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1 Question 1

The algorithm is incorrect. (P1) holds trivially since the weak diameter of each ball is at
most 20 < D/2; but (P2) does not. A counter example is the line graph where the nodes
are ordered 1,2,...,n from left to right, 7 is the identity order, i.e., (i) = i for every i,
and 0.5n < D < n.

Note that V; = {1,...,d} and the nodes §+1,0+2, ..., n are each in a separate component.
In particular, since 6 < D/4 < n, we have that n and n — 1 are separated with probability
1, but a - distg(n — 1,n) = a = o(1).

We correct this by choosing 7 to be a uniformly random permutation. Fix nodes u and v
and index i. We say that z; = 7(i) separates if it is the first to include exactly one of u and

v in its ball. WLOG, assume z; is closer to v than to w.

Pr[z; separates| = Pr[z; separates | dist(z;,v) < 6 < dist(z;,u)]-Pr[dist(z;,v) < < dist(z;,u)].

(1)
Note that if dist(z;,v) > § or dist(z;,u) < 0, then z; cannot separate, thus the case is
omitted. Due to the choice of § and the triangle inequality,

dist(z, u) — dist(z;, dist(v,
Pr(dist(z;,v) <6 < dist(z;,u)] = 2 l()z/éluz D/;S—i—(zl v) < ZSD(78U) : (2)

If z; separates, then dist(z;, {v,u}) < dist(z;, {v,u}) for every j < i, where the distance to
a set is defined in q. 5. Therefore,

Pr[z; separates | dist(z;,v) < 0 < dist(z;,u)]
< Pr[Vj <i:dist(z,{v,u}) <dist(z;,{v,u}) | dist(z;,v) < < dist(z;,u)]
= Pr|Vj <i:dist(z, {v,u}) < dist(zj,{v,u})] = 1/i,

where the penultimate equality follows since the unconditional event depends only on m

and the event conditioned on depends only on 4, and the last equality follows from the
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choice of w. Plugging this and Ineq. (2) into Eq. (1), we have

1 8dist
Pr|z; separates] < - - —Zslgv,u) :
i

Taking union bound over all ¢ yields (P2).
Common mistake: arbitrary permutation means the worst permutation, thus the algo-
rithm fails. Some of you mistook arbitrary to mean that you can choose the permutation

and claimed that the algorithms succeeds.

2 Question 2

(Q1) - By the definition of r, we have
C(E(v,r,)) > (14+a)C(E(v,r, —1)) >+ > (14+ )" 'C(E(v,1)) .
Since C'(E(v,1)) > 1 and C(E(v,1,)) < C, we have
C > 1+t = (L+a)?) " > et

where the last inequality is Bernoulli’s. Therefore,

InC D
1 =14 —<D/2.
Tv < +aln2 +41n2_ /

Therefore, the diameter of each ball is at most D.
Note: Using Bernoulli’s inequality, we assumed o < 1. For large a’s, the algorithm might
fail. Since this was not mentioned in the question, points were not deducted for certain

false arguments.
(Q2) - Note that there are at most C(E(vg, 1y, + 1)) — C(E(ve,1,)) < a - C(E(vg,1y,))
inter-cluster edges created at iteration ¢ by the cluster centered at v,. Summing over all

iterations, the total number of inter-cluster edges is at most a ), C(E(vy,1y,)) < aC(E).

3 Question 3

(a) - We find a tree with average stretch at most 7/3. Numbering the nodes on the ring
clockwise from 1 to n, we take all n/2 — 1 edges on the path (1,2,3,...,n/2) and all n/2
chords. The stretch of all (n — 1) selected edges is 1. The stretch of the n/2 — 1 edges
{i,7} € [n/2+ 1,n] is 3 due to the path (i,i —n/2,j —n/2,j). The stretch of the edge
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{1,n} is n/2 due to the path (1,2,...,7n/2,n). Symmetrically, for the edge {n/2,n/2+ 1}
the stretch is also n/2. Thus, the total stretch is

(n—1)-14+(n/2—-1)-342-n/2 < Tn/2.

Since W), has 3n/2 edges, the average stretch is at most 7/3. Note that the selected edged
form a tree since there are n — 1 such and the stretch of each original edge is finite.
Note: choosing n/2 cycle edges and n/2 — 1 chords results in average stretch 8/3.

(b) - If the grid consists of 1 node, return the empty tree. Otherwise, we divide the
grid to 4 quarters, solve recursively to obtain trees 17, Ts, T3, T}y, each from one quarter,
and connect them by adding 3 edges forming a path of length 3 connecting all 4 trees in
the center of the original grid. Then return the resulting tree.

We first note that the diameter of the tree is O(y/n). To show this, let D(n) denote the
diameter of the returned tree. Then D(n) < 2D(n/4)+ 3, since we can walk from v € T; to
u € Tj by first walking from v to the 3-path using edges in T;, then walking on the 3-path
to reach Tj, and then walking to u using edges in 7. By the Master Theorem, this yields
D(n) = O(v/n).

We then note that the total stretch is O(nlogn). To show this, let T'(n) denote the total
stretch of the returned tree. Then T'(n) < 4T'(n/4) + O(n), since the stretch of an edge in
each quarter is T'(n/4) and the stretch of the 24/n inter-quarter edges is O(y/n) as this is
the diameter. By the Master Theorem, this yields 7'(n) = O(nlogn). Since an n-vertex
grid contains ©(n) edges, the average stretch is O(logn).

Common mistakes: not connecting 11, T, T3, T, properly, resulting in a large tree diame-
ter; struggling with complicated inductive proofs, instead of using the Master Theorem; not
showing that the tree diameter is O(y/n).

4 Question 4

Replace LDD with DetDecomp. We saw in class (Claim 6.4 in the lecture notes), dr(u,v) >
dc(u,v). To prove the upper bound, consider a call to DetDecomp(G’', D/2"7!) occuring

on level i of the tree, and denote E' = FE(G"). By the Lemma in q. 2, this call creates at
4In(|E])
D/Qifl

notes), each has a stretch of at most 4D/2"~!. This leads to a total stretch of at most
41n(|E"]) 2| 4D
D/Qz‘—l 2i—1

most -|E'| inter-cluster edges, and by what we saw in class (Claim 6.5 in the lecture

— 16|E/|1n|E'| = O(|E'|logn) .

Since each edge is cut at some call to DetDecomp, Summing over all calls in level i, we

obtain a total stretch of O(|E|logn). Summing over all the levels, we obtain a total stretch
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of O(|E| - logn - log(Diam(G))). Thus, the average stretch is O(logn - log(Diam(G))), as
required.

Common mistakes: forgetting that level © has many calls to Det Decomp; forgetting that
the parameters D and «, given to Det Decomp, depend on the level in the tree; trying to
prove claims similar to the ones seen in class rather than citing them

5 Question 5

The algorithm creates an a—stretch spanning tree subgraph 7', then runs a dynamic pro-
graming algorithm on 7" and returns the resulting set C'. Since dr(v,u) > dg(v,u) for every

v and u, we have

> da(v,C) > dr(v,C) > dr(v,C*)

where the second inequality follows from the optimality of the dynamic programming al-

E < E < E

— Y Eldr(v,C")] |

gorithm. Letting u* be the vertex satisfying E [dr(v, u*)] = mingec+ E [dr(v, u)], we have

Z dg(v, C)

This algorithm requires that 7" be a subgraph of G. However, if we require 2a ap-

E

< ZE [dr(v,u™)] = 7Ereucr}kﬂﬁl ldr(v,u)] < a- geucn dg(v,u) =a-OPT.

proximation, it would suffice to have V(G) C V(T), since we can replace any node
u e C\V(G) by z € V(G), the closest node to u in T. For every v € V(G) we have
dr(v,z) < dr(v,u) + dr(u,z) < 2dr(v,u), yielding a 2-approximation to C, and 2a ap-
proximation to OPT. While the latter was intended, both answers were accepted.
Common mistake: most of you did not show why E [dr(v,C*)] < minecs E [dr(v, u)].
Note that this inequality holds since the minimum function is concave. In fact, if the dis-
tance to a set were defined as the distance to the farthest vertex in the set, the inequality
would be reversed, i.e., we would have E [dr(v,C*)] > max,ecc~ E [dr (v, u)].

Dynamic Programming: The required dynamic programming algorithm was much more
complicated than anticipated (such algorithm can be found in [1]). Thus, it was given no
weight in the grade. However, any worthy attempt to provide an algorithm was rewarded
with 5 points bonus.
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