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Randomized Maximal Independent Set (MIS)

Luby’s Round: Every vertex v picks a number rv sampled u.a.r in [0, 1], and joins the MIS if it is the
local minima in its neighborhood, i.e., if rv < ru for every u ∈ N(v). MIS nodes and their neighbors are
removed from the graph.

The analysis for this algorithm is based on showing that in each round, the number of active edges1 is
reduced by a factor of 2 in expectation. Thus, after O(log n) rounds, one can show that w.h.p. there are no
active edges and the entire graph is decided.

In this class, we will show an improved algorithm by Ghaffari [Gha16] that solves MIS w.h.p within

O(log ∆)+2O(
√

log log n) rounds. We will in fact show a simplified variant with round complexity of O(log ∆)+

2O(
√

log ∆+log log n). This algorithm follows the two-stage structure: a pre-shattering randomized algorithm
of O(log ∆) rounds, followed by a deterministic algorithm that solves the remaining undecided subgraph.

Local Complexity vs. Global Complexity. The local complexity of a distributed algorithm is the
number of rounds until a fixed vertex v terminates with good probability. Throughout a good probability is
polynomially small in ∆, i.e., 1 − 1/∆c for some constant c. The randomized algorithm with a small local
complexity can complemented by a deterministic algorithm that solves the shattered graph.

The randomized phase of Ghaffari’s algorithm has O(log ∆) rounds with the guarantee that each vertex v
remains undecided2 after this phase with probability of 1/∆c. This holds even if the coins of all nodes not
in N+

2 (v) = {v} ∪ {u | dist(u, v) ≤ 2} are determined in an adversarial manner.

The intuition that underlies this algorithm is that there are two good scenarios for a given vertex v. Either v
has a small number of neighbors that are still undecided. In such a case, it has a small number of competitors
and thus has a good chance of joining MIS. Alternatively, v has many neighbors, most of them of low-degree.
In this case, there is a good chance that at least one of v’s neighbors will join the MIS, and v will be removed.
Ghaffari’s randomized algorithm is based upon creating a dynamic that guarantees that for a vertex v that
is not yet decided after Θ(log ∆) rounds, w.p. 1 its spends a constant fraction of its life time in the above
mentioned good scenarios. The (pre-shattering) algorithm is given below.

Ghaffari’s MIS Algorithm:
Set p1(v) = 1/2.

pt+1(v) =

{
1/2 · pt(v), if dt(v) ≥ 2

min{2pt(v), 1/2}, if dt(v) < 2,

where dt(v) =
∑

u∈N(v) pt(u) is the effective degree of node v in round t. In each round t, the node

v gets marked with probability pt(v) and if none of its neighbors is marked, v joins the MIS and gets
removed along with its neighbors.

Lemma 4.1 After T = β(log ∆ + log 1/ε) rounds, the probability that a vertex v is undecided is at most ε.

1Edges whose both endpoints are still undecided (not in MIS and their neighbors are not in the MIS).
2By undecided we mean that the vertex is not yet in the MIS and that none of its neighbors is yet in the MIS.
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We can in fact replace ∆ with deg(v) in the above expression, i.e., vertex v is decided with probability at
least 1− ε after β(log deg(v) + log 1/ε).

To prove this lemma, we take the following strategy. First, we define two types of rounds that are good for
a given vertex v, by good we mean that v has a constant chance, say of 1/100, of being removed in these
rounds. Then, we show that after T rounds, either v is decided or that it had experienced at least T/13
good rounds throughout its lifetime. Then, due to independencies between rounds, we can conclude that the
probability that v has survived that many rounds is (1/100)T/13 ≤ ε/∆ ≤ ε for a sufficiently large β.

A vertex v is low-deg in round t if dt(v) < 2, and otherwise it is high-deg. Let Lt(v) = {u ∈ N(v) | dt(u) < 2}
be the low-deg neighbors of v in round t.

Definition 4.2 (Golden-In) A round t is golden-in for a vertex v if pt(v) = 1/2 and dt(v) < 2 .

Definition 4.3 (Golden-Out) A round t is golden-out for a vertex v if dt(v) ≥ 1 and at least dt(v)/10 is
due to low-deg nodes. That is,

∑
u∈Lt(v) dt(u) ≥ dt(v)/10.

Claim 4.4 (Golden-In is good) If round t is golden-in for a vertex v, then v joins MIS in round t w.p.
at least 1/32.

Proof: For v to join the MIS, it has to be marked (which happens w.p. pt(v)) and that none of its neighbors
is marked. Thus,

Pr[v joins the MIS] ≥ 1/2 ·
∏

u∈N(v)

(1− pt(u)) ≥ 1/2 · 1/4
∑

u∈N(v) pt(u)

= 1/2 · 1/4dt(v) ≥ 1/32 ,

where the third inequality follows by using the inequality of (1− x) ≥ 1/4x for every x ∈ [0, 1/2].

Claim 4.5 (Golden-Out is good) If round t is golden-in for a vertex v, then w.p at least 1/100, v has a
least one low-deg neighbor that joins the MIS in round t, and thus v is removed.

Proof: We first bound the probability that at least one of the low-deg neighbors of v is marked. Then we
will show that a low-deg vertex has a good chance of joining the MIS given that it is marked.

Pr[v has a low-deg neighbor that gets marked] ≥ 1−
∏

u∈Lt(v)

(1− pt(u)) ≥ 1− e−
∑

u∈Lt(v) pt(u)

≥ 1− e−dt(v)/10 ≥ 1− e−1/10 .

In addition, for every low-deg vertex v it holds that:

Pr[A low-deg vertex u joins MIS | u is marked] ≥
∏

w∈N(u)

(1− pt(w)) ≥ 1/4
∑

w∈N(u) pt(w) = 4−dt(u) ≥ 1/16 .

Overall, we get that v is removed w.p. at least (1− e−1/10) · 1/16 ≥ 1/100.

We next show that a vertex that remains undecided had many golden rounds throughout the execution.

Lemma 4.6 After T rounds, either v is removed or that it had at least T/13 golden rounds.

Proof: Let gin be the number of golden-in rounds for v, i.e., rounds in which pt(v) = 1/2 and dt(v) < 2.
Let gout be the number of golden-out rounds for v, i.e., rounds in which dt(v) ≥ 1 and at least dt(v)/10 is
due to low-deg vertices (with dt(u) < 2). Finally, let h denote the number of rounds in which dt(v) ≥ 2.

Step 1: Small gin → Large h. Assume that gin < T/13 (otherwise we are done). Observe that there are
three types of rounds: rounds in which we increase the pt(v) by a factor of 2, reduce it by a factor of 2 or
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do not change its value. In the latter case it must be that pt(v) = 1/2. Also observe that since the value of
pt(v) is at most 1/2, the number of rounds in which we increase it by a factor of 2 is at most the number of
rounds in which we reduce it by that factor. Finally, observe that whenever dt(v) ≥ 2, we reduce pt(v) be a
factor of 2. Combining these observations we get that (# rounds in which pt(v) = 1/2) ≥ T − 2h.
Thus, gin ≥ T − 3h as in golden-in rounds, pt(v) = 1/2 and dt(v) < 2. As gin < T/13, we get that
h ≥ 4/13 · T .

Step 2: Large h→ Large gout. Note that a golden-out round should satisfy two properties: (1) dt(v) ≥ 1
and (2) at least dt(v)/10 is due to low-deg vertices. All the rounds of h satisfy the first property (with a
slack!), but they do not necessarily satisfy the second property. We will show that if there are many rounds
in which (1) holds then there should be many rounds in which the two properties hold, and thus gout is large.
We call a round bad if it satisfies (1) but does not satisfy (2). Note that for every bad round t it holds that:

dt+1(v) ≤ 1/2 · 9/10 · dt(v) + 2 · 1/10 · dt(v) ≤ 2/3dt(v) .

To see this observe that since the bad round t does not satisfy (2), the total degree due to high-deg nodes is at
least 9/10 · dt(v). Those high-deg nodes u have dt(u) ≥ 2, and therefore for each such u, pt+1(u) = pt(u)/2.
The marking probabilities of the remaining low-deg nodes can be at most doubled, and thus the total
contribution of the low-deg nodes in at most 1/5 · dt(v).

This implies that every bad round cuts dt(v) by a constant factor. Observe that dt(v) is at most ∆. These
reductions can be somewhat compensated by the interleaving good rounds (golden-out rounds), but their
effect is quite limited: every golden-out round can at most double the effective degree, and can therefore
cancel the reduction of at most two bad rounds as (2/3)2 · 2 < 1. Overall, by ignoring the gout rounds
and their cancellations, we get that h − gout − 2gout ≤ log3/2 ∆, and thus gout ≥ (h − log3/2 ∆)/3. Taking
h ≥ 400(log ∆ + log 1/ε), we get that gout > 100(log ∆ + log 1/ε).

By using Claims 4.4, 4.5, Lemma 4.6 and taking ε = 1/∆c, we get that each vertex is decided after O(log ∆)
rounds w.p. at least 1− 1/∆c.

The Post-Shattering Algorithm. After applying the first phase of Ghaffari’s algorithm, the remaining
undecided subgraph is solved deterministically using the same approach as we saw last class from [BEPSv3].

Recall that an MIS can be solved deterministically in 2O(
√

log n) rounds by applying network decomposition
(see first class). We will show that after applying the first phase each connected component is small, i.e.,

has Õ(∆4) vertices, which leads to the total round complexity of O(log ∆) + 2O(
√

log ∆+log log n).

Observation 4.7 Fix a set S of 5-independent vertices (i.e., dist(u, v,G) ≥ 5 for every u, v ∈ S). The
probability that all vertices in S are undecided after the first phase is at most 1/∆c·|S|.

Proof: For a vertex v the probability of joining the MIS in the given round, only depends on its immediate
neighbors. However, the probability that v is removed depends also on the probability that one of v’s
neighbors joins the MIS. Therefore the decisions of v depend only on its 2-hop neighbors. Since the 2-hop
neighborhoods of vertices at distance at least 5 are vertex disjoint, and since each vertex is undecided w.p.
1/∆c, we get that all vertices in S are undecided is bounded by 1/∆c|S|.

Lemma 4.8 W.h.p. after the first phase, the size of each connected component in the remaining undecided
subgraph is at most log∆ n ·∆4.

Proof: The proof is very similar to the one we showed in the previous class for the coloring problem. The
main distinction is that here we have independency between vertices at distance at least 5, and in the coloring
algorithm, we had independency between vertices at distance at least 3.

Fix a subset T of log∆ n vertices that is (1) 5-independent and (2) connected in G5. By Obs. 4.7, the
probability that all vertices in T are undecided at the end of the first phase is at most 1/nc. We next bound
the number of such sets T . There are 4log∆ n distinct unlabeled rooted trees with log∆ n vertices. In addition,
there are n ·∆5 log∆ n to embed each such tree in T . Thus in total there are at most 4log∆ n ·n ·∆5 log∆ n ≤ n6
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such sets. By taking c to be large enough, we can applying the union bound and conclude that w.h.p. there
are no sets T that satisfy (i) and (ii) and remains undecided after the first phase.

Assume now towards contraction that the undecided subgraph contains a large component C of size at least
log∆ n ·∆4. By applying a greedy procedure over C, we can compute a set T of size |C|/∆4 that satisfies (i)
and (ii), thus leading to a contradiction.

By employing the deterministic MIS algorithm (via network decomposition), we get:

Corollary 4.9 The remaining undecided subgraph can be solved in 2O(
√

log ∆+log log n) rounds.
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