Exercise 1: May 01

Lecturer: Merav Parter

Girth and Short Cycles

Recall that the girth $g(G)$ of a graph G is the length of the shortest cycle in G. Erdős girth conjecture states that for every $k \geq 1$ and sufficiently large n, there exist n-vertex graphs with $\Omega\left(n^{1+1 / k}\right)$ edges and girth at least $2 k+1$. A weaker lower bound can be shown via the probabilistic approach. Specifically, we will prove that there exists an n-vertex graph G^{*} with $\Omega\left(n^{1+1 /(2 k-1)}\right)$ edges and girth $g(G)$ at least $2 k+1$.

Exercise 1. The existence of G^{*} can be shown in two steps. (I) Consider a $G(n, p) \operatorname{graph}^{1}$ with $p=$ $\Theta\left(1 / n^{1-1 /(2 k-1)}\right)$ and bound the expected (total) number of cycles of length $t \leq 2 k$ in this graph. (II) Prove the existence of n-vertex graph G^{\prime} with $\Theta\left(n^{1+1 /(2 k-1)}\right)$ edges and a small number of cycles and turned it into the desired graph G^{*} while keeping the same order of the number of edges as in G^{\prime}.

Distance Oracles

This section is devoted for the Thorup and Zwick distance oracles that we have covered in the last class.

Exercise 2 [DO w. No Swap]. Assume that the query algorithm does not swap the roles of u and v. Specifically, consider the following simplified query algorithm. Let i^{*} be min value such that $p_{i^{*}}(v) \in B_{i^{*}}(u)$. Return $\delta(u, v)=\operatorname{dist}_{G}\left(v, p_{i^{*}}(v)\right)+\operatorname{dist}_{G}\left(p_{i^{*}}(v), u\right)$. Note that the value i^{*} can be detected in $O(k)$ time. Show that $\delta(u, v) \leq(4 k-3) \operatorname{dist}_{G}(u, v)$.

Exercise 3 [Sourcewise DOs] The distance oracle presented in class supports distance queries u, v for any $u, v \in V \times V$. Our goal is to construct a smaller oracle of size $o\left(n^{1+1 / k}\right)$ that would handle only a subset of query pairs. In particular, you are now given a subset of vertices, called hereafter, sources, $S \subseteq V$ and it is required to design a source-wise approximate distance oracle scheme. In such a scheme, the query algorithm receives only queries of the form $u, v \in S \times V$ (i.e., your oracle should only answer distance queries between one of the sources and some other vertex in the graph). Show that in such a case, the preprocessing algorithm can be adapted to yield a data structure of size $\widetilde{O}\left(k|S|^{1 / k} \cdot n\right)$. Your answer should include a modified preprocessing algorithm, query algorithm and a correctness analysis.

[^0]
[^0]: ${ }^{1}$ In $G(n, p)$ graph, each of the $\binom{n}{2}$ edges exists with probability p.

