Lovász Local Lemma [Erdős & Lovász 1975]

Scribe: Avi Cohen

$$\mathcal{A} = \{A_1, ..., A_n\}$$

(1)
$$Pr[A_i] \leq P$$
, $\forall A_i$

 \bigcirc Each event depends on at most \underline{d} other events.

LLL:
$$e \cdot P \cdot (d+1) < 1$$
, then $Pr[\Lambda \bar{A}_i] > 0$

LLL can be seen as generalizing a local property to a global one:

"If there is positive probability that no bad event occurs in each neighborhood, then there is positive prob. no bad event happens globally."

Example 1: (2-Coloring hypergraphs)

 e_1, \ldots, e_m

k-uniform hypergraph

Every edge intersects ≤d other edges.

<u>LLL</u>: If $e(d+1) < 2^{k-1}$, $\exists 2$ coloring of the vertices of the hypergraph s.t. no edge is monochromatic.

Example 2: k-CNF

n vars, m clauses.

- clause has k vars.

- Every var in $\leq \frac{2^k}{ke}$ clauses.

$$(\underbrace{X_1 \vee X_2 \vee X_3}_{C_1}) \wedge (\underbrace{X_2 \vee X_3 \vee X_4}_{C_2}) \dots$$

LLL: 3 satisfying assignment.

Constructive LLL (Moser & Tardos 2010)

$$X = \{X_1, ..., X_m\}$$
: indep. discrete r.v.'s $A = \{A_1, ..., A_n\}$: events $Vrb(A_i) \subseteq X$

 A_i and A_i are dep. if $vrb(A_i) \cap vrb(A_i) \neq \emptyset$.

Goal: Find a good assignment to Xis s.t. no bad event happens.

Dep graph
$$G_A$$
: (A,E)
 $E = \{ (A_i,A_j) \mid \text{vrb}(A_i) \cap \text{vrb}(A_j) \neq \emptyset \}$

$$max-deg \leq d$$

$$Pr[A_i] \leq P$$

$$e \cdot P(d+1) < 1 - E$$

=> By LLL, we know a construction exists, but how do we find it?

MT Algorithm centralized algorithm

- 1) Initialize Xi's with random assignment.
- 2) While 3bad event:

Pick one bad event (arbitrarily) and resample all its variables.

Witness tree

Witness tree Tj: (j'th resampling step)

Root Aii

For every
$$A \in \{A_{i,j-1},...,A_{i,1}\}$$
:

Add A as the child of its deepest neighbor in T_j .

A, B, C, D, E, F

 $F, D, E, C, E, B, \underline{A}, D$

Lemma: $\forall i < j T_i \neq T_j$.

Pf: If the two trees have the same root then T_i must be a (strict) sub-tree of T_j . \square

Fix tree T. |T|=S.

What is the probability that T occurs in MT execution?

Lemma: Pr[Toccurs] ≤ ps.

Pf:

Obs: If A; and A; are in the same level, then they are independent.

The fact that A_j is a descendent of A_i does not increase the probability of A_i , because we use fresh randomness.

Lemma: E[#trees occurring in MT execution) = O(n)

Pf: T_s : collection of all trees of size s.

trees of size-s
$$\leq$$
 n· $\binom{S(d+1)}{S-1}$

Can represent each tree by a binary string of length S(d+1)

with exactly s-1 1 bits.

$$n \cdot {S(d+1) \choose s-1} \le n ((d+1)e)^s$$

$${Q \choose b} \le {eQ \choose b}^b$$

 $\mathbb{E}[\# \text{ witness trees}] = \sum_{s=1}^{\infty} \sum_{T \in \mathcal{T}_s} \Pr[T \text{ occurs}]$

$$\leq \sum_{s=1}^{\infty} n \cdot ((d+1)e)^s \cdot p^s$$

$$= n \sum_{s=1}^{\infty} \left(\underbrace{(d+1)eP}^{s} \right)^{s} = O(n)$$

Thm: W.h.p. there is no tree of size $S = c \cdot \log_{\frac{1}{eP(d+1)}} n$

$$Pf$$
: E [# trees of size s] = $|T_s| \cdot P^s$

$$\leq (eP(d+1))^{S} = \frac{1}{n^{c}}.$$

Distributed LLL

Communication graph: dep. graph

$$A = \{A_1, ..., A_n\}, X = \{X_1, ..., X_m\}$$

Node vi: event Ai

Pr[Ai] < P

LLL: P.e. (d+1) ≤ 1-E

Goal: Find good assignment.

Example: Defective Coloring

* Graph G = (V, E), max-deg = Δ , $f \ge 60 \ln \Delta$

* Vertex has $\lceil \frac{2\Delta}{f} \rceil$ colors.

Goal: each vertex has at most f neighbors with the same color.

- bad event : > f neighbors with same color.
- → Dep. graph: vertices that share a neighbor (i.e., distance = 2).

Thm 1: there is a distributed LLL algorithm that runs in $O(T_{MIS} \cdot \log_{\frac{1}{p \cdot c(u+n)}} n)$ rounds, w.h.p.

Thm 2: [Chung, Pettie, Su]: LLL in $O(\log_{\frac{1}{ped^2}} n)$.

Distributed LLL

- 1) Initialize with random assignment.
- 2) While bad event:

B := bad event

M = MIS(G[B])

Resample all vars in M.

Want to show: Step 2 repeats $O(\log_{\frac{1}{epoin}} n)$ iterations.

<u>Lemma</u>: W.h.p. $O(\log_{\frac{1}{eP(d+1)}})$ resampling phases.

 $\underbrace{M_1, M_2, \ldots, M_\ell}_{v_1, \ldots, v_k}$

Obs: $u \in M_i$ it holds that T_u has depth $\geq i-1$.

Pf: i=1: easy.

step: N+(u) AMi-1 + p, why? ->

If u is bad in $\underline{i-1}$ \vee

If u is good in $\underline{i-1}$, we must have resampled a neighbor.

=) we are done by induction.

The obs completes the proof of the lemma (using arguments from centralized alg).

Improved Distributed LLL

LLL: ped² ≤ 1-E.

1) Initialize with random assignment.

2) While bad event:

B := bad event

Resample all vars in I.

Remark: I can be much smaller than MIS. Consider the path graph.

2-Witness tree

$$I_1, \ldots, I_{\ell}$$

step j:

Root Aij

For every $A \in \{A_{ij-1}, ..., A_{i1}\}$:

Connect A to its deepest node in $N^{+2}(u)$ in the tree.

- 2 Witness tree of size S: ps
- # trees of size S: $n \cdot {s(d^2+1) \choose s-1} \approx n(e(d^2+1))^s$
- w.h.p. no 2-witness tree of size $S=O(\log_{\frac{1}{ped^2}}n)$

Lemma: $u \in I_{j}$ has 2-witness tree of depth $\geqslant j-1$ Pf: $N^{+2}(u) \cap I_{j-4}$ * u is good in j-1* $u \in I_{j-4}$ V < u, v is bad ve N(u)Ve I_{j-4} U is good in j but bad in j-1 $v \in I_{j-4}$ $v \in I_{j-4}$ $v \in I_{j-4}$ $v \in I_{j-4}$

$$\geqslant j^{-2} \qquad \qquad \forall \in I_{j-1} \qquad \forall \in \mathbb{N}^{+2}(u) \cap I_{j-1}$$