Succinct Graph Structures and Applications

Spring 2020

Exercise 4: July 2

Lecturer: Merav Parter

Gomory-Hu Trees

We saw last week the Gomory-Hu tree algorithm which encodes all the s-t cuts in G in a single tree structure, using only n-1 min-cut computations. It is known that one can extend the Gomory-Hu construction to encode the "minimum-cut" equivalent of any symmetric and sub-modular function $f: 2^V \to \mathbb{R}$.

Exercise 1. Let $G = (V, \mathcal{E})$ be a hypergraph where each edge $W \in \mathcal{E}$ is simply a subset of vertices. (In standard graphs, |W| = 2, but in hypergraph, the cardinality of an hyperedge can be arbitrarily large). For a subset of vertices S, the value of the cut $\delta_G(S)$ is the number of all hyperedges that contain both vertices in S and vertices not in S. That is, $\delta_G(S) = |\{W \in \mathcal{E} \mid W \setminus S \neq \emptyset \text{ and } W \cap S \neq \emptyset\}|$.

Consider the function $f: 2^V \to \mathbb{N}$ where $f(S) = \delta_G(S)$ for every $S \subseteq V$. Show that f is a symmetric and sub-modular function.

Exercise 2. Using the Gomory-Hu trees one can show several facts on minimum cuts that are otherwise hard to prove directly. Here is one such a example. Let G be a graph with minimum-degree k. Show that there is some pair $s, t \in V(G)$ with $\alpha_G(s,t) \geq k$, where $\alpha_G(s,t)$ is the minimum s-t cut in G.

FT-BFS Structures

Exercise 3. Given a graph G = (V, E) and a subset of sources S, a subgraph $H \subseteq G$ is a Multi-Source FT-BFS w.r.t S if

$$\operatorname{dist}_{H\setminus\{e\}}(s,t) = \operatorname{dist}_{G\setminus\{e\}}(s,t), \forall s,t\in V, e\in E$$
.

We saw in class today a simple algorithm for the case where |S|=1 which is based on the notion of near and far edge faults. Show that a slight modification of this algorithm provides Multi-Source FT-BFS w.r.t S sources with $\widetilde{O}(\sqrt{|S|n} \cdot n)$ edges. **Bonus** (5 points): Show that this edge bound is tight by modifying the lower-bound graph example as well.

¹For a given function $f: 2^V \to \mathbb{R}$, the "minimum-cut" equivalent is defined by $\alpha_{f,G}(u,v) = \min_{W \in V, |W \cap \{u,v\}| = 1} f(W)$.