

Solutions to Ex. 4

Yinon Nahum

July 18, 2018

1 Question 1

The algorithm is incorrect. (P1) holds trivially since the weak diameter of each ball is at most $2\delta \leq D/2$, but (P2) does not. A counter example is the line graph where the nodes are ordered $1, 2, \dots, n$ from left to right, π is the identity order, i.e., $\pi(i) = i$ for every i , and $0.5n \leq D \leq n$.

Note that $V_1 = \{1, \dots, \delta\}$ and the nodes $\delta+1, \delta+2, \dots, n$ are each in a separate component. In particular, since $\delta \leq D/4 < n$, we have that n and $n-1$ are separated with probability 1, but $\alpha \cdot \text{dist}_G(n-1, n) = \alpha = o(1)$.

We correct this by choosing π to be a uniformly random permutation. Fix nodes u and v and index i . We say that $z_i = \pi(i)$ *separates* if it is the first to include exactly one of u and v in its ball. WLOG, assume z_i is closer to v than to u .

$$\Pr[z_i \text{ separates}] = \Pr[z_i \text{ separates} \mid \text{dist}(z_i, v) \leq \delta < \text{dist}(z_i, u)] \cdot \Pr[\text{dist}(z_i, v) \leq \delta < \text{dist}(z_i, u)]. \quad (1)$$

Note that if $\text{dist}(z_i, v) > \delta$ or $\text{dist}(z_i, u) \leq \delta$, then z_i cannot separate, thus the case is omitted. Due to the choice of δ and the triangle inequality,

$$\Pr[\text{dist}(z_i, v) \leq \delta < \text{dist}(z_i, u)] = \frac{\text{dist}(z_i, u) - \text{dist}(z_i, v)}{D/4 - D/8 + 1} \leq \frac{\text{dist}(v, u)}{D/8}. \quad (2)$$

If z_i separates, then $\text{dist}(z_i, \{v, u\}) < \text{dist}(z_j, \{v, u\})$ for every $j < i$, where the distance to a set is defined in q. 5. Therefore,

$$\begin{aligned} \Pr[z_i \text{ separates} \mid \text{dist}(z_i, v) \leq \delta < \text{dist}(z_i, u)] &\leq \Pr[\forall j < i : \text{dist}(z_i, \{v, u\}) < \text{dist}(z_j, \{v, u\}) \mid \text{dist}(z_i, v) \leq \delta < \text{dist}(z_i, u)] \\ &= \Pr[\forall j < i : \text{dist}(z_i, \{v, u\}) < \text{dist}(z_j, \{v, u\})] = 1/i, \end{aligned}$$

where the penultimate equality follows since the unconditional event depends only on π and the event conditioned on depends only on δ , and the last equality follows from the

choice of π . Plugging this and Ineq. (2) into Eq. (1), we have

$$\Pr[z_i \text{ separates}] \leq \frac{1}{i} \cdot \frac{8\text{dist}(v, u)}{D}.$$

Taking union bound over all i yields (P2).

Common mistake: *arbitrary permutation means the worst permutation, thus the algorithm fails. Some of you mistook arbitrary to mean that you can choose the permutation and claimed that the algorithms succeeds.*

2 Question 2

(Q1) - By the definition of r_v we have

$$C(E(v, r_v)) > (1 + \alpha)C(E(v, r_v - 1)) > \dots > (1 + \alpha)^{r_v - 1}C(E(v, 1)).$$

Since $C(E(v, 1)) \geq 1$ and $C(E(v, r_v)) \leq C$, we have

$$C > (1 + \alpha)^{r_v - 1} = ((1 + \alpha)^{1/\alpha})^{\alpha(r_v - 1)} \geq 2^{\alpha(r_v - 1)},$$

where the last inequality is Bernoulli's. Therefore,

$$r_v < 1 + \frac{\ln C}{\alpha \ln 2} = 1 + \frac{D}{4 \ln 2} \leq D/2.$$

Therefore, the diameter of each ball is at most D .

Note: *Using Bernoulli's inequality, we assumed $\alpha \leq 1$. For large α 's, the algorithm might fail. Since this was not mentioned in the question, points were not deducted for certain false arguments.*

(Q2) - Note that there are at most $C(E(v_\ell, r_{v_\ell} + 1)) - C(E(v_\ell, r_{v_\ell})) \leq \alpha \cdot C(E(v_\ell, r_{v_\ell}))$ inter-cluster edges created at iteration ℓ by the cluster centered at v_ℓ . Summing over all iterations, the total number of inter-cluster edges is at most $\alpha \sum_\ell C(E(v_\ell, r_{v_\ell})) \leq \alpha C(E)$.

3 Question 3

(a) - We find a tree with average stretch at most $7/3$. Numbering the nodes on the ring clockwise from 1 to n , we take all $n/2 - 1$ edges on the path $(1, 2, 3, \dots, n/2)$ and all $n/2$ chords. The stretch of all $(n - 1)$ selected edges is 1. The stretch of the $n/2 - 1$ edges $\{i, j\} \subseteq [n/2 + 1, n]$ is 3 due to the path $(i, i - n/2, j - n/2, j)$. The stretch of the edge

$\{1, n\}$ is $n/2$ due to the path $(1, 2, \dots, n/2, n)$. Symmetrically, for the edge $\{n/2, n/2 + 1\}$ the stretch is also $n/2$. Thus, the total stretch is

$$(n - 1) \cdot 1 + (n/2 - 1) \cdot 3 + 2 \cdot n/2 \leq 7n/2.$$

Since W_n has $3n/2$ edges, the average stretch is at most $7/3$. Note that the selected edges form a tree since there are $n - 1$ such and the stretch of each original edge is finite.

Note: choosing $n/2$ cycle edges and $n/2 - 1$ chords results in average stretch $8/3$.

(b) - If the grid consists of 1 node, return the empty tree. Otherwise, we divide the grid to 4 quarters, solve recursively to obtain trees T_1, T_2, T_3, T_4 , each from one quarter, and connect them by adding 3 edges forming a path of length 3 connecting all 4 trees in the center of the original grid. Then return the resulting tree.

We first note that the diameter of the tree is $O(\sqrt{n})$. To show this, let $D(n)$ denote the diameter of the returned tree. Then $D(n) \leq 2D(n/4) + 3$, since we can walk from $v \in T_i$ to $u \in T_j$ by first walking from v to the 3-path using edges in T_i , then walking on the 3-path to reach T_j , and then walking to u using edges in T_j . By the Master Theorem, this yields $D(n) = O(\sqrt{n})$.

We then note that the total stretch is $O(n \log n)$. To show this, let $T(n)$ denote the total stretch of the returned tree. Then $T(n) \leq 4T(n/4) + O(n)$, since the stretch of an edge in each quarter is $T(n/4)$ and the stretch of the $2\sqrt{n}$ inter-quarter edges is $O(\sqrt{n})$ as this is the diameter. By the Master Theorem, this yields $T(n) = O(n \log n)$. Since an n -vertex grid contains $\Omega(n)$ edges, the average stretch is $O(\log n)$.

Common mistakes: not connecting T_1, T_2, T_3, T_4 properly, resulting in a large tree diameter; struggling with complicated inductive proofs, instead of using the Master Theorem; not showing that the tree diameter is $O(\sqrt{n})$.

4 Question 4

Replace LDD with DetDecomp. We saw in class (Claim 6.4 in the lecture notes), $d_T(u, v) \geq d_G(u, v)$. To prove the upper bound, consider a call to $DetDecomp(G', D/2^{i-1})$ occurring on level i of the tree, and denote $E' = E(G')$. By the Lemma in q. 2, this call creates at most $\frac{4 \ln(|E'|)}{D/2^{i-1}} \cdot |E'|$ inter-cluster edges, and by what we saw in class (Claim 6.5 in the lecture notes), each has a stretch of at most $4D/2^{i-1}$. This leads to a total stretch of at most

$$\frac{4 \ln(|E'|)}{D/2^{i-1}} \cdot |E'| \cdot \frac{4D}{2^{i-1}} = 16|E'| \ln |E'| = O(|E'| \log n).$$

Since each edge is cut at some call to $DetDecomp$, Summing over all calls in level i , we obtain a total stretch of $O(|E| \log n)$. Summing over all the levels, we obtain a total stretch

of $O(|E| \cdot \log n \cdot \log(Diam(G)))$. Thus, the average stretch is $O(\log n \cdot \log(Diam(G)))$, as required.

Common mistakes: *forgetting that level i has many calls to $DetDecomp$; forgetting that the parameters D and α , given to $DetDecomp$, depend on the level in the tree; trying to prove claims similar to the ones seen in class rather than citing them*

5 Question 5

The algorithm creates an α -stretch spanning tree subgraph T , then runs a dynamic programming algorithm on T and returns the resulting set C . Since $d_T(v, u) \geq d_G(v, u)$ for every v and u , we have

$$\mathbb{E} \left[\sum_v d_G(v, C) \right] \leq \mathbb{E} \left[\sum_v d_T(v, C) \right] \leq \mathbb{E} \left[\sum_v d_T(v, C^*) \right] = \sum_v \mathbb{E} [d_T(v, C^*)] ,$$

where the second inequality follows from the optimality of the dynamic programming algorithm. Letting u^* be the vertex satisfying $\mathbb{E} [d_T(v, u^*)] = \min_{u \in C^*} \mathbb{E} [d_T(v, u)]$, we have

$$\mathbb{E} \left[\sum_v d_G(v, C) \right] \leq \sum_v \mathbb{E} [d_T(v, u^*)] = \sum_v \min_{u \in C^*} \mathbb{E} [d_T(v, u)] \leq \alpha \cdot \min_{u \in C^*} d_G(v, u) = \alpha \cdot OPT.$$

This algorithm requires that T be a subgraph of G . However, if we require 2α approximation, it would suffice to have $V(G) \subseteq V(T)$, since we can replace any node $u \in C \setminus V(G)$ by $z \in V(G)$, the closest node to u in T . For every $v \in V(G)$ we have $d_T(v, z) \leq d_T(v, u) + d_T(u, z) \leq 2d_T(v, u)$, yielding a 2-approximation to C , and 2α approximation to OPT . While the latter was intended, both answers were accepted.

Common mistake: *most of you did not show why $\mathbb{E} [d_T(v, C^*)] \leq \min_{u \in C^*} \mathbb{E} [d_T(v, u)]$. Note that this inequality holds since the minimum function is concave. In fact, if the distance to a set were defined as the distance to the farthest vertex in the set, the inequality would be reversed, i.e., we would have $\mathbb{E} [d_T(v, C^*)] \geq \max_{u \in C^*} \mathbb{E} [d_T(v, u)]$.*

Dynamic Programming: *The required dynamic programming algorithm was much more complicated than anticipated (such algorithm can be found in [1]). Thus, it was given no weight in the grade. However, any worthy attempt to provide an algorithm was rewarded with 5 points bonus.*

References

[1] Arie Tamir. An $O(pn^2)$ algorithm for the p -median and related problems on tree graphs. *Operations Research Letters*, 19(2):59–64, 1996.