
Solutions to Ex. 4

Yinon Nahum

July 18, 2018

1 Question 1

The algorithm is incorrect. (P1) holds trivially since the weak diameter of each ball is at

most 2δ ≤ D/2, but (P2) does not. A counter example is the line graph where the nodes

are ordered 1, 2, . . . , n from left to right, π is the identity order, i.e., π(i) = i for every i,

and 0.5n ≤ D ≤ n.

Note that V1 = {1, . . . , δ} and the nodes δ+1, δ+2, . . . , n are each in a separate component.

In particular, since δ ≤ D/4 < n, we have that n and n− 1 are separated with probability

1, but α · distG(n− 1, n) = α = o(1).

We correct this by choosing π to be a uniformly random permutation. Fix nodes u and v

and index i. We say that zi = π(i) separates if it is the first to include exactly one of u and

v in its ball. WLOG, assume zi is closer to v than to u.

Pr[zi separates] = Pr[zi separates | dist(zi, v) ≤ δ < dist(zi, u)]·Pr[dist(zi, v) ≤ δ < dist(zi, u)] .

(1)

Note that if dist(zi, v) > δ or dist(zi, u) ≤ δ, then zi cannot separate, thus the case is

omitted. Due to the choice of δ and the triangle inequality,

Pr[dist(zi, v) ≤ δ < dist(zi, u)] =
dist(zi, u)− dist(zi, v)

D/4−D/8 + 1
≤ dist(v, u)

D/8
. (2)

If zi separates, then dist(zi, {v, u}) < dist(zj, {v, u}) for every j < i, where the distance to

a set is defined in q. 5. Therefore,

Pr[zi separates | dist(zi, v) ≤ δ < dist(zi, u)]

≤ Pr[∀j < i : dist(zi, {v, u}) < dist(zj, {v, u}) | dist(zi, v) ≤ δ < dist(zi, u)]

= Pr[∀j < i : dist(zi, {v, u}) < dist(zj, {v, u})] = 1/i ,

where the penultimate equality follows since the unconditional event depends only on π

and the event conditioned on depends only on δ, and the last equality follows from the

1

choice of π. Plugging this and Ineq. (2) into Eq. (1), we have

Pr[zi separates] ≤ 1

i
· 8dist(v, u)

D
.

Taking union bound over all i yields (P2).

Common mistake: arbitrary permutation means the worst permutation, thus the algo-

rithm fails. Some of you mistook arbitrary to mean that you can choose the permutation

and claimed that the algorithms succeeds.

2 Question 2

(Q1) - By the definition of rv we have

C(E(v, rv)) > (1 + α)C(E(v, rv − 1)) > · · · > (1 + α)rv−1C(E(v, 1)) .

Since C(E(v, 1)) ≥ 1 and C(E(v, rv)) ≤ C, we have

C > (1 + α)rv−1 =
(
(1 + α)1/α

)α(rv−1) ≥ 2α(rv−1) ,

where the last inequality is Bernoulli’s. Therefore,

rv < 1 +
lnC

α ln 2
= 1 +

D

4 ln 2
≤ D/2 .

Therefore, the diameter of each ball is at most D.

Note: Using Bernoulli’s inequality, we assumed α ≤ 1. For large α’s, the algorithm might

fail. Since this was not mentioned in the question, points were not deducted for certain

false arguments.

(Q2) - Note that there are at most C(E(v`, rv` + 1)) − C(E(v`, rv`)) ≤ α · C(E(v`, rv`))

inter-cluster edges created at iteration ` by the cluster centered at v`. Summing over all

iterations, the total number of inter-cluster edges is at most α
∑

`C(E(v`, rv`)) ≤ αC(E).

3 Question 3

(a) - We find a tree with average stretch at most 7/3. Numbering the nodes on the ring

clockwise from 1 to n, we take all n/2− 1 edges on the path (1, 2, 3, . . . , n/2) and all n/2

chords. The stretch of all (n − 1) selected edges is 1. The stretch of the n/2 − 1 edges

{i, j} ⊆ [n/2 + 1, n] is 3 due to the path (i, i − n/2, j − n/2, j). The stretch of the edge

2

{1, n} is n/2 due to the path (1, 2, . . . , n/2, n). Symmetrically, for the edge {n/2, n/2 + 1}
the stretch is also n/2. Thus, the total stretch is

(n− 1) · 1 + (n/2− 1) · 3 + 2 · n/2 ≤ 7n/2 .

Since Wn has 3n/2 edges, the average stretch is at most 7/3. Note that the selected edged

form a tree since there are n− 1 such and the stretch of each original edge is finite.

Note: choosing n/2 cycle edges and n/2− 1 chords results in average stretch 8/3.

(b) - If the grid consists of 1 node, return the empty tree. Otherwise, we divide the

grid to 4 quarters, solve recursively to obtain trees T1, T2, T3, T4, each from one quarter,

and connect them by adding 3 edges forming a path of length 3 connecting all 4 trees in

the center of the original grid. Then return the resulting tree.

We first note that the diameter of the tree is O(
√
n). To show this, let D(n) denote the

diameter of the returned tree. Then D(n) ≤ 2D(n/4)+3, since we can walk from v ∈ Ti to

u ∈ Tj by first walking from v to the 3-path using edges in Ti, then walking on the 3-path

to reach Tj, and then walking to u using edges in Tj. By the Master Theorem, this yields

D(n) = O(
√
n).

We then note that the total stretch is O(n log n). To show this, let T (n) denote the total

stretch of the returned tree. Then T (n) ≤ 4T (n/4) +O(n), since the stretch of an edge in

each quarter is T (n/4) and the stretch of the 2
√
n inter-quarter edges is O(

√
n) as this is

the diameter. By the Master Theorem, this yields T (n) = O(n log n). Since an n-vertex

grid contains Ω(n) edges, the average stretch is O(log n).

Common mistakes: not connecting T1, T2, T3, T4 properly, resulting in a large tree diame-

ter; struggling with complicated inductive proofs, instead of using the Master Theorem; not

showing that the tree diameter is O(
√
n).

4 Question 4

Replace LDD with DetDecomp. We saw in class (Claim 6.4 in the lecture notes), dT (u, v) ≥
dG(u, v). To prove the upper bound, consider a call to DetDecomp(G′, D/2i−1) occuring

on level i of the tree, and denote E ′ = E(G′). By the Lemma in q. 2, this call creates at

most 4 ln(|E′|)
D/2i−1 · |E ′| inter-cluster edges, and by what we saw in class (Claim 6.5 in the lecture

notes), each has a stretch of at most 4D/2i−1. This leads to a total stretch of at most

4 ln(|E ′|)
D/2i−1

· |E ′| · 4D

2i−1
= 16|E ′| ln |E ′| = O(|E ′| log n) .

Since each edge is cut at some call to DetDecomp, Summing over all calls in level i, we

obtain a total stretch of O(|E| log n). Summing over all the levels, we obtain a total stretch

3

of O(|E| · log n · log(Diam(G))). Thus, the average stretch is O(log n · log(Diam(G))), as

required.

Common mistakes: forgetting that level i has many calls to DetDecomp; forgetting that

the parameters D and α, given to DetDecomp, depend on the level in the tree; trying to

prove claims similar to the ones seen in class rather than citing them

5 Question 5

The algorithm creates an α−stretch spanning tree subgraph T , then runs a dynamic pro-

graming algorithm on T and returns the resulting set C. Since dT (v, u) ≥ dG(v, u) for every

v and u, we have

E

[∑
v

dG(v, C)

]
≤ E

[∑
v

dT (v, C)

]
≤ E

[∑
v

dT (v, C∗)

]
=
∑
v

E [dT (v, C∗)] ,

where the second inequality follows from the optimality of the dynamic programming al-

gorithm. Letting u∗ be the vertex satisfying E [dT (v, u∗)] = minu∈C∗ E [dT (v, u)], we have

E

[∑
v

dG(v, C)

]
≤
∑
v

E [dT (v, u∗)] =
∑
v

min
u∈C∗

E [dT (v, u)] ≤ α · min
u∈C∗

dG(v, u) = α ·OPT.

This algorithm requires that T be a subgraph of G. However, if we require 2α ap-

proximation, it would suffice to have V (G) ⊆ V (T), since we can replace any node

u ∈ C \ V (G) by z ∈ V (G), the closest node to u in T . For every v ∈ V (G) we have

dT (v, z) ≤ dT (v, u) + dT (u, z) ≤ 2dT (v, u), yielding a 2-approximation to C, and 2α ap-

proximation to OPT . While the latter was intended, both answers were accepted.

Common mistake: most of you did not show why E [dT (v, C∗)] ≤ minu∈C∗ E [dT (v, u)].

Note that this inequality holds since the minimum function is concave. In fact, if the dis-

tance to a set were defined as the distance to the farthest vertex in the set, the inequality

would be reversed, i.e., we would have E [dT (v, C∗)] ≥ maxu∈C∗ E [dT (v, u)].

Dynamic Programming: The required dynamic programming algorithm was much more

complicated than anticipated (such algorithm can be found in [1]). Thus, it was given no

weight in the grade. However, any worthy attempt to provide an algorithm was rewarded

with 5 points bonus.

References

[1] Arie Tamir. An o (pn2) algorithm for the p-median and related problems on tree graphs.

Operations Research Letters, 19(2):59–64, 1996.

4

