). Once this is completed, it is easy to let each vertex x € V learn the G-sketch
information of all the connected components in 7'\ {z}. We then show that = can locally modify
these G-sketches into (G \ {z}) sketches. At this point, the vertex x can locally apply the Boruvka
algorithm in G \ {z} and deduce if G \ {z} is connected.

We now turn to consider the considerably more challenging task of detecting cut-pairs. We
classify these pairs into dependent and independent.

Detecting Dependent Cut Pairs. Our approach for the dependent case is based on designing
algorithms { A, },cv, where A, detects all 2y cut pairs of the form « € T,,. We show that each such
an algorithm A, can be designed in a way that sends a total of 6(1) messages only along edges
incident to V(T), and runs in O(D) rounds. The standard random delay technique allows us then
to schedule the execution of all n algorithms {A,},cv within O(D) rounds. At a high level, each
algorithm A, is based on employing the single-vertex cut algorithm in the graph G\ {y}. Our
challenge is then twofold: first, the diameter of the graph G \ {y} might be as large as Q(AD),

and second, communication is restricted to use only edges incident to V(7}). We overcome these
challenges by using y as a coordinator, providing global computation services and communication
shortcuts that essentially enables efficient simulation (in both dilation and congestion) of the vertex
cut algorithm in G\ {y}.

Detecting Independent Cut Pairs. The most technically involved case is where z,y are in-
dependent, namely, do not have ancestry relations in 7. A-priori, the number of such potential
cut-mates y for a given vertex x might be even linear in n. To filter out irrelevant options, the
algorithm starts by computing at each vertex x a tree fx that encodes the connectivity between
s and the vertices in V, = V(T;) \ {z} in the graph G\ {z}. Let C; = {Cy,...,Ck} denote the
collection of maximal connected components in the graph G[V,]. The tree T, consists of k paths
of the form 7(s,uc) o (uc,ve) for every component C' € C,, where ve is some representative ver-
tex in C. It is then easy to observe that the potential cut mates y must appear on the paths
{m(s,uc) | C € C;}. For a given suspect y, we call the C,-components C' for which y € 7 (s,uc),
y-sensitive. Our argument has the following structure.

Multiple xy-Connectivity Algorithms, Under a Promise. For a fixed zy pair, we design an
algorithm Af,y that determines the connectivity in G \ {z,y} given an z-y path II,, (on which
x,y can exchange messages). The algorithm Ai , has the special property that it sends messages
either along I, ,, or else along edges incident to a restricted subset of vertices in T, T}, defined as
follows. Let LDS(z,y) C V(T%) be the set of all vertices which are descendants of the light children
of z, and belong to a y-sensitive component in C,. The set LDS(y,x) is defined in an analogous
manner. The algorithm Ai y is then guaranteed to send 5(1) messages only along II, , and along
edges incident to the vertices of LDS(z,y) U LDS(y,x). This restriction is crucial in order to run
multiple Ai y algorithms, for distinct x,y, in parallel. Using the properties of the heavy-light tree
decomposition and our sensitivity definition, one can show that each vertex w € V belongs to the
LDS(z,y) sets of at most O(D) pairs zy. The main challenge is in bounding the overlap between
the 1I, , paths, cross distinct xy pairs. We show that given a subset () € V' x V, the collection of
{AP | (x,y) € Q} algorithms can be scheduled in parallel in O(D) rounds, given that following

x?y
promise holds for Q:

[Promise:| There is a path collection Pg = {Il, | (x,y) € Q} such that each path has
length O(D), and each edge appears on O(D) paths in Pg.

One can show, using the properties of heavy-light decomposition, that each vertex belongs to the
LDS(x,y) sets of at most O(D) pairs z,y. Hence, by combining this fact with the promise, the
algorithms for all the @) pairs can be run in parallel, using the random delay approach [LLMR94,
Ghalb].

On a high level, each algorithm Ai , works by letting x and y jointly simulating the Boruvka
algorithm in G \ {z,y}. The main challenge is that the communication is restricted to the edges
incident to LDS(z,y) U LDS(y,z), despite the fact that one should also take into account the
remaining vertices in 77, Ty, e.g., descendants of the heavy children of z,y. In each Boruvka phase,
we maintain the invariant that z,y jointly hold the sketches of connected-subsets (denoted as
parts) in G \ {z,y}, where we split the responsibility between z,y in a careful manner. We mainly
distinguish between parts that contain a heavy child of x,y and the remaining light parts that
are contained in LDS(z,y) U LDS(y,x). The merges of the light parts are implemented by using
communication between vertices in LDS(x,y) U LDS(y,). The merges concerning the heavy parts
are implemented by using the direct xy communication over the II,, path. Each such Boruvka

phase is implemented in 5(D) rounds. At the end of the simulation, z,y both learn whether
G\ {z,y} is connected.

Omitting the Promise Based on Classification Into Light and Heavy Independent Pairs.
While the promise clearly holds for O(D) pairs, it clearly does not hold for all n? pairs, in general.
Our approach is based on classifying the collection of the xy pairs into two classes: light and heavy.
This classification is based on the trees 7/\}, fy, as well as, on the heavy-light decomposition of T'.
Informally, for a light pair xy, one can define a II, , that intersects a light subtree of either x or y.
These paths can be shown to have a bounded overlap, hence satisfying the promise. Handling the
heavy pairs is more involved. Here we take a mixed approach. We define a special subset of the
heavy pairs for which the promise can be satisfied (denoted as mutual pairs). This subset is chosen
in a careful way that guarantees the following, perhaps surprising, property: the remaining (not
mutual) heavy pairs x,y can be decided locally, at either x or y. Our key observation is that for a
xy heavy pair, the graph G\ {z, y} is connected iff one of the heavy children of z,y is connected to s
in G\ {z,y}. Hence, it is mainly essential for z,y to collect a sketch information on the components
of these heavy children in C,,C,. This information can be then aggregated over T'.

1.2 Preliminaries

Throughout the paper, we fix a connected n-vertex graph G = (V, E), and a BFS tree T for G
rooted at some arbitrary source vertex s € V. We denote the unique tree path from u to v by
m(u,v,T). When the tree T is clear from context, we may omit it and simply write 7(u,v). We
use the o operator for path-concatenation. An (undirected) edge between vertices u,v is denoted
by (u,v). For z,y € V, a vertex subset S C V is said to be xzy-connected if all the vertices of S
belong to the same connected component of G \ {z,y}.

Heavy-Light Tree Decomposition. We now present our heavy-light terminology, the notion
of compressed paths, and their distributed computation.

Definition 1.1 (Heavy-light decomposition). For a non-leaf vertex v € V(T'), its heavy child,
denoted vy, is the child v’ of v maximizing” the number of vertices in its subtree T)y. Any other
v-child of v is a light child. A tree vertex is heavy if it is the heavy child of its parent, and light
otherwise (so the root s is light). A tree edge is heavy if it connects a vertex to its heavy child, and
light otherwise. If (u,u) is a heavy (resp., light) edge in the path 7(s,v), then u is a heavy ancestor
(resp., light ancestor) of v, and v is a heavy descendant (resp, light descendant) of u. (Note that
e.g. a ‘heavy ancestor’ need not be a heavy vertex itself.) We denote by LA(v) (resp., LD(v)) the
set of v’s light ancestors (resp., descendants). It is easy to show that 7(s,v,T") contains O(logn)
light vertices/edges, hence also |LA(v)| = O(logn).

Definition 1.2 (Compressed paths). Let v € V(T'). Let L = [s = vg,v1,...,v;] be the ordered
list of the light vertices on the root-to-v path m(s,v,T"). The compressed path of v with respect to
T, denoted 7*(s,v,T) consists of the list L, along with a table mapping each v; to the number of
heavy vertices appearing between v; and v;4+1 in 7(s,v,T") (where we define vy = v). Note that
the compressed path 7*(s,v,T) has bit-length O(log?n).

Observe that the compressed paths can be used as ancestry labels in T: Given the compressed
path 7*(s,u,T) and 7*(s,v,T), one can check whether (s, u,T) is a prefix of 7(s,v,T), and hence
determine whether u is an ancestor of v.

®Ties are broken arbitrarily and consistently.

Lemma 1.3. For every tree T, there is an O(D(T))-rounds O(1)-congestion algorithm letting each
vertex v of T learn its heavy/light classification and its compressed path 7*(s,v,T).

Missing proofs in this section are deferred to Appendix A.1.

Graph Sketches. We now give a formal but brief definition of graph sketches. We follow [DP21],
and refer the reader to Section 3.2.1 therein for a detailed presentation of the subject. Throughout,
let & denote the bitwise-XOR operator. The first required ingredients are randomized unique edge
identifiers:

Lemma 1.4 (Modification of Lemma 3.8 in [DP21]). Using a random seed Syp of O(log? n) random
bits, one can compute a collection of M = (Z) O(logn)-bit identifiers for the pairs in (‘2/), denoted
Z = {UID(ey),...,UID(eps)}, with the following property: For any nonempty subset E' C E,
Pr[@®ecr UID(e) € Z] < 1/n'’. Furthermore, for any e = (u,v), the identifier UID(e) can be
computed from ID(u), ID(v) and the random seed Srp.

Next, we define the notion of extended edge identifiers, formed by augmenting the UID(e) with
the IDs and the T-ancestry labels of the endpoints based on compressed paths, namely ANCrp(v) =
7*(s,v,T). Formally, an edge e = (u,v) we have

EID7(e) = [UID(e), ID(w), ID(v), ANCp(u), ANCp(v)] - (1.1)

Equipped with these definitions, we are ready to define the sketches. We now follow [DP16,
DP17, DP21] and use pairwise independent hash functions for this purpose. Choose L = clogn
pairwise independent hash functions hy, ..., hy : {0,1}00en) 5 fo . 2%eM _ 1} and for each
i€ {l,...,L} and j € [0,log M] define the edge set E; ; = {e € E | hi(e) € [0,2'°8M~J)}. Each
of these hash functions can be defined using a random seed of logarithmic length [Vadl12]. Thus, a
random seed Sy, of length O(L logn) can be used to determine the collection of all these L functions.
For each vertex v and indices i, j, let E; j(v) be the edges incident to v in E; ;. The it" basic sketch
unit of each vertex v is then given by:

Sketch(;ﬂ-(v) = [@EEEi,o(U) EIDT(e), e @eeEi,log (V) EIDT(e)]

We extend the sketches to be defined on vertex subsets by XORing. Namely, for every subset of
vertices S, we define Sketchg ;(S) = @yesSketchg ;(v). The sketch of each vertex v is defined by a
concatenation of L = ©(logn) basic sketch units:

Sketchg(v) = [Sketchg 1 (v), Sketchg 2 (v), . . . Sketchg, 1, (v)] .

Again, we extend this definition to vertex subsets S C V by Sketchg(S) = @,csSketchg(v). The
main use of graph sketches is in finding outgoing edges:

Lemma 1.5. [Modification of Lemma 3.11 in [DP21]] For any subset S, given a basic sketch unit
Sketchg ;(S) and the seed Sip one can compute, with constant probability’ EIDr(e) for an outgoing
edge e from S in G, if such exists.

Lemma 1.6. Let S CV, and let E' C E be a set of outgoing edges from S. Then, given Sketchg(S),
the random seed Sy, and the extended identifiers EIDp(e) of all e € E’, one can compute the
SketchG\E/(S).

80ver the choice of the random seeds S;p and Sp.

Distributed Scheduling. The congestion of an algorithm A is defined by the worst-case upper
bound on the number of messages exchanged through a given graph edge when simulating A.
Throughout, we make an extensive use of the following random delay approach of [LNMR94], adapted
to the CONGEST model.

Theorem 1.7 ([Ghal5, Theorem 1.3]). Let G be a graph and let Ay,..., A, be m distributed
algorithms, each algorithm takes at most d rounds, and where for each edge of G, at most c messages
need to go through it, in total over all these algorithms. Then, there is a randomized distributed
algorithm that w.h.p. runs oll the algorithms in 6(c +d) rounds.

2 Single Cut Vertices

In this section we describe the distributed algorithm for detecting single vertex cuts of Theorem
[.1. This serves both as a warm-up to our approach in the subsequent sections devoted to dual
vertex cuts detection, as well as for a detailed presentation of basic tools used in these next sections.
We assume each vertex v is equipped with its heavy/light classification in 7" and with its ancestry
label which is its compressed path, ANCp(v) = 7*(s,v,T). This can be achieved in O(D) rounds
by Lemma 1.3.

Step 0: Computing Extended Edge IDs. The source s samples a random seed Syp of 5(1)
bits and shares it with all vertices. Then, using Lemma 1.4, each vertex v can then locally compute
the unique edge-ID UID(e) for each of its incident edges. By letting all neighbors in G exchange
their ANCp-labels, each UID(e) can be concatenated with the required information to create EID(e).

Step 1: Computing Subtree Sketches. The source s locally samples the random seed S, of
O(1) bits and sends it to all the vertices. Along with the extended edge IDs, this provides all
the required information for the computation of Sketchg(v) locally in each vertex v. By XOR-
aggregation of the individual sketches from the leaves of T" up to the root s, each vertex v obtains
its subtree sketch, given by Sketchq(V(Ty)) = @uer, Sketchg(v). Next, within O(1) rounds, each
vertex passes its subtree sketch to its parent, so that each vertex now holds the subtree sketch for
each of its children. Finally, the source s also broadcasts its subtree sketch, which is Sketchg(V),
to all the other vertices.

Step 2: Local Connectivity Computation. This step is locally applied at every vertex x,
and requires no additional communication. We show that each vertex x, given the received sketch
information in Step 1, can locally simulate the Bortuvka’s algorithm [NMNO1] in the graph G\ {z},
and consequently determine if G \ {z} is connected. Let x1,...,z) be the children of z in T. We
assume that z # s; the case x = s is easier and requires only slight modifications. The connected
components in 7'\ {z} are denoted by C, = {V(Ty,) | j = 1,...,k} U{V \ V(T})}. By Step 1,
x holds the G-sketch of each component in C;: It has explicitly received Sketchg(V(T,)) from
each child z;. In addition, it can locally infer Sketch(V \ V(T,)) = Sketch(V') & Sketch(V (7%)). To
implement Bortuvka’s algorithm on these components, we first need to update these G-sketches into
(G \ {z})-sketches.

2.1: Obtaining Sketch Information in G\ {z}. Recall knows the random seed S}, as well
as the extended identifiers of its incident edges (from Step 0). For each such edge (z,u), it first uses
the ancestry label of u and of its T-children (found in the EID7’s) to determine the component C'

of u in C,. It then cancel this edges from the sketch of the component C using Lemma 1.6. This
allows z to obtain Sketche (1 (C) for every C' € Cy.

2.2: Simulating Boruvka in G\{z}. The input to this step is the (G\ {z})-sketch information
of the components in C; o = C,. The desired output is determining the connectivity of G \ {z}.
The algorithm consists of O(logn) phases of the Bortuvka algorithm, and is very similar to the
(centralized) decoding algorithm of [DP21]. Each phase 7 will be given as input a partitioning
Cyi = {Ci1,...,Cik,} of (not necessarily maximal) connected components in G \ {z} along with
their sketch information Sketchen ¢,3(Ci ;). The output of the phase is a coarser partitioning Cy 11,
along with the sketch information of the new parts. A component C; ; € C;; is said to be growable
if it has at least one outgoing edge to a vertex in V'\ (C; jU{z}). To obtain outgoings edges from the
growable components in C, ;, the algorithm uses the i*" basic-unit sketch Sketche 12},i(Ci5) of each
C;j; € Cpy. By Lemma 1.5, from every growable component C; ; € C;;, we get one outgoing edge
e = (u,v) with constant probability. To find the component C; j containing the other endpoint of e
(to be merged with Cj ;), we use the T-ancestry labels found in EID7(e). Say this endpoint is v. We
determine the component of v in 7'\ {z}, i.e. the component Cj 4 containing v in C, o, by querying
the ancestry relation between v and each child of z using ANCy(v) and the labels of z’s children.
Then v belongs to the unique component C; j» € C;; containing Cp 4. The sketch information for the
next phase i+1 is given by XORing over the sketches of the components in C; ; that got merged into
a single component in C; ;1. Note that it is important to use fresh randomness (i.e., independent
sketch information) in each of the Boruvka phases [AGM12, KKM13, DP16]. Since each growable
component gets merged with constant probability, the expected number of growable components
is reduced by a constant factor in each phase. Thus after O(logn) phases, the expected number of
growable components is at most 1/n°, and by Markov’s inequality we conclude that w.h.p. there
are no growable components. The partitioning at this point corresponds to the maximal connected
components in G \ {z}, so its connectivity can be inferred. This concludes the proof of Theorem
1.1.

Finally, we note that by tracking the merges throughout the Borivka simulation, x can also
find a subset E of the outgoing edges received throughout the simulation such (T'\ {z}) U E is a
maximal spanning forest of G \ {«}. This becomes useful in next sections.

3 Dependent Cut Pairs

In this section we present an 5(D)—rounds distributed algorithm for detecting dependent cut pairs
in G, i.e. pairs zy where x is a descendant of y in the BFS tree T rooted at s. Recall that our
approach is based on scheduling the execution of algorithms {A,},cv, where A, detects all cut
pairs zy such that z € T} (see Section 1.1). By employing the single-vertex cut algorithm from
Section 2 as a common preprocessing phase prior to the execution of the {Ay}yev algorithms,
we may assume that there are no 1-vertex cuts in GG. Furthermore, by carefully examining the
properties of this algorithm, we may assume that every v € V holds the following preprocessing
information:

e The random seeds S;p and Sp,.
e EID7(e) for every edge e incident to v.
e |V(Ty)| and |V (T,)| for every T-child v" of v.

10

e Sketchg(v), Sketchg(V), Sketchg(V(Ty)) and Sketchg(V (Ty,)) for every T-child v of v.

e An edge set EN(U) C E\ E(T) such that T(v) = (T \ {v}) U E(v) is a spanning tree of G\ {v}.
For each e € E(v), its extended identifier EID7(e) is known.

We next describe the algorithms A,:

Lemma 3.1. Assuming all vertices know their preprocessing information, there is an 5(D)—7"0unds
O(1)-congestion algorithm A, that detects all cut pairs xy where x € V(T,). The algorithm A,
sends messages only on edges incident to V (Ty).

Step 0: Local Computation of Component Tree for T(y) in y. Throughout, let E = E(y)
and T = TV(), and denote the T-children of y by y1, ... s Yk This preliminary step is executed by
local computation in y. It constructs the component tree CT in which every connected component
of T\ E is contracted into a single node. Note that T\ E = T \ {y}, namely the nodes in
cT correspond to connected components of T\ {y}. More concretely, for every i = 1,...,k the
component C; = V(7)) is a node of CT, and (unless y = s) there is another node for the component
Co =V (T)\ V(Ty). Each edge (C;,Cj) in CT correspond to the unique E-edge incident to both
C; and Cj. Observe that the extended edge identifiers known to y by preprocessing contain the
T-ancestry labels of all endpoints of E‘—edges, as well as those of the y;’s. Using these ancestry
labels, y can determine the components incident to each edge e € E, and therefore construct CT.

For clarity of presentation we assume y # s; the special case y = s is easier, and requires only
slight modifications. We set s as the root of T, and accordingly Cjp is the root of CT. For each
i=1,...,k, denote by e; = (1, p;) the unique edge in E connecting C; to its parent in CT, where
r; is the endpoint of e; inside C;, and p; is the endpoint lying in the parent component. See Fig. 1
for an illustration.

Figure 1: Left: lllustration of the trees T" and T. The dashed edges are T-edges adjacent to y, and
the solid edges are E-edges. The components Cp, (1, ..., C5 are each internally connected via original
T-edges. The tree T' is obtained by removing y and its incident edges from the 7" and adding the F
edges. Right: The component tree C'T'.

Step 1: Construction of T. The goal of this step is for each vertex in V(T,) \ {y} to learn its
parent in T. First, y sends its children their corresponding edges from E namely each y; learns

11

EID7(e;). The y;’s then propagate (in parallel) their received edges down their T-subtrees, so
that for all i = 1,... &, all the vertices of component C; know EID7(y;). Then, a BFS procedure
initilized in r; is executed inside each tree T}, (in parallel). This completes the step, since the T-
parent of each vertex in C; is its BFS-parent from this last procedure, except for r; whose T—parent
1S D;.

Step 2: Computing T -Ancestry labels. In later steps, we will locally simulate Boravka’s
algorithm similarly to Section 2, but with the initial components being parts of T. In order to
identify which components get merged by the outgoing edges, we will need ancestry labels with
respect to the tree T rather than T. As we are restricted to send messages only on V(7T)))-incident
edges, we would like the T- and T-labels to coincide for vertices in C (as some of them cannot be
informed of new labels). Note that the compressed paths of v € Cy w.r.t. T and T are generally
different, even though (s, v,T) = m(s,v,T), as the these trees have different heavy-light notions.
Hence, instead of relying solely on compressed paths in 7', we take a hybrid approach and define
new labels based on breaking each T-path to a T-part and a strictly T-part, and compressing
them accordingly. We still have the challenge of computing (at least part of) the heavy-light
decomposition of T. As the diameter of 7" might be Q(AD), we cannot use simple bottom-up or
top-down computations on T. The key for overcoming this is utilizing y as a coordinator, enabling
the parts C; to work in parallel. The full details appear in the proof of the next lemma, found in
Appendix A.2.

Claim 3.2. In O(D)-rounds of computation with O(1) congestion, in which messages are sent only
on V(T,)-incident edges, one can compute T-ancestry labels ANCx(-) of O(1) bits, such that every

vertez v of T learns ANCx(v).

Step 3: Computing Sketches w.r.t. G\ {y} and T. First, we define new extended edge
identifiers for the edges of G\ {y} based on the spanning tree 7. Namely, for an edge e = (u,v) of

G\ {y}, let
EIDz(e) = [UID(e), ID(u), ID(v), ANC%(u), ANC5(v)].

Now, for every vertex v € V '\ {y} we define its sketch Sketchg\{y}(v) similarly to Sketchg(v), only
ignoring edges incident to y in the sampling, and using the EIDz identifiers for the edges. By this

point of the algorithm, computing these new sketches requires 6(1) rounds of communication, in
which every v € C1U- - -UC}, sends ANC5(v) to all its (G'\ {y})-neighbors. As the T- and T-ancestry
labels coincide on the vertices of Co, every vertex v € V'\ {y} can now determine EIDz(e) for every

edge e incident to it in G \ {y}, and use the random seed S, to compute Sketchg\{y} (v).
3.1: Computing T-Subtree Sketches. Our next goal is for every z € Cy U--- U Cy
to learn the (G \ {y})-sketch of its T-subtree (not T-subtree), namely SketchG\{ }(V(N) =

Ss SketchG\ { }(v). This is done by using y as a coordinator similarly to the T-subtree sum
computation of Step 2.1. We start by bottom-up XOR-aggregation of the sketches on each T}, (in

parallel), which produces the component sketches Sketchg\ {41 (Ci). Next, within O(1) rounds, the
component sketches are all passed to y from its children. Observe that now y can locally compute

the T-subtree sketch of each 7; as follows: SketchG\{y}((~ T.,)) = @je](i)sketchg\{y}(@ where
J (i) is the set of all indices j such that C; is the subtree of C; in the component tree CT. Then

12

y sends each of its children y; the T-subtree sketch of 7i, and this information is then propagated
down on each Ty, (in parallel), so that each r; learns its T-subtree sketch. The r;’s then send their

T-subtree sketches to their T-parent, which are the p;’s. For each vertex v of f, let

51} _ lf v = p] Sketchg\{y}(v) + Sketchg\{y}(V(fT]))
otherwise: Sketchg\ w1 ()

Then by this point of the algorithm, every v € C1 U---UCy, know its 3, value. For i =1,... k, let
T® be the tree induced on C; by T', where the parents in 7 are the same as in 7. Equivalently, T
is the tree obtained by rerooting 7T), at the vertex r;. Each of its leaves is either an original T-leaf

or a p; vertex for some j. The crux is that for each « € C; it holds that Sketchg\{y}(:c) = O, 50 By-

That is, the T-subtree sketch of z is equal to the sum-of-5’s in its T@ _subtree. Hence, we complete
the computation in this step by executing bottom-up XOR-aggregation of the 3, values in each of
the trees T in parallel.

3.2: Computing the Sketch of V' \ {y}. The last required sketch ingredient for the local
simulation of Bortivka in the next step is letting all vertices z € C1 U --- U Cy to learn the global
sum-of-sketches in G \ {y}, i.e. Sketchg\{y}(V \ {y}). To this end, we carefully examine the
contribution of the vertices in Cy to this sum, as some of them are not V (T})-adjacent and cannot
participate in the computation. This enables us to transform the global sketch Sketchg (V') (known
from preprocessing) to the desired global sketch in G \ {y}. The details appear in the appendix, in
the proof of the following claim:

Claim 3.3. In 5(D)—r0unds of computation with 5(1) congestion, in which messages are sent only

on V(Ty)-incident messages, each vertex x € C1 U ---UCy, can learn Sketchg\{y}(V \ {y}).

Step 4: Local Boruvka Simulation In G\ {z,y}. This entire step is executed by local compu-
tation in which each x € CU- - -UC}, determines whether it is a cut vertex in G\ {y}, or equivalently
if zy is a cut pair in G. This is done by locally simulating Bortivka’s algorithms using the sketches
of the components of 7'\ {z} (which are known to x by Step 3) in an identical manner to the
last step of the (single) cut vertex detection algorithm of Section 2, replacing G and T' there with
G\ {y} and T. We note that the new ancestry labels, extended identifiers and sketches, computed
with respect to T, are important for this simulation to follow through exactly as in Section 2. This
completes the proof of Lemma 3.1.
We conclude this section by describing the scheduling of the algorithms {Ay},cv:

Lemma 3.4. The collection of algorithms {Ay}yev can be executed simultaneously within O(D)
rounds, w.h.p.

Proof. The key observation is that every edge e participates in O(D) algorithms. Specifically,
since each algorithm A, exchanges messages only on edges incident to V(T}), we get that the
algorithms using e = (u,v) are exactly {A, | v € 7(s,u,T) Un(s,v,T)}. Therefore, the total
number of messages sent through e = (u, v) in the collection of n algorithms {A,},cv is at most
O(1) - (In(s,u, T)| + |x(s,v,T)]) = O(D). The proof follows by employing Theorem 1.7 with

congestion and dilation bounds of O(D). W

13

4 Independent Cut Pairs

We now turn to consider the case where the cut pair xy is independent, i.e., z,y have no ancestor-
descendant relations. Throughout this section, for every vertex x € V, let V, = V(T,) \ {«}.
Recall that we assume that there is no single cut vertex in the graph. Our algorithm is based on
the introduced notion of z-connectivity trees, T,, computed locally at each vertex x. Let C, =
{C1,...,C} denote the maximal connected components in the induced graph G[V,]. For each
C € Cg, the tree ic contains a path 7;(s,C) = 7(s,uc) o (uc,ve), where (uc,ve) is a G-edge such
that vo € C, and x ¢ 7,(s,C). Therefore, T, encodes the connectivity of s to V, in the graph
G\ {z}. See Fig. 3 for illustrations of these trees. We next describe the computation of these T,
trees, and later on show how they guide the identification of independent cut pairs. Throughout,
we assume that the ID of each vertex v contains also its compressed-path information 7*(s, v). For
every v € Vg, let C;, denote the component containing v in C;. When v = xp,, we let H, = Cy 4,
and denote it as the heavy component of x.

4.1 Computing z-Connectivity Trees

The computation has two main steps, both are based on the bottom-up aggregation of certain
graph sketches over the BFS tree T'. The purpose of first step is to allow every x € V' to determine
the connected components C, in G[V;] where each such component C' is identified by the vertex of
largest ID among all the T-children of z in C'. In addition, in the output of this step each vertex
u € V, learns the ID of its component C,, € C,. The second step aggregates a special form of
graph sketches that provide & with the required path information in order locally compute T .

Step 1: Computing Connectivity in G[V;]. For ease of notation, let D = depth(T") and
d; = depth(z) denote the depth of z in 7. We say that an edge e = (u,v) has depth d if
depth(LCA(u,v)) = d. To locally simulate the connectivity Boruvka algorithm in G[V;] at every
z, it is required for = to learn Sketchg(y,(V (7)) for each T-child w of z. Observe that the
edges of G[V,] can be identified as G-edges in V, x (V \ {z}) of depth at least d,. For this
purpose, the algorithm is based on aggregating the information of D graph sketches, for every
depth d € {1,...,D}. The computation of d** sketch Sketch%(-) will be restricted to sampling only
edges of depth at least d.
In Appendix A.3, we show:

Lemma 4.1. There is a randomized 6(D)—7’0und algorithm that w.h.p. computes connectivity in
each G[Vy| for every x € V simultaneously. At the end of the execution, each u holds a component-
ID in the graph G[V,] for every x € w(s,u). Moreover, within additional O(D) rounds, each u can
send its entire component-ID information (for every x € ww(s,u)) to all its neighbors.

Step 2: Computing z-Connectivity Trees fx via Path-Sketches. Our next goal is to
provide each vertex x with the path information 7, (s, C), for every component C' € C,. Such a
path connects a vertex vo € C' to the source s in G\ {z}. As we assume that x is not a cut vertex,
such a path indeed exists. Towards that goal, we augment the identifier of each edge (u,v) with
the tree paths 7 (s, u), n(s,v). Formally,

EIDZ (e) = [UID(e), ID(u), ID(v), ANCr(u), ANCp(v), 7(s, u), 7(s,v)] . (4.1)

14

In contrast to the extended-ID of Eq. (1.1) which have O(1) bits, the latter EIDZ (e) identifiers
have O(D) bits. The sketches obtained with these EIDZ(e) IDs are called path-sketches, denoted
as Sketchg(S) for S C V. The advantage of these path-sketches is that any detected outgoing edge
(u,v) obtained from SketchZ(Q) includes the path information (s, u) and 7(s,v). Note that the
path-sketches SketchZ(S) have O(D) bits, since the edge IDs have now O(D) bits.

Our goal is to let each x learn the path-sketches Sketchg(C) for each component C' € C,.
Since each path-sketch has 6(D) bits, we cannot allow to compute D sketches for each depth
d € {1,...,D}. Instead we only aggregate the Sketch’;(u) information in a bottom-up manner on
T, which allows every vertex x to learn Sketchf (V(T,,)) for each of its T-children w. By combining
with the output of the first step, can then determine Sketch(C) for every C € C,. The proof of
the following lemma, which appears in the appendix, explains this process in further detail.

Lemma 4.2. W.h.p., all vertices x can compute the x-connectivity trees fx within 6(D) randomized
rounds.

For each x € V and C € C,, we define the compressed path of 7, (s, C) as 7%(s,C) = 7*(s,v¢) o
(ve, ue) (hence, 7% (s, C) has O(1) bits). We conclude the computation regarding the connectivity
trees by letting each vertex v learn the compressed-path 7%(s, Cy) for each of its ancestors = €
m(s,v). Since the compressed-path has 5(1) bits, a vertex is required to receive 5(D) bits of
information, which can be done in O(D) rounds:

Lemma 4.3. There is an 5(D)—r0und algorithm that allows each vertex v to learn the compressed
path 73(s,Cyy) for each x € m(s,v), as well as the entire path m,(s,Cy) for each x € LA(v). In
addition, each vertex v can share all of this information with neighbors.

Proof. We let every vertex z send the full path m,(s,Cy) to each light child z’ of z, and the
compressed path 7 (s, H,) to its heavy child x;. This information is propagated towards the leaf
vertices of T. Since each vertex is required to receive O(D) bits of information from each of its
light ancestors, as well as O(1) bits from each of its heavy ancestors, overall it is required to receive
O(D) bits. This can be done in O(D) rounds, by standard pipeline techniques. Since each v
learns O(D) bits of information, the learned information can be exchanged between every pair of

neighbors within O(D) rounds, as well. [l

4.2 Component Classification Based on Sensitivity

We next use the structure of the x-connectivity tree T, to classify the xy pairs into several types.
We also filter-out possibly many irrelevant xy pairs (for which we deduce immediately that zy is
not a cut) using the notion of sensitivity.

Definition 4.1 (Sensitivity Notions of C, Components). Fix an independent pair x,y. A compo-
nent C' € C, is y-sensitive if y € m,(s,C). The y-sensitive components of C, are further classified
into two types: pseudo-sensitive and fully-sensitive, as follows. A component C' € C, is pseudo y-
sensitive if the tree path m,(s,C') contains some edge (y,y’) such that = ¢ m,(s,Cy,), where C,
is the component containing 3’ in C,. Finally, a y-sensitive component C' € C, is fully y-sensitive if
C' is not pseudo-sensitive.

Hence, in particular a component C € C, is fully y-sensitive if either that last edge of 7, (s, C)
is incident to y, or that there is an edge (y,vy’) € m,(s,C) such that the component C,,/ € C, is

15

x-sensitive. Note that non-y-sensitive components are clearly connected to s in G\ {z,y}. We later
on show that this is true also for pseudo y-sensitive components, therefore their sensitivity to y is
superficial. Let S(z,y), PS(z,y), FS(z,y) denote the components in C,, that are y-sensitive, pseudo
y-sensitive and fully y-sensitive, respectively’. We next show that each vertex can determine, for
every C € C,, certain y vertices for which C is fully y-sensitive by running the procedure described
in the following lemma (whose proof is in the appendix). Note that by having the compressed-path
7y (s, Cy,y) and the 7*(s, x), it is possible to determine if x € m,(s, Cy,), hence determining if C,
is x-sensitive.

Lemma 4.4. There is an 6(D)—Tound algorithm that computes the following for every x € V' (in
parallel):

o 7 (s,Cy) for every edge (y,y') € m:(s,C) and every C € C; \ {H:}.

o 7, (s,Cyy) for every light edge (y,y') € mu(s, Hz).

4.3 xy-Connectivity Algorithms Under a Promise

Throughout, we assume that all vertices applied the pre-processing steps of computing the x-
connectivity trees T, =, as well as, applied the 5(D)—round procedures of Lemma 4.3 and 4.4. From
this point on, we explain how to determine the connectivity in G \ {x,y}, first for a single pair zy,
and then for all pairs that satisfy a given promise.

Recall that LD(x) is the collection of light descendants of x in T'. For a vertex y, let LDS(z, y)
be the collection of light descendants of x that are sensitive to y. Formally, the light z-descendants
y-sensitive vertices are defined by:

LDS(z,y) ={v € LD(x) | y € ma(s,Cr0) \V(I2)} . (4.2)
Observation 4.1. Every vertex v belongs to a total of O(D logn) sets LDS(z,y) for z,y € V.

Proof. A vertex v € V has O(logn) light ancestors (i.e., belongs to O(logn) sets of LD(z)). In
addition, for each light ancestor « € m(s,v), there are O(D) vertices y € m,(s, Cy). Therefore, it
belongs to O(D logn) sets as required. [l

Theorem 4.5 (zy-Connectivity Given an x-y Path). Fiz x,y € V and assume that there is an x-y
path 11, , € G (known in a distributed manner) of length O(D). Then, there is an xy-connectivity
algorithm Af:y (i.e., that determines the connectivity in G\ {z,y}) in O(D) and O(1)-congestion,
by sending messages only along on the edges of Il ,, or edges incident to LDS(z,y) ULDS(y, x). At
the end of the computation, both x and y know whether G \ {x,y} is connected or not.

Before proving Theorem 4.5, we show that given a set of pairs Q C V x V, then all algorithms

{AL, | (z,y) € Q} can be scheduled simultaneously when provided a path collection P = {1, |

(z,y) € Q} that satisfies the following promise:
[Promise:] Pg-paths have length O(D), and each edge appears on O(D) paths in Pq.

By a straightforward application of the random delay approach, we show:

"Notice that these notations are not symmetric in z,y, e.g. S(z,y) is different than S(y, z).

16

Corollary 4.6. [All Pairs xy-Connectivity Under a Promise] Let Q C V x V be a collection
of independent pairs and let Pg = {Pyy | (z,y) € Q} be a collection of x-y paths that satisfy
the promise. Then, the collection of algorithms {Aiy | (z,y) € Q}, where each A, uses the

corresponding path 11, € Pg, can be scheduled simultaneously within 6(D) rounds, w.h.p.

Proof. We use the standard random delay technique of Theorem 1.7 by showing that the total
congestion of all these algorithms is bounded by 6(D) By the properties of algorithm Af: ”
the algorithm sends 5(1) messages on Il , € @, and along each edge incident to the vertices in
LDS(z,y) U LDS(y,z). By Obs. 4.1, each v can belong to the LDS(z,y) sets of at most O(D)
pairs x,y € V. In addition, each edge appears on 6(D) paths in Pg. We get that the total edge

congestion and dilation of each algorithm .,457 y 18 6(D) as needed. W

Description of the Connectivity Algorithm Ai g+ The algorithm is based on simulating the
Boruvka algorithm using the sketch information of connected subsets in G\ {z,y}, held jointly
by z and y. Throughout, we refer to the given x-y path Il, , as the xy channel. Recall that the
algorithm can send only O(1) bits on that channel. The input for the i > 1 phase of Boriivka is the
following. There is a partitioning P;—1 = {F;—1,1,...,Pi—1%,_,} of the vertices in V \ {z,y} into
connected subsets (in G\ {z,y}). We call each P € P;_1 a part (to avoid confusion with the term
‘component’ reserved for sets in C, and C,). We mark a special vertex in each P; ; € P;, called the
leader of the part. The source vertex s is the leader of its own part (called the s-part), and the
leaders of the other parts are some chosen T-children of x or y in these parts. The part-ID is the
ID of its leader. The part containing z;, (resp., yp) is called z-heavy (resp., y-heavy)®. The parts
that are free of s,zp, yp are called light. Hence every light part is contained in LD(z) ULD(y). A
part P is denoted as growable if there is an outgoing G-edge connecting P to V' \ (PU{z,y}). The
Boruvka algorithm has K = O(logn) forest growing phases in G \ {z,y}, each phase reduces the
number of growable parts by a constant factor, in expectation. We maintain the following invariant
for the beginning of each phase i € {1,..., K}:

I1) ,y know Sketche (4,1 (P) of the part P € P;_; containing s.

)
12) z € {x,y} knows Sketchq (5, (P) for every light part P € P;—1 whose leader is in 7.
13) ,y know Sketchg f4,1(P) as well as the part-IDs of the heavy parts P in P;_1.

)

I4) z € {z,y} knows, for each T-child 2’ of z, the part-ID of the part containing 2’ in P;_1.

Satisfying the Invariant for the First Borivka Phase. We start by defining the partitioning
Py and in particular, focus first on the definition of the part containing s. Recall Def. 4.1 and
that S(z,y), PS(z,y), FS(z,y) C C, are the y-sensitive, pseudo y-sensitive and fully y-sensitive
components, respectively. Let NS(z,y) = UCGCI\IS(x’y) C. The set NS(y,z) is defined in an
analogous manner. Then the s-part in Py is given by U(z,y) = (V \ (V(Ty) U (Ty))) UNS(z,y) U
NS(y,z) . The next observation exploits the fact that the pseudo y-sensitive components in C, and
the pseudo z-sensitive components in C, are all connected to s in G \ {z,y}.

Observation 4.2. G[U(z,y)] is connected.

8 A part can be both z-heavy and y-heavy.

17

Proof. Let S = V \ (V(T) U (T})), so s € S. Note that G[S] is connected (T \ (T, UT),) is a
spanning tree). We fix v € NS(z,y), so Cy, ¢ FS(z,y), and show that it is connected to s in
G[U(z,y)]. First assume that y ¢ m,(s,Cy,). In such a case, it indeed holds that v is connected to
sin G[SUNS(z,y)], as Cp,, € NS(z,y). Otherwise, C, , is pseudo y-sensitive, so there is an edge
(y,v') € ma(s,Cy) such that « ¢ my(s,Cy). Therefore, 3 is connected to s in G[S UNS(y, z)],
as Cy,» C NS(y,x). Since ' and v are also connected in G[C, ,» U Cy], we get that s and v are
connected in G[U(z,y)]. The same argument holds in a symmetric manner for every v € NS(y, z).

We partition the responsibilities on the parts in Py between x and y, as follows. Let Py, =
FS(z,y) be the components in C, that are fully-sensitive to y. Similarly, Py, = FS(y,). The 0t
partitioning of V'\ {z, y} is given by Py = {U(z,y)} UPy , UPo,. For every z € {x,y}, the leader of
each C' € Py, is chosen as the vertex of largest ID among all the T-children of =,y in C'. The leader
of U(x,y) is the root s. To satisfy the invariants for the beginning of phase i > 1, it is sufficient to
show the following claims for x (the proofs, found in Appendix A.3, work in a symmetric manner
for y):

Claim 4.7. Within O(D) rounds, the vertez x can compute Sketche 2,1 (C) for every component
C € S(z,y). In addition, the vertex y can determine its neighbors in {v € V; | y & my(s,Cyn)}-
The communication is restricted to the edges of LDS(x,y) ULDS(y,) and using the xy channel.

Claim 4.8. By exchanging 5(1) bits of information (using the promised channel), invariants (I1-
I}) hold w.r.t Py.

Simulation of the i*" Bortivka Phase. We now describe the execution of phase i > 1 assuming
that at the beginning of the phase the invariant holds w.r.t P;_1. The output of the execution will
be the partitioning P;, for which we later show that the invariant holds as well. Our goal is to let
x,y simulate a Bortuvka phase in which parts of P;_; are merged along their outgoing edges. The
main objective of this phase is to reduce the number of growable parts by a constant factor, in
expectation. Throughout, we use the following auxiliary claim which allows the vertices in every
light part to exchange 6(1) bits, in parallel.

Claim 4.9. Let P be a light part in P;—1 such that each vertex v € P holds a O(1)-bit value val(v).
Then, there is an O(D)-round algorithm that allows all vertices in P to compute any aggregate
function of the val(v) values for v € P, by sending messages only along edges incident to P.
Consequently, all light parts in P;_1 o U P;i_1, can compute their respective aggregate functions, in
parallel.

For efficiency of computation, we restrict the merge shapes to be star shapes by using random
coins (see e.g., [GH16]). Such star merges are obtained by letting each part P;_; toss a random
coin, and allowing only merges centered on head-parts, each accepting incoming suggested merge-
edges from tail-parts. The leader of this head-part becomes the leader of the merged part. We
show that under the promise and the (i — 1)** invariant, this merging phase can be implemented
in 5(D) rounds as follows. W.l.o.g., we make x be responsible for the s-part Ps € P;_1.

Implementing Merges. Each vertex z € {x,y} tosses a (fresh) random coin for each of its parts
in P;_1,.. In addition, = tosses a coin for the s-part P,. Next, for each of the tail part P € P;_1 .,
z locally computes an outgoing edge for each of its tail parts in P;_; .. In addition, computes an

18

outgoing edge for the s-part (in case that the coin toss of that part is tail). For each growable part
P € Pj_1., such an edge can be detected from Sketchg ;.3 (P) with constant probability. The
parts of P; are formed by merging every head part P* € P;_1 with all the tail parts in P;_; whose
outgoing edges point at P*. The leader of the merged part is the leader of the head part P*. For
every tail part P € P;_; ,, let ep = (up,vp) be the detected outgoing edge obtained by x from

SketChG\{a:’y} (P) .

Claim 4.10. Using 5(D) rounds of communication over edges incident to LDS(z,y) and the given
xy channel, z can determine for all its tail parts P € P;_1 . with an outgoing edge ep = (up,vp),
the following information: (i) the part-ID of the second endpoint vp ¢ P and, (ii) the coin-toss of
the part of vp.

Proof. We first let z,y send the part-ID information for all vertices in LDS(z,y) U LDS(y,x). In
addition, for each light part P € P;_1 we propagate the coin flip to the entire part, using Claim
1.9. We now focus on z = z (the proof works in the same manner for y). Let Ps be the s-
part in P;—1;. We show that x can learn the part-IDs and coin-toss outcomes of the vertices in
= {UP ’ P e Pi—l,m U {PS}, Pis tail}.

First, we use the zy channel to let y sending x the part-ID and coin-toss of its heavy child yy.
In addition, y also sends, over the channel, the coin tosses of its heavy parts in P;_1,. Note that
for every vertex in Z,, x can locally determine which of these endpoints are descendants’ of yy,.
Also note that = knows the part-IDs of all the vertices in Z, N (V' \ V(T})) (using Invariant (I4)).

Next, x considers (at most three) special tails parts: at most two tail heavy parts in P;_; », and
the s-part. For each of these parts P, x sends (up,vp) over the xy channel, and y-responds with
the part-ID of the up,vp vertices that belong to T}, as well as, with the coin-tosses of these parts
in case, they belong to P;_1 .

Finally, it remains to consider the light parts. Using Claim 4.9, for every light part P, the
edge-ID (up,vp) is broadcast over P. This happens for all light parts in parallel. Consequently,
the up vertex in each such part P is informed (and can also inform z that vp ¢ P). It remains to
consider the case where vp is not a heavy descendant of y. The interesting case is when vp € LD(y).

Since the algorithm applied, in the preprocessing step, the procedure of Lemma 4.3, up can
determine if Cy . is z-sensitive (as up holds (s, Cy,p) and the ID of z). If it is not z-sensitive,
then this information can be broadcast on P (using Claim 4.9), and z then concludes that vp is in
the s-part.

If Cyp is x-sensitive, then by the first paragraph, vp knows its part-ID (as vp € LDS(y, x))
and it can send it to up. If vp belongs to a light part in P;_1,, then vp also knows the coin-toss
of that part and can send it to up. Finally, if vp belongs to a heavy part or to part in P;_1 5, then
x already knows the coin toss of this part. The information acquired by up can be then sent to x
using Claim 4.9. Altogether = receives that part-ID of vp for each outgoing edge (up,vp), and in
the case where that part is in P;_1,, x receives in addition also the coin-toss of that part. This
completes the proof. W

To implement the merges and satisfy the invariant, it is required for z € {z,y} to learn the
updated sketch information of their head parts in P;_1 .. We next explain how y can compute the
sketch information of each of its head parts P* € P;_1,. (A similar procedure would work for z).

9E.g., as the ancestry labels can be provided as part of the vertex ID.

19

By Claim 4.10, x knows for every head part P* € P;_1,, the collection of tail parts in P;_1
that should be merged with P*.
Any — Non-Light Merges. There are (at most three) non-light parts in P;_;, corresponding to
at most two heavy parts and the s-part'’. For each of these non-light part P*, = aggregates that
sketch information of the corresponding tail parts P € P;_1 z, and send it to y over the zy channel.

From the point on, x considers the transfer of information concerning the light head parts P*
in Pij_qy.
Non-Light — Light Merges. It uses the zy channel to send y the sketch information of its non-
light tail parts P, along with the part-ID of their head parts (to which they should be merged).
Light — Light Merges. The sketch of all other (light) parts in P;_;, are communicated to
y over the edges incident to the light sensitive xy descendants, LDS(z,y) U LDS(y,), as follows.
Using Claim 4.9, each light and tail part P € P;_1, can learn Sketche ¢, ,1(P) (as = holds this
information, by the invariant). Note that by definition P, P* C LDS(x,y) ULDS(y, x). The vertices
of P then send this received information to all their neighbors. At this point, for every light head
part P* in P;_1,, and for every tail light part P in P;_1 ., there is a vertex vp € P* that holds
Sketche 2,41 (P). By applying Claim 4.9, all vertices in P* can learn the sum of all these sketches.
This provides y with all the required information from = to compute Sketchg\{w,y}(P*) for each
head part P* € P;_1,. In a symmetric manner, can compute the sketch of the merged parts for
all its head parts in P;_1 .. Using the xy channel, and y can exchange the part-ID and sketch
information of the heavy parts and the s-part in P;. This satisfies (I1,12,13) for the partitioning P;.

To satisfy (I4), note that the part-ID has changed only for tail parts in P;_;. For the tail-parts
in Pj_1,., z holds their new part-ID using Claim 4.10 (i.e., this is the part-ID of the detected
outgoing edges). This completes the description for phase i.

We are now ready to complete the proof of Theorem 4.5.

Proof of Theorem /.5. By the description of the " phase, the invariant holds w.r.t P;. We next
show that the i** phase sends 5(1) messages along edges incident to LDS(z,y) ULDS(y, x), as well
as over the zy channel. It is also easy to see that given the promised channel that running time is
O(D) using Claim 4.9. Finally, we show that within k = O(log n) phases it holds that there are no
growable components in Py.

Recall that a part P in P} is denoted as growable if there is a G-edge (u,v) € Px(V\({z,y}UP)).
We claim that the number of growable part reduces by a constant factor in each Boruvka phase.
Given a sketch information Sketchey (5) (P) for a growable part P, one can infer an outgoing edge
(u,v) from P with constant probability. In addition, with probability 1/4 this edge is valid (i.e.,
P is a tail part and v is in a head part). Therefore, overall the number of growable parts reduces
by a constant factor, in expectation. By the Markov inequality, w.h.p. there is no growable part
after O(logn) phases. Since z,y jointly hold the sketch information of all parts in Py they can
determine if there is more than one part in Py by exchanging information along their channel (i.e.,
if G\ {z,y} is not connected, then w.h.p. either x or y holds a part whose leader is not s). The
theorem follows. W

10The latter is held by x, so when revering the roles of x,y, y might be required to send = the sum of sketch
information of the tail parts in P;_1,, that got merged with the s-part.

20

Figure 2: Simulating the first Boriivka phase in algorithm Aﬁy. Each triangle corresponds to a light
component in C;,Cy. The square boxes correspond to the heavy components H,, H,. The framed
triangles correspond the subtrees of z,y that belong to the set LDS(x,y) U LDS(y,x). The dashed
green bidirectional arrow represents the xy channel given by the promise. The dashed black arrows
correspond to the outgoing edges obtained by z,y from the sketch information of their components.
In the example, the light subtrees T}, and 7T}, exchange information over their outgoing edge, which
allows y to compute the sketch of the merged component V (T,) UV (T},). The sketch of the merged
component V(T) U V(T;,) U V(Ty,) is computed by y by letting = send Sketche 15, (V(T4,)) ©
Sketch(;\{Ly}(V(Txh)).

Omitting the Promise by Classification to Light and Heavy Pairs. In the next subsec-
tions, we omit the promise by partitioning the xy pairs into two classes: light and heavy, defined
as follows.

Definition 4.2 (Light and Heavy IndependentAPairs). An independent pair z,y is denoted as a
light-pair if either (i) there is a path 7, (s, C') C T such that either the last edge of the path (y,v¢)
for vc € C or else, there is a light edge (y,y’) € m,(s, C) such that = € m,(s,Cy), or (ii) there is
a path m,(s,C) C fy such that either the last edge of the path (z,v¢) for vo € C or else, there is
a light edge (z,2") € my(s,C) and y € my(s,Cy4). The remaining independent pairs are denoted
as heavy-pairs. See Fig. 3 for an illustration.

The following observation provides a more explicit characterization of the heavy pairs.

Observation 4.3. For every heavy pair zy the following holds: for every fully y-sensitive compo-
nent C' € C, it holds that (y,yn) € mz(s,C), and similarly for every fully z-sensitive component
C € Cy it holds that (z,zp) € my(s, C).

Proof. Consider a fully y-sensitive component C' € Cg, and recall that 7, (s, C') = w(s,uc)o (uc,ve)
(see Def. 4.1). Then, since xy is not light, we have that uc # y. In addition, as C is fully y-sensitive
and uc # y, there is an edge (y,vy') € 7(s,uc). Since xy is not light, we conclude that y' = yp,.
The proof works similarly for C' € C,. W

21

Figure 3: Top: An illustration of a light zy pair. Shown are the trees T\x,fy. The pair xy is light since
tree T, contains a light edge (y,41) and = € m,(s,Cy,,). Bottom: lllustration of a heavy pair zy. For
the light child yo of y in T, we have that z ¢ my(s,Cyy,). Similarly, for the light child z3 of z in T,
we have that y ¢ m.(s,Cpay). Hence, the fully y-sensitive components in C, are connected in T}, to
the heavy child y;, (and vice-versa).

4.4 Running the Light 4, , Algorithms in Parallel

For each light pair zy, we describe an algorithm 4, , which implements a channel of communication
between x,y, by defining a path II, ,, in a way that replaces the promise of Ai y- Algorithm A,
works in the exact same manner as Ai ”
messages exchanged in Ai y over the promised channel, will be sent instead along the path 11 .
For every (ordered) light pair z,y, assume w.l.o.g. that there is a component C' € C, such that
either uc = y (i.e., the last edge of 7;(s,C) is (y,vc) for vo € C), or that there is a light edge

(y,vy') € ma(s,C) such that x € my(s,Cy,). Note that there might be multiple such components

with the only distinction that the messages that all the

22

C € C, that satisfies the above, and in the following x picks one such C' arbitrarily. Then, define'':

Iy = m(z,vc) o (ve, uc) o m(uc, y) - (4.3)

Let Qignt be the collection of xy light pairs. We first show that the collection of {Il,, | (z,y) €
Quight} paths satisfies the promise.

Lemma 4.11. The collection of paths {Il,, | (z,y) € Quight} satisfies the promise: all paths are of
length O(D) and each edge appears on O(D) paths.

Proof. The length bound on II, , is immediate, and so we consider the edge congestion. An edge
(a,b) appears in the first segment, (i.e., m(z,vc) of Eq. (4.3)) of at most O(D logn) many paths:
For every ancestor x € m(s,a) and every light edge (y,y’) on the path m;(s,Cy4). In the case
where the second segment (i.e., m(uc,y) of Eq. (4.3)) consists of a single vertex, we have that
I1,,, consists of only edges incident to V(7}). In the remaining case, (a,b) appears on the second
segment (i.e., m(uc,y) of Eq. (4.3)) of O(Dlogn) paths: for every light ancestor y on w(s,b,T)
and every vertex on « € my(s,Cyp). M

Finally, we show in Appendix A.3 that we can perform an handshake between each such pair,
that allows the vertices x, y to distributively define their zy-channel, and thus execute the collection
of A, , algorithms for all light pairs.

Lemma 4.12. One can schedule the collection of the Ay, algorithms for all light pairs x,y in
O(D) rounds.

4.5 Running the Heavy A,, Algorithms in Parallel

We now consider the most challenging configuration of heavy pairs. Our strategy is based on
identifying a limited number of carefully chosen pairs for which we implement the promise using
bounded-congestion xy-paths. We then show that in order to handle all remaining pairs, it is suffi-
cient for the vertices to collect a small amount of information over the tree T'. Perhaps surprisingly,
this information enables z,y to run a local simulation of Boruvka in G \ {x,y} with no further
communication (between the subtrees of x and y). We use the following key notion.

Definition 4.3 (Doubly-Connected Sets). Let x € V and C € C,. Denote by N,(C) the set of
vertices in V' \ V(T,) which have a neighbor inside C. We say C' is doubly-connected to a vertex wu,
if there exist two distinct vertices a,b € N,(C) s.t. LCA(a,b) = u.

Observation 4.4. Fix z and C € C, and let ¢’ be a vertex on m,(s,C) = 7(s,uc) o (uc,ve) such
that C' is doubly connected to 3. Then, s and all vertices in C' are connected in G\ {z,y} for every
vertex y # 3 in 7(y', uc).

Proof. Since C is doubly-connected to y/, there are two distinct vertices a,b € N, (C) with LCA(a,b) =
y'. Therefore, as y is below / in T, y cannot be a common ancestor of a,b. Without loss of gen-
erality, assume that y ¢ 7(s,a). Now let a’ be a neighbor of a in C, which exists as a € N,(C).
Then 7(s,a) o (a,a’) is a path connecting s to C'in G\ {z,y}. N

"1n the below I, definition, uc might be equal y.

23

For every vertex z, recall that H, € C, is the component that contains the heavy child of x,
namely, x;. We then focus on the collection of vertices on 7, (s, H;) that are doubly connected to
H,. Let TD(z) be the topmost vertex on (s, H;) that is doubly connected to H,. If there are
no such vertex, define TD(z) = ug,. By Observation 4.4, for every vertex y that lies strictly below
TD(z) on m,(s, H) it holds that H, is connected to s in the graph G \ {z,y}. See Fig. 4.

S

Figure 4: Left: An failure of a vertex 3/ that lies below TD(x) on 7, (s, H,) does not disconnect H,
from s. Right: lllustration of the II, , path for a heavy zy pair.

Claim 4.13. There is an O(D)-round algorithm that allows each vertex x compute TD(z).
Definition 4.4. An ordered heavy pair x,y is mutual if TD(z) =y and TD(y) = «.

_To handle the mutual and non-mutual heavy pairs, our approach is based on having preliminary
O(D)-round procedure that equipped each vertex x with useful information on each vertex y € fx
In particular, we apply the following:

Lemma 4.14. There is an 5(D)-r0und algorithm that allows every vertex x learn the follow-
ing for each y € V(Ty) \ V(Ty): (i) TD(y), (i) m,(s, Hy) and (iii) a fresh sketch information
Sketchgy g,y (Hy).

Handling the Mutual Heavy Pairs. Our goal is to show that one can implement the promised
channel for all the mutual pairs (z, TD(z)) using O(D) rounds. First observe that every z can locally
recognize its mutual mate y (if exists). This holds as by Claim 4.13, x knows y = TD(x), and by
Lemma 4.14 it also knows TD(y). Similarly to the light pairs, we handle the mutual pairs zy by
defining a collection of path II, , as follows. Let u = up,,v = vp,, so (u,v) is the last edge of
7z(s, Hy). Then I, , = w(z,v)o(v,u)om(u,y) , see Fig. 4. For every mutual pair zy, the algorithm
Ay y is Arﬁy with the zy-channel being II, ,,.

Lemma 4.15. The collection of algorithms Ay, for all mutual xy pairs, can be run in 5(D)
rounds, w.h.p.

Proof. Let Q.nuiual be the collection of mutual pairs. We show first that the collection of paths
Proutual = Moy | (2,9) € Qumutuar} satisfies the promise of Cor. 4.6. Clearly, the length of each
path in Putuar is O(D). We now show that each edge appears on O(D) many paths. Every vertex

24

a can appear only on paths of the form II, , for every « € (s, a). Hence, each vertex a appears on
O(D) many paths, and consequently, each edge appears on O(D) paths. Since the length of each
I1, , path is O(D), using the random delay approach of Theorem 1.7, we can exchange 6(1) bits
between all mutual pairs x,y within 6(D) rounds, w.h.p. This establishes the paths Pputua in a
distributed manner. The proof then follows by Cor. 4.6. |

Handling the Remaining Heavy Pairs. We next show that the connectivity in G \ {z,y} of
the remaining pairs can be now determined locally, w.h.p., by either or y. We start by noting
the following property for every heavy pair z, y:

Observation 4.5. For every heavy pair xy it holds that G \ {z,y} is connected iff there exists
zn € {xn, yn}, such that s is connected to z, in G\ {z,y}.

Proof. Tt is sufficient to show that if s is connected to zp in G \ {z,y}, then the following holds:
(i) all the vertices in the fully y-sensitive components in C, are connected to s in G \ {z,y}, and
(ii) all the vertices in the fully z-sensitive components in C, are connected to s in G \ {z,y}. We
next assume that zp = yp, but the same proof works in a symmetric manner for the case where s
is connected to zj, in G\ {z,y}.

By Obs. 4.3, for every fully y-sensitive component C' in C,, it holds that (y,yx) € m.(s,C).
Therefore, yy, is connected to every fully y-sensitive component C' € C, in G \ {z,y}. Since yy, is
connected to s in G \ {z,y}, (i) holds. We now turn to show (ii).

From (i), we know that zj is connected to s in G \ {z,y}. By Obs. 4.3, for every fully a-
sensitive component C' in Cy, it holds that (x,xp) € 7,(s, C). Therefore, x;, is connected to every
fully a-sensitive component of Cy in G \ {z,y}, concluding that (ii) holds. W

From that point on, we fix a non-mutual heavy pair xy. We break the symmetry between x
and y by assuming w.l.o.g. that TD(y) # x (but possibly, TD(x) = y). We show that y can locally
determine in this case the connectivity in G \ {z,y}, by distinguishing between the following cases.

Case 1: TD(y) is not below x on (s, Hy). We claim that y can safely deduce that G\ {z, y}
is connected. By Obs. 4.5, it is sufficient to show that yj is connected to s in G \ {z,y}. This
indeed holds by Obs. 4.4.

Case 2: TD(y) is below = on (s, Hy). We first claim that if either (x,xp) ¢ m,(s, Hy) or
that (y,yn) ¢ me(s, Hy), then G\ {z,y} is connected. Assume that (z,xp) ¢ my(s, Hy). Since zy is
a heavy pair, for every fully z-sensitive component C' € C,, it holds that (x,xp) € my(s,C). Hence,
by the assumption, H, is not fully z-sensitive component, and therefore y; is connected to s in
G\ {z,y}, and the claim holds by Obs. 4.5.

Assume that (y,yp) ¢ 7z(s, Hy). Since zy is a heavy pair, by the assumption, H, is not fully
y-sensitive component, and therefore xy, is connected to s in G\ {z,y}, and the claim holds by Obs.
4.5.

Assume from now on that (z,z) € my(s, Hy) and that (y,yn) € mz(s, Hy). Let Cy, = {C €
Cy | (z,z1) € my(s,C)} be the collection of y-components in the subtree of fy rooted at x,.
In addition, let C = UCGCW C. See Fig. 5 for an illustration. We will show that y can locally
determine the connectivity in G \ {z,y} by noting the following:

Observation 4.6. G\ {z,y} is connected iff H, UC has an outgoing edge to (V \ (H, UCU{z,y})).

25

Proof. Since z is above TD(y) on my(s, H,), we know that H, is connected only to H, among all
other components in C,. Also, we know that for every fully y-sensitive component C' € C,, it holds
that yp, € (s, C). Therefore, we conclude that there is exactly one fully y-sensitive component in
Cx, namely, H,. In other words, all components of C, \ {H,} are connected to s in G \ {z,y}. In
addition, we know that all the vertices in C are connected to z in G \ {z,y}, and thus also to the
heavy component H,. As zy is a heavy pair, every C' € C, \ Cy is connected to s in G \ {z,y}.
Therefore, any outgoing edge of H, U C must be to a vertex that connected to s in G \{z,y}- N

It remains to show that y can compute Sketchlg\ {z,y}(Hl" U 5) This would conclude the claim
as using this sketch information, y can determine w.h.p. if H, UC has an outgoing edges (i.e., using
O(logn) basic-sketch units). We first show that y can compute the sketches Sketch/G\ {a} (@) for

Q € {H;, H,}. From the extended-ID of x, y knows Sketch’G\{m}(Hw). In addition, y can determine
its edges in H, and cancel them (using Lemma 1.6). This holds since every vertex v knows its
component-ID of C, € C, for every x € m(s,v). This total amount of O(D)-bit information
can be sent from each v to all the neighbors of v. Therefore, y knows its edges in the z-heavy
component H,. The sketch information of these edges can be omitted from Sketch'G\ (=} (H) and

obtain Sketchfy, ¢, 1 (Hy).
We now show that y can also compute Sketch’G\ {x,y}(Hy)‘ Since H, is not doubly-connected to
x, and H, is connected to H,, we get that x has no neighbors in H,. Therefore, Sketch’c;\{%y} (Hy) =

Sketch’G\ (v (Hy). Finally, we show that y can determine Sketch'G\ (2.} (C) for every light component
C € Cy. We need the following claim:

Claim 11.16. All verticesv € V' can compute Sketch’G\{ﬂ(V(Tv)), for everyx € Ui a) Ty(s: Cyo),
within O(D) rounds.

By Claim 4.16, every light child ¢’ € C of y knows Sketch’G\ {x}(V(Ty/)). Therefore, by sending
this information to y, y can compute Sketch’G\ (2}(C) (as C'is a union of Ty subtrees). In addition,
y can locally cancel-out its incident edges in C', resulting in Sketch’G\ {%y}(C) (using Lemma 1.6).
We have that y knows Sketch'G\ {$7y}(Hx U 6) and can therefore determine connectivity w.h.p.

This concludes the 6(D)—r0und algorithm for detecting independent cut pairs. By Sec. 3,
within another O(D) rounds we can also detect all dependent cut pairs. Theorem 1.2 follows.

References

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via
linear measurements. In Proceedings of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms, pages 459-467. STAM, 2012.

[BT89] Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing (extended
abstract). In 30th Annual Symposium on Foundations of Computer Science, Research
Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages 436—441.
IEEE Computer Society, 1989.

[BT96] Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected
components with spqr-trees. Algorithmica, 15(4):302-318, 1996.

26

Figure 5: Illustration for Obs. 4.6 where x appears above TD(y) on 7,(s, Hy). Since xy is a heavy pair
and as Hy is not doubly-connected to x, it must hold that H, is the only component in C, connected
to zp, (see fz) Consequently, any outgoing edge of the component H, U C must connect to a vertex
that is xy-connected to s.

[CHGK14]

[Chol6]

[CKL*22]

[DEMN21]

[DP09)

[DP16]

[DP17]

Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. Distributed connectivity
decomposition. In Proceedings of the 2014 ACM symposium on Principles of distributed
computing, pages 156-165. ACM, 2014.

Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In Ioannis
Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors,
48rd International Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 130:1-130:13. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016.

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time.

CoRR, abs/2203.00671, 2022.

Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai. Dis-
tributed weighted min-cut in nearly-optimal time. In Samir Khuller and Virginia Vas-
silevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on The-
ory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1144-1153. ACM,
2021.

Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Pro-
ceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages
506-515. STIAM, 2009.

Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures.
CoRR, abs/1607.06865, 2016.

Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex fail-
ures. In Proceedings of the Twenty-Fighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
490-509, 2017.

27

[DP21]

[GH16]

[Ghalb]

[GILP15]

[GK17]

[GKKT15]

[GMW20]

[GNT20]

[GP16]

[HLW21]

Michal Dory and Merav Parter. Fault-tolerant labeling and compact routing schemes.
In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:
ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July
26-30, 2021, pages 445-455. ACM, 2021.

Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks I1:
low-congestion shortcuts, MST, and min-cut. In Robert Krauthgamer, editor, Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 202-219. STAM, 2016.

Mohsen Ghaffari. Near-optimal scheduling of distributed algorithms. In Proceedings
of the 2015 ACM Symposium on Principles of Distributed Computing, PODC, pages
3-12, 2015.

Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura, and Nikos Parotsidis. 2-vertex
connectivity in directed graphs. In Magnis M. Halldérsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming
- 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Pro-
ceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages 605-616.
Springer, 2015.

Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BEFS trees. In
Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th
International Colloguium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 127:1-127:15. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2017.

David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph
connectivity with improved worst case update time and sublinear space. CoRR,
abs/1509.06464, 2015.

Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in o(m log? n)
time. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbricken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 57:1-57:15.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020.

Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge
connectivity via random 2-out contractions. In Shuchi Chawla, editor, Proceedings of
the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020, pages 1260-1279. SIAM, 2020.

Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique. In Pro-
ceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
2016, Chicago, IL, USA, July 25-28, 2016, pages 19-28, 2016.

Zhiyang He, Jason Li, and Magnus Wahlstrém. Near-linear-time, optimal vertex cut
sparsifiers in directed acyclic graphs. In Petra Mutzel, Rasmus Pagh, and Grzegorz Her-
man, editors, 29th Annual European Symposium on Algorithms, ESA 2021, September

28

[HT73]

[Kar99]

[KKM13]

[KKT15]

[KP21]

[KW14]

[LMRO4]

[LNP+21]

[MK18]

[NMNO1]

[NSY19]

6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 52:1—
52:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected com-
ponents. SIAM J. Comput., 2(3):135-158, 1973.

David R Karger. Random sampling in cut, flow, and network design problems. Math-
ematics of Operations Research, 24(2):383-413, 1999.

Bruce M Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in
polylogarithmic worst case time. In Proceedings of the twenty-fourth annual ACM-
SIAM symposium on Discrete algorithms, pages 1131-1142. STAM, 2013.

Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu repair of
an MST in a distributed network with o(m) communication. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San
Sebastidan, Spain, July 21 - 23, 2015, pages 71-80, 2015.

Karthik C. S. and Merav Parter. Deterministic replacement path covering. In Déniel
Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 704-723. SIAM, 2021.

Michael Kapralov and David Woodruff. Spanners and sparsifiers in dynamic streams.
In Proceedings of the 2014 ACM symposium on Principles of distributed computing,
pages 272-281, 2014.

Frank Thomson Leighton, Bruce M Maggs, and Satish B Rao. Packet routing and
job-shop scheduling ino (congestion+ dilation) steps. Combinatorica, 14(2):167-186,
1994.

Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sor-
rachai Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows. In
Samir Khuller and Virginia Vassilevska Williams, editors, STOC 21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 317-329. ACM, 2021.

Ali Mashreghi and Valerie King. Broadcast and minimum spanning tree with o(m)
messages in the asynchronous CONGEST model. In 32nd International Symposium
on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018,
pages 37:1-37:17, 2018.

Jaroslav Nesetfil, Eva Milkové, and Helena NeSetfilova. Otakar Boruvka on minimum
spanning tree problem translation of both the 1926 papers, comments, history. Discrete
Mathematics, 233(1):3-36, 2001.

Danupon Nanongkai, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai.
Breaking quadratic time for small vertex connectivity and an approximation scheme.
In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoeniz, AZ, USA, June
23-26, 2019, pages 241-252. ACM, 2019.

29

[Par15]

[Par19]

[Par20]

[Pel00]

[PT11]

[PY21]

[ST83]

[Tar72]

[Thu97]

[Vad12]

[WY13]

Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, pages 481-490, 2015.

Merav Parter. Small cuts and connectivity certificates: A fault tolerant approach. In
33rd International Symposium on Distributed Computing, 2019.

Merav Parter. Distributed constructions of dual-failure fault-tolerant distance pre-
servers. In Hagit Attiya, editor, 34th International Symposium on Distributed Comput-
ing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages
21:1-21:17. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020.

David Peleg. Distributed Computing: A Locality-sensitive Approach. STAM, 2000.

David Pritchard and Ramakrishna Thurimella. Fast computation of small cuts via cycle
space sampling. ACM Transactions on Algorithms (TALG), 7(4):46, 2011.

Seth Pettie and Longhui Yin. The structure of minimum vertex cuts. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scot-
land (Virtual Conference), volume 198 of LIPIcs, pages 105:1-105:20. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2021.

Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees.
J. Comput. Syst. Sci., 26(3):362-391, 1983.

Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Com-
put., 1(2):146-160, 1972.

Ramakrishna Thurimella. Sub-linear distributed algorithms for sparse certificates and
biconnected components. Journal of Algorithms, 23(1):160-179, 1997.

Salil P. Vadhan. Pseudorandomness. Foundations and Trends®) in Theoretical Com-
puter Science, 7(1-3):1-336, 2012.

Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles
via fast matrix multiplication. ACM Transactions on Algorithms (TALG), 9(2):14,
2013.

A Missing Proofs

A.1 Missing Proofs for Section 1.2

Proof of Lemma 1.5. First, each vertex v learns its subtree size |V (T},)| by bottom-up aggregation
on T. By passing these sizes to the parents, within another round each vertex can classify its
children as heavy/light. Within one more round, each vertex is informed on its classification by its
parent. Computing the compressed paths can now be executed in a top-down fashion, as a vertex
can deduce its compressed path from the compressed path of its father and its own heavy/light
classification. [}

30

Proof of Lemma 1.6. Let Out(S) be the set of outgoing edges from S in G, and Out; ;(S) =
Out(S) N E; ;. Observe that for each i € {1,...,L}:

SketChG,i(S) = [@UGS,eGEiYO(v) EIDT(€)7 ceey @UES,BEEZ‘JOgM(U) EIDT(e)]
= [Becout; o(s) EIDT(€), - - - DecOut, 100 10(5) EIDT(€)]

where the last equality is true as each edge e with both endpoints inside S appears either 0 or 2
times in each XOR. Now let Out'(S) and Out; ;(S) be defined exactly as Out(S) and Out; ;(5),
but with respect to G\ E’ instead of G. Then as Out(S) is the disjoint union of Out’(S) and E’,
we obtain

SketChG,i(S) D SketChG\El,i(S) = [@QGE/QELO EIDT(e), ce @eeElmEi,logM EIDT(e)].

The right-hand side of the above equation can be computed from the given extended IDs of E' and
the random seed Sy, and by XORing it with Sketchg ;(.S) we obtain Sketchq g ;(S). Concatenating
these basic sketch units yields the required. W

A.2 Missing Proofs for Section 3

Proof of Claim 5.2. We define the labels ANCz as follows. If v € Cp, we simply take its T-ancestry
label, i.e. ANCz(v) = ANCr (v) 7™ (s,v,T). We now define ANCz(v) for the case v € Cy, i # 0.
Observe that the s-v path in T decomposes as (s, v, Tv) =7(s,pj,T)o (pj,rj)om(rj,v, ﬁj) for the
unique p; € Cp which is an ancestor of v in T. The f—ancestry label of v is obtained by heavy-light
compression of the paths as ANCx(v) = 7*(s, p;, T') o (pj, 75) o 7" (7, v, ﬁj). Given the ANCz-labels
of any u,v € V(T T), one can easily determine if m(s,u,T) is a prefix of 7(s,v,T), and thus if u
is an T-ancestor of v. As compressed paths require O(log n) bits, each ANCz-label consists of
O(log®n) = O(1) bits.

We now present the computation of these labels. The vertices of Cy already hold their labels,
as they are equal to their ANCr labels, so it remains to compute them for the C7; U- - -UC}, vertices.
The algorithm proceeds by the following 3 steps.

Step 1: Heavy-Light Decomposition of T. Our first task is for every vertex in C1U---UC}
to learn its heavy/light classification in the tree T, which essentially involves computing subtree
sizes in T. At first glance, one might consider computing these by simple aggregation on T. This
approach fails as it requires Q(D(T')) rounds, and the diameter of 7' might be Q(A-D). To overcome
this, we use y as a coordinator to jump-start the aggregation. Recall that all component sizes |C;]
are known to y by the preprocessing. Therefore, y can locally compute the T-subtree sizes of all
the r;’s: |V(T,)| is the sum-of-sizes of f components lying in the subtree of C; in the component tree
CT. Then, y sends each child y; the T-subtree size of 7;, and this information is propagated down
on each T}, (in parallel), so that each r; learns its T-subtree size. Upon receiving this information,
each r; passes it also to its T—parent pi- Next, for any vertex v of T denote

{ifv:pi: |V(Tri)|+1a
oy =

otherwise: 1.

Then by this point, every vertex v € C1U- - -UC} knows its corresponding value o,. Fori =1,... k,
let T be the tree induced on C; by T', where the parents in T are the same as in 7. Equivalently,

31

T@ is the tree obtained by rerooting T, at the vertex r;. Each of its leaves is either an original
T-leaf or a p; vertex for some j. The crux is that for each v € Cj it holds that |[V(T3)| = 32 @) o

That is, the T-subtree size of v is equal to the sum-of-a’s in its T _subtree. By executing bottom-
up sum-aggregation of the a,’s in each of the trees T® in parallel, each vertex v € Cy U---UCk
learns its T-subtree size. In another communication round, each such vertex passes its T-subtree
size to its parent, enabling each vertex to classify each of its children into light or heavy. Within
another round, all vertices in C7 U --- U C} are informed of their heavy-light classification by their
parent. _

Step 2: Computing Compressed T-Paths Inside the C;’s. In this substep, each v € C},
i # 0, learns the compressed path 7*(r;,v,T,,). The main observation is that if a vertex is given
the compressed path of its parent, it can easily deduce its own compressed path (as it know its
own heavy/light classification). Therefore, the required compressed paths can be computed in a
top-down fashion on each T (in parallel).

Step 3: Obtaining The ANCz-labels. For j =1,...,k define

if p; € Ci with i £ 0: 7 (rs, pj, Tn,)s
m =
7 if py € Co: 7 (s,p5,T) = ANCr(py).
Observe that by Step 2.2, the p;’s know their corresponding 7;’s. To send this information to y,

each p; sends m; to 7;, and the messages are then forwarded upwards on each Tj, (in parallel),
along with the heavy /light classification of the 7;’s. Using the information of {r;};, the component

tree CT and the heavy/light classifications of the r;’s, y can locally compute ANCz(r;) for each r;,
and send this label to the corresponding child y;. Then, ANC5(r;) is broadcasted on each Ty, (in
parallel), so that each vertex v € C; learns this label. Finally, ANC%(v) can be locally deduced in v

from the information in ANCz(r;) and 7*(v, T.), where the latter is known to v by Step 2.2. Wi

Proof of Claim 5.3. We focus on letting y learn Sketchg\ (V' \ {y}), as it can then broadcast it
down Tj,. First, by bottom-up aggregation of the sketch information on T}, y can learn Sketchg\ (v} (CLU

-+-UC%). So, it remain to let y learn Sketchg\{y}(C’o), as the XOR of these two sketches yields the
required. To this end, we partition Cy to interior and boundry. The interior C§ consists of all Co-
vertices with all G-neighbors inside Cy. The boundary 0Cj consists of the remaining Cy-vertices,
namely those that have some G-neighbor inside 7,. Each boundary vertex v € 9Cp chooses an

arbitrary T,-neighbor and sends to it its old sketch Sketchg(v) and its new sketch Sketchg\ ()
Then, by bottom-up aggregation of these (old and new) sketches on T}, y learns Sketchg(9C)) and

Sketchg\ (v} (0Ch). We assert that by this point, y has all the required information to complete the
computation. First, observe that

Sketchg\{y}(v \ {y}) = Sketchg\{y}(cl J---uU Ck-) &b Sketchg\{y} (600) b Sketchg\{y}(cg)

The first two terms in the expression are already known to y. We now show how to deduce the

last term Sketchg\ {y}(Cg). Observe that by our definitions of the T-ancestry labels and the EID-
identifiers, the old and new sketches of vertices in C coincide. That is, for all v € C§ we have

Sketchg\{y} (v) = Sketchg(v). We therefore obtain that

Sketchg\{y}(C{}) = Sketchg(Cj) = Sketchg (V') @ Sketchg (V(Ty)) @ Sketchg(0Ch).

32

The first two terms in the latter expression are known to y by the prepossessing, and the last has
been previously computed in this step. W

A.3 Missing Proofs for Section 4

Proof of Lemma 4.1. This is implemented as follows. The source s locally samples a random seed,
and broadcast this information to all the vertices. For every d € {1,...,d,}, a vertex u computes
its d-depth sketch Sketché(u) by restricting the edge sampling only to edges of depth > d:

Ei(u) ={(u,v) € E | depth(LCA(u,v))>d} .

This edge set E4(u) can be computed locally by u, by letting each vertex learn its tree path 7 (s, u)
and exchanging this path information with its neighbors. Using the seed information, u computes
d, sketches Sketchi(u), ..., Sketché? (u), where the edges in the d’th sketch Sketch (u) are based
on using the seed to implement the sampling of the edges in Fg(u).

Next, the algorithm aggregates these D sketches. This can be done in a pipeline manner from
the leaf vertices up to the root, in increasing ordering of the depth d of the sketches. At the end
of this computation, each vertex z of depth d, holds the the sketch Sketcth“'(V(T w)) for each of
its T-child w. The final sketch Sketchgy,)(V(Tw)) is obtained locally at = by canceling-out the
sampled z’s edges from Sketch® (V(T,,)).

At this point, x has all the required sketch information to locally simulate the Boruvka algorithm
in G[V;]. As a result of this computation, = holds a component-ID of Cy ,, € C; for each T-child w
of z. This information is then propagated down the tree 7" in a pipeline manner, where each vertex
u eventually learns the component-ID of Cy,, for each of its ancestors x € 7(s,u). It is easy to see
that this entire computation takes O(D) rounds. I

Proof of Lemma /.2. The path-sketches SketchE(V(T)) for every vertex x are computed by a
standard aggregation of D-length vectors, which can be done in 0] (D) rounds via standard pipeline.
At the end of this computation, each vertex z holds that path-sketch Sketch (V(T,,)) for each of
its T-children w. Again, can locally cancel-out'” its edges to obtain Sketchg\{x}(V(Tw)). Then,
by combining with connectivity information obtained in Step 1, it can locally computes the path-
sketch Sketchg\{x}(C) for every C' € C,. Specifically, letting N(z,C) be the children of x in the
component C, then
Sketchi 1,3 (C) = Guen(e,cySketchiy 1,y (V(Tw)) -

Note that any outgoing edge (uc,vc) of a component C' € C, connects uc € C to vo €
V\ V(T,). In addition, a detected outgoing edge e = (uc,vc) from Sketchg\{m}(C) includes as
part of EIDr(e) the path edges m(s,uc) U m(s,vc). This allows to compute, w.h.p., the path
T2(s,C) = 7(s,v0) U (o, uc) for each C. The final tree is given by T, = Ucee, (s, C). The
running time is dominated by the time to compute the path-sketches. [l

Proof of Lemma /./. First, we let each vertex v learn the compressed-path 7 (s, C,) for every
edge (y,y') € m(s,v). This information can be downcasted on T within O(D) rounds (in the same
manner that u learns its tree path edges m(s,v). This total amount of O(D)-bits held by each v
can be then sent to all v’s neighbors, using 5(D)

'2This holds as = knows the seed of the sketch as well as the EIDr(e) (see Eq. (4.1)) of its incident edges e.

33

Consider (i) where it is required for each x to learn for every light component C' € C,, the
collection of compressed paths 7 (s, Cy) for every edge (y,y’) € m:(s, C'). We show that for every

x, there is an O(D)-round algorithm A, that has a total congestion O(D). The algorithm A,
sends messages only along edges incident to LD(z), namely, the light descendants of x. Since each
vertex v belongs to O(logn) sets LD(x) (for each light ancestor x of v), we get that each vertex
participates in O(logn) algorithms. Using the random delay approach of Theorem 1.7, we can then
schedule all these A, algorithms in O(D) rounds.

We next describe algorithm A, for a fixed z. For component C' € C, \ {H}, let

Qo ={my(s, Cyy) | (.9) € m(s,u0)}-

Our goal is to let x learn Q¢ for every C € C,. This can be done as follows. By the preliminary
step, ve receives Q¢ from uc for every C € C,. We then let ve send this 5(D)—bit information to
x along 7(x,vc). Note that the collection of tree paths {m(z,vc) | C € C,} are edge-disjoint, and
therefore, the communication over these paths can be done in parallel.

Consider (ii). We define an algorithm A/, for every z and show that its congestion is O(1).
Moreover, A/ only sends messages along V(T,.). Altogether, we get that each vertex v participates
in O(D) algorithms, and using Theorem 1.7, all A/, algorithms can be scheduled in O(D) rounds.
Similarly to part (i) of the proof, for C' = H,, there is a vertex vc € C that holds the information
on Qp = {m;(5,Cyy) | (v,¥) € 7(s,uc), (y,y') € L(T)} where L(T) are the light edges of the
tree T. Note that Q, has 6(1) bits, and therefore, vo can send this information to x along the
tree path 7(ve,). The communication is indeed restricted to edges incident to H,. W

Proof of Claim /.7. Clearly, x knows Sketchq (5} (C) for every C' € C,.. To compute Sketche 15,1 (C),
one needs to cancel-out the sketch information of the edges in (C' x {y}) N E(G). We show that
this can be done by exchanging information along edges incident to LDS(z,y) and by using the
promised channel (e.g., to exchange information related to the heavy component in C,).

First, by Lemma 4.3, we can also assume that each v € LD(z) knows m,(s,Cy) and every
v knows (s, Cy) with respect to its (heavy) ancestors. By exchanging this total amounts of
O(D)-bit information with their neighbors, y can locally determine which of its neighbors v in Vj
are y-sensitive and which are not.

By Lemma 4.3, y knows 7}(s, Cy,) for each of its neighbors v € V,,. Therefore, by using also
its own compressed path 7*(s,y), it can determine if it appears in 7, (s, Cy), and hence determine
if Cy 4 is y-sensitive or not. Also, as y knows 7*(s,v) (since v is its neighbor) and 7*(s, z) (since
x’s ID is augmented with this information), it can determine whether v € LD(x). Thus, y can
determine all its neighbors in LDS(z, y).

Altogether, y can determine the edge set E(y,2') = {(y,v) | v € T} for every child 2/ of
(where y identifies 2’ by the unique identity 7*(s,2’)). For every light child 2’ such that C, . is
y-sensitive, y sends to one of its neighbors in T, the sketch information of E(y, ') which has O(1)
bits. This information can be then sent to x using communication inside T, U{ (2, z)}. In addition,
y sends over the promised channel sketch information of the edges E(y, x,) (which consists of O(1)
bits). This allows z to cancel-out the edges of y from the sketch information of every y-sensitive
components in S(z,y). W

Proof of Claim /.5. We first show that z and y can compute Sketchq (5,3 (U (2, y)), hence satisfying

(I1). Consider = and its xz-connectivity tree fx We start by showing how x can determine the

34

components in C; \ FS(z,y). The z-connectivity tree T, provides z with the knowledge on the
y-sensitive components S(z,y). It remains to distinguish between pseudo y-sensitive and fully
y-sensitive components.

By Lemma 4.4(i), for every component C' € C; \ {H:}, = knows (s, Cy) for every edge
(¢,q") € mu(s,C). Therefore, x can determine if C' is fully y-sensitive for every C # H,. We then
let y send 7 (s, Cy y,) over the xy channel, and by combining with Lemma 4.4(ii), x can determine
also if H, is fully y-sensitive.

We now explain how to obtain the required sketch information. By Claim 4.7, x can compute
Sketche (2,43 (C) of every component C' € S(z,y). By Claim 4.7, y also know Ej , = {(y,v) |
v € Vi,y ¢ ma(s,Crp)}. Using the zy channel, y can send the sketch information of E; to
x. This allows z to compute the sketch information in G \ {z,y} of the union of components
Cow = Ucec, ygr.(s.0) C-

Let CL%) = UCGPS(%y) C be the union of all pseudo y-sensitive components in C,. Then, by
Claim 4.7, 2 can compute Sketche 14,43 (CTy). AsNS(z,y) = C5 UCT,, x knows Sketche g, 1 (NS(z,%)).

It remains to compute Sketchq (541 (Q) for @ = V\ (V(T)UV (T)). We first explain how z can
compute Sketchg(Q). We assume that all vertices know Sketchg (V). Using the channel, y can send
x, Sketchg(V (T})). Therefore, x can compute Sketchg(U(z,y)) = Sketchg (V') @ Sketchg(V (1)) @
Sketchg(V(T,)). Let E(x,y) be the set of = edges incident to vertices in Q. (IL.e., the edges
connecting x to its non-children in 7). In the same manner, y can compute, E(y,x), be the set
of y-edges incident to vertices in). By letting y send the sketch information of E(y,x) over the
channel, 2 can compute Sketche (5,1 (Q) (by canceling the edges E(y,r) and E(y,), see Lemma
1.6). Altogether, x now knows Sketchg (3 (Q), Sketchg (2,1 (NS(7,¥)). In a symmetric manner,
y knows Sketche (2.1 (Q), Sketche 4.3 (NS(y,). By letting 2,y exchange Sketche (5,1 (Q’) for
Q" € {NS(z,y),NS(y,z)}, both can compute Sketche (441 (U(z,y)).

Next consider (I2,14). Since z knows its components in Py ., by Claim 4.7, it can compute
Sketche (4,1 (C) for every C € Py, for z € {z,y}, as well as their part-IDs. By exchanging the
sketch and part-ID information of the x-heavy and y-heavy parts over the xy channel, invariant
(I3) holds as well. W

Proof of Claim /.9. First consider the case where P is a subset of either V. or V,,. W.lLo.g., assume
that P C V,, and since P is light, we have that P C LD(z). In such a case P is a union of T,
subtrees for a subsets of light children u of z. The aggregation of the val(v) values is performed,
in parallel, in each T, tree. Each root vertex u then sends the aggregate value of the vertices in
T, to z, which allows = to compute the output for the entire part P. This output can be then
propagated down the T;, trees. The same procedure can be applied when P C V.

We next turn to consider the case where P contains vertices from both V, and V,,. Since P
is zy-connected and s ¢ P, there is some non-tree edge (u,v) connecting v € P N LD(z) and
ve PNLD(y).

Let P, = PN LD(z) and P, = P\ P, and let ¢, g, be the output of the aggregate function
restricted to the val(v) values in P, P, respectively. We first let the vertices in P,, P, compute
the values ¢, ¢y, as described above. We then let P compute the non-tree edge (u,v) connecting
u € PNLD(z) and v € PN LD(z) of maximum ID, among all possible such edges. This again can
be done internally inside P, P,. At the end of this step, all nodes in P know the identity of the
selected (u,v) edge. By exchanging g, q, over the edge (u,v), u and v can obtain the combined
output value w.r.t P. This can be broadcast on P by letting u, v sending this information to x,y

35

respectively, and then broadcasting it in each x,y subtrees in P. Since the communication for a
part P uses only edges incident to P (without using the promise channel), and since the parts in
P; are vertex-disjoint, this computation can be done for all the light parts in P;, in parallel. W

Proof of Lemma /.12. In order to apply Cor. 4.6, it remains to show that both z,y can learn that
they are a light pair, and that their 11, , can be established in a distributed manner.

We starting by observing that for each light pair z,y at least one of the vertices (either x or
y) can learn (with no communication) that z,y is a light pair. Assume w.l.o.g. that there is a
component C € C, such that either (i) uc = y (i.e., the last edge of m,(s,C) is (y,v¢) for ve € C),
or that (ii) there is a light edge (y,y’) € m.(s, C) such that z € my(s,Cy,). Then, by Lemma 4.4,
x can determine that xy is a light pair.

We now describe algorithm A, for a fixed x and show that z can notify all its light-mates y
using the paths Il ,. Note that all the vertices a € V, know 7*(s,Cy4) and therefore they know
the edge (uc,,,vc,,). For each light-mate y of x, let C*¥ € C, be the chosen component that
satisfies (i) or (ii) w.r.t y. We then let x send a message to the voew € C*¥Y vertices. Note that
the edge-congestion of this procedure is O(logn) as each vertex v € V, receives messages regarding
light edges on 7 (s,Cy,), and there are only O(logn) such edges. Once vew.y is informed, this
information can be sent to the second endpoint ucey € T,. Overall, we can schedule all A,
algorithms in O(D) rounds, using random delays.

At this point, for each y, there is a vertex uc«.y € T}, that is required to upcast this information
to y. Since ucey is a light descendant of y, and since the component of uc=y in Cy is z-sensitive,
each vertex is required to send O(D) messages. Using random delays (or just pipeline) this can
be done in O(D), as well. At the end of this procedure, the promised channel II, , is known in a
distributed manner. The collection of A, , algorithms can be then scheduled using Cor. 4.6.

Proof of Claim /.13. By using 9) (D) rounds, each vertex v can learn the compressed-path 7% (s, H,)
for each of its ancestors x € 7(s,v). Since each v also knows the ID of Cy ,, it can tell if its belongs
to H,.

We now focus on x € V and show that TD(x) can be computed by an algorithm A, that
sends information only incident to H, and O(1) congestion. Let (ug,,vp,) be the last edge of
(s, Hy) (where vy, € H,). The goal is to compute an edge (¢,d) € Hy x V' \ V(T}) such that
LCA((up,,d) is of minimal possible depth. Note that this LCA must fall on 7, (s, H;) and that
(up,,vm,) is known to all vertices in H, as it is part of the compressed-path 7} (s, Hy). We show
that by aggregating information on 7}, from the leaf up to the vertex x, one can compute TD(z).
Initially, each vertex v € H, that has incident edges to V' \ V(7T;) keep the edge (v,d) such that
the depth of LCA(up,,d) is minimized. By sending this information along T, the best edge in
(c,d) € Hy x V' \ V(T) can be detected. This allows = to determine TD(x). The computation of
all vertices x can be done in O(D) rounds, using a standard pipeline technique. Wi

Proof of Lemma /.1/. First, we let each vertex v define a fresh sketch information Sketchy;(v). By

aggregating this information from the leaf vertices towards the root s, every vertex y can compute
Sketch g,y (Hy) where Hy = Cy,, € C,.

We next repeat the algorithm for computing the z-connectivity trees T, with the only distinction
that we augment the ID of each vertex y with

BID'(y) = (ID(y), Sketchyy, 1,y (H,), TD(y), 75 (s, Hy)).

36

The extend-ID of each edge (u, v) includes in-addition the EID’(u), EID'(v). Note that Sketch’(.) is
a fresh sketch information, that is independent of the sketch information Sketch(.) used to compute
the T}, trees (using independent seeds). Also, the extended-ID EID/(y) has only O(1) bits. Since
we use the same sketch information for computing the T, trees, for each vertex y in T, , « also
learns its extended-ID EID'(y) which satisfies the claim. [l

Proof of Claim /.10. Let Q, = UyeLA(v) my(s,Cye). By Lemma 4.3, v knows all edges in Q,. In
addition, we let each v send @), to all its neighbors which can be done within our time budget as
Q. has 5(D) bits. Note that for every descendant u of v in 7', it holds that @, C @,. Next, we
compute these sketches by aggregating the information from the leaf vertices up to the root (and
using Lemma 1.6). Each vertex v starts by computing Sketch’G\ ()} (v) for each x € @,. In each
subtree T, we then need to compute |Q,| aggregate functions inside 7}, since @, C @, for every
u € Ty, this computation can be done by a standard pipeline using 5(D) rounds. W

37

	Introduction and Our Contribution
	Our Approach, in a Nutshell
	Preliminaries

	Single Cut Vertices
	Dependent Cut Pairs
	Independent Cut Pairs
	Computing x-Connectivity Trees
	Component Classification Based on Sensitivity
	xy-Connectivity Algorithms Under a Promise
	Running the Light Ax,y Algorithms in Parallel
	Running the Heavy Ax,y Algorithms in Parallel

	Missing Proofs
	Missing Proofs for Section 1.2
	Missing Proofs for Section 3
	Missing Proofs for Section 4

