Succinct Graph Structures and Their Applications

Spring 2018

Exercise 4: June 07

Lecturer: Merav Parter

Low-Diameter Decomposition

A low-diameter decomposition of a graph G = (V, E) and a parameter D is a randomized partitioning of the vertices V into V_1, \ldots, V_t such that:

- (P1) the weak-diameter¹ of each $G[V_i]$ is at most D, and
- (P2) for every $u, v \in V$, $Pr(u \in V_i \text{ and } v \in V_{i \neq i}) = \alpha \cdot \text{dist}_G(u, v)$ for $\alpha = O(\log n/D)$.

Exercise 1. In this exercise, we consider a candidate algorithm for computing a low-diameter decomposition. For a vertex v and integer r, let $B(u,r) = \{v \in V \mid \mathtt{dist}_G(u,v) \leq r\}$ be the r-radius ball of u in G.

Algorithm Decomp(G, D)

- 1. Pick a radius $\delta \in [D/8, D/4]$ at random.
- 2. Consider the vertices in an arbitrary order π .
- 3. The i^{th} set V_i is the set of all vertices in $B(\pi(i), \delta) \setminus \bigcup_{j < i} B(\pi(j), \delta)$

Figure 4.1: A Low-Diameter Decomposition Algorithm?

Prove or disprove: the sets $G[V_1], \ldots, G[V_n]$ satisfy the properties (P1) and (P2) w.h.p. In case you think the algorithm is incorrect, suggest how to fix it (along with a proof that your fix works).

Exercise 2. We now turn to consider a deterministic procedure from computing low-diameter decomposition. The benefit of this procedure is that it also handles multi-graphs (where a given edge might have several copies in the graph). In addition, the clusters computed by this procedure will have small strong-diameter². Let c(e) be the number of copies of an edge $e \in G$ and for a subset of edges $F \subseteq E(G)$, let $C(F) = \sum_{e \in F} c(F)$. Let $E(u, r) = \{(x, y) \in E(G) \mid x, y \in B(u, r)\}$ be the G-edges connecting vertices in B(u, r).

The input to the decomposition algorithm $\mathsf{DetDecomp}$ (see Fig. 4.2) consists of (1) a multi-graph G = (V, E, c) (where each edge $e \in E$ has c(e) copies in G), and (2) a desired diameter parameter D. Prove that the following lemma holds.

Lemma. Consider an unweighted undirected graph G = (V, E) with C = C(E) and let $\alpha = 4 \ln(C)/D$. Then Alg. DetDecomp (G, D, α) returns subsets V_1, \ldots, V_k s.t:

- (Q1) The strong diameter of each subgraph $G[V_i]$ is at most D.
- (Q2) There are at most $\alpha \cdot C(E)$ inter-cluster edges (i.e., edges connecting $u \in V_i$ and $v \in V_{j\neq i}$). (This is the deterministic equivalent of property (P2) in Exercise 1).

The weak diameter of a subgraph $G' \subseteq G$ with respect to G is $\max_{u,v \in G'} \mathtt{dist}(u,v,G)$.

²The strong diameter of a subgraph $G' \subseteq G$ is $\max_{u,v \in G'} \mathtt{dist}_{G'}(u,v)$.

4-2 Exercise 4: June 07

Algorithm DetDecomp($G = (V, E, c), D, \alpha$)

- 1. Set $\ell \leftarrow 1$.
- 2. While G is nonempty do:
 - (a) Pick a vertex v in G.
 - (b) Let r_v be the smallest r satisfying that $C(E(v,r+1)) \leq (1+\alpha)C(E(v,r))$.
 - (c) $V_{\ell} \leftarrow B(v, r_v)$.
 - (d) $\ell \leftarrow \ell + 1$.
 - (e) Remove all vertices of V_{ℓ} from G (along with their edges).
- 3. Return V_1, \ldots, V_k .

Figure 4.2: Deterministic low-diameter decomposition algorithm

Trees with Small Average Stretch

We showed in classes 06 and 07, the construction of distribution over trees such that the expected stretch of each pair u,v (when sampling a tree from the distribution) is bounded by α . A dual problem considers the construction of a *single* tree (either a subgraph of G or not) that has a small *average* stretch over all edges (u,v) in G. Formally, given an unweighted graph G=(V,E) and a tree T with $V(G)\subseteq V(T)$, define the average stretch of T by: $1/|E(G)|\cdot \sum_{(u,v)\in E} {\tt dist}_T(u,v)$.

Exercise 3. (a) Given n even, let W_n be the wheel graph consisting of n vertex ring C_n together with chords joining antipodal points on the ring. Find a tree $T \subseteq W_n$ with average stretch at most 8/3. (b) Show that the 2-dimensional $\sqrt{n} \cdot \sqrt{n}$ grid has a spanning tree with average stretch $O(\log n)$.

Exercise 4. In class 06, we showed a randomized construction of a tree T such that $V(G) \subseteq V(T)$ and $\operatorname{dist}_G(u,v) \leq Exp(\operatorname{dist}_T(u,v)) \leq \alpha \cdot \operatorname{dist}_G(u,v)$ for every $u,v \in V(G)$. Adapt this construction to provide a tree T (where $V(G) \subseteq V(T)$) with average stretch at most α .

Applications of Tree Embedding

Low-stretch tree embeddings have many applications in approximation algorithms. The general recipe is to solve the first the problem of interest on a ree T of G that is sampled from the low-stretch tree distribution, and then to "translate" the solution back to G. We will now see one such example.

Exercise 5. In the k-median problem, we are given a graph G = (V, E) and parameter $k \geq 1$, the goal is to find a subset $C \subseteq V$ of k vertices that minimizes $\sum_{v \in V} \mathtt{dist}_G(v, C)$ where $\mathtt{dist}_G(v, C) = \min_{c \in C} \mathtt{dist}_G(v, c)$. Whereas the k-median problem is NP-hard for general graphs, one can compute an exact solution (hint: dynamic programming) for the problem in time $\mathtt{poly}(n, k)$ when the given graph is a tree.

Provide a randomized³ polynomial time algorithm for the problem that computes a set $C' \subseteq V$ of size k such that $Exp(\sum_{v \in V} \mathtt{dist}_G(v, C')) \leq \alpha \cdot OPT$ where $OPT = \sum_{v \in V} \mathtt{dist}_G(v, C^*)$ is the cost of the optimal algorithm. You can use the algorithms of classes 06 and 07 as black-box. Do we have to use an α -stretch spanning tree T which is subgraph of G? or would it be sufficient that $V(G) \subseteq V(T)$?

 $^{^3}$ The randomization part comes from the randomized algorithm for constructing the tree.