
Advanced Distributed Algorithms Spring 2019

Lecture 5: May 19
Lecturer: Merav Parter

Today’s class is based on a seminal paper by Chang, Kopelowitz and Pettie [CKP16] that studies the relation
between the deterministic and randomized complexity for solving local problems.

Locally Checkable Labels (LCL)

The class of Locally Checkable Labeling (LCL) problems introduced by Naor and Stockmeyer [NS95] contains
all problems whose solution can be verified in O(1) number of rounds. In the distributed verification setting,
it is required that if the solution for the problem is indeed correct, then all nodes output 1. On the other
hand, if the solution is incorrect, then there is at least one vertex that outputs 0 (i.e., it is sufficient to have
at least one vertex that detects the problem). For example, vertex-coloring is an LCL problem since given
colors to the vertices the nodes can verify within a single communication round that the coloring is legal.
Also, MIS is an LCL as given a marking of the independent set, every marked node can verify that no other
neighbor is marked, and any non-marked neighbor can verify that at least one of its neighbors is marked.
Formally, an LCL problem is defined by an alphabet Σ of vertex labels, along with a specification of legal
labeling. The solution specifies a label in Σ to each vertex and it is required that there exists r = O(1) such
that if the labeling solution is correct then the labels of any r-ball is legal. If the labeling is illegal, then the
labels of the least one r-ball in the graph is illegal. See [CKP16] for a more formal definition.

The Necessity of the Graph Shattering Technique

In the previous classes, we showed that the state-of-the-art randomized algorithms for MIS and (∆ + 1)

coloring have a two phase structure: a randomized part followed by a deterministic part of 2O(
√

log logn)

rounds that solves the remaining unsolved graph. In the very high level, this 2O(
√

log logn) stems from
applying the 2

√
logN -round network decomposition algorithm on unsolved pieces of size N = poly log n. In

this class, we show that, perhaps surprisingly, the shattering step in necessary! In other words, improving
that 2O(

√
log logn) term in the round complexity boils down to improving the deterministic round complexity

of network decomposition.

Lemma 5.1 (From Det. LB to Rand. LB) Let P be a LCL problem and let Det(n,∆) denote the de-
terministic optimal round complexity for solving P on an n-vertex graph with maximum degree ∆. Let
Rand(n,∆) be the complexity of a randomized algorithm that solves P on these graphs with global error1 at

most 1/n. Then: Det(n,∆) ≤ Rand(2n
2

,∆) .

Let Arand be a randomized algorithm for solving P on n-vertex graphs G with maximum degree ∆. In such
an algorithm, every vertex v ∈ G generates r(n,∆) random bits and runs the algorithm for t(n,∆) rounds,
where r(·, ·) and t(·, ·) are two arbitrary functions. After t(n,∆) rounds, all vertices output the desired state
w.p. at least 1−1/n. Our goal is to transform this randomized algorithm into a deterministic one. Let Gn,∆
be the family of all n-vertex graphs with maximum degree ∆ where each vertex has a unique ID of c · log n
bits for some constant c. The total number of graphs in this family can be upper bounded by:

|Gn,∆| ≤ 2(n
2)+cn logn < 2n

2

= N .

Now, we imagine simulating algorithm Arand on a graph G′ ∈ Gn,∆ only with supplying each vertex the
parameters N and ∆. As a result, we get an algorithm that runs in t(N,∆) rounds, and fails with probability
1/N . That is, by lying to the vertices regarding the size of the graph, we get a randomized algorithm that
fails with an exponentially small probability (rather than polynomially small). Such a small error probability

1The global error is the probability that there exists a vertex with the wrong output.

5-1

5-2 Lecture 5: May 19

allows us to derandomize this algorithm within t(N,∆) rounds. Towards defining a deterministic algorithm
for P, it is convenient to take the following view on the randomized algorithm. Recall that in the deterministic
setting, each vertex v has c log n bits of distinct identifier. Thus, the randomized algorithm can be described
by a function φ : {0, 1}c logn → {0, 1}r(N,∆) chosen uniformly at random. In other words, the function
φ determines the set of random bits given to each vertex in the graph. Once each vertex is given those
bits, algorithm Arand is completely deterministic. For a fixed function φ that assigns random bits to each
vertex based on its ID, let Adet(φ) the deterministic algorithm that simulates Arand by giving each v a
set of π(ID(v)) random coins. Note that Algorithm Adet(φ) also runs in t(N,∆) rounds, as it simulates
Arand round by round (only with each vertex using the coins given the function φ instead of picking them
randomly).

We say that the function φ is bad if Adet(φ) fails on some graph G′ ∈ Gn,∆. We can then bound this failing
probability by:

Pr
φ

[φ is bad] ≤
∑

G′∈Gn,∆

Pr
φ

[Adet(φ) fails on G′] =
∑

G′∈Gn,∆

Pr[Arand fails on G′] ≤ |Gn,∆|/N < 1 .

We therefore get that there exists a good function φ such that Adet(φ) outputs the correct solution for
every G′ ∈ Gn,∆. This immediately gives a deterministic algorithm with t(N,∆) rounds. Given the graph
G with n vertices, each vertex can locally compute the function φ that works on all graphs in the family
Gn,∆. To be consistent, all vertices pick the first (lexicographically) such function φ, and then simulate
algorithm Arand by taking the random coins according to the function φ. We therefore conclude that
Det(n,∆) ≤ t(2n2

,∆) = Rand(2n
2

,∆).

Tool: Deterministic Coloring

In the following sections, we will make extensive use of deterministic coloring procedures by Linial [Lin92].
See Section 1.4.1 in [Cou] for the description of these constructions and missing proofs.

Lemma 5.2 (Deterministic Color Reduction) Let G be a k-colored graph with maximum degree ∆.
Then, one can re-color G with O(∆2 log k) colors within a single round.

Lemma 5.3 (Deterministic ∆2 Coloring) Every n-vertex graph G with maximum degree ∆ can be col-
ored with β ·∆2 colors using O(log∗ n− log∗∆) rounds, for some universal constant β > 0.

The key tool for proving these claims is based on cover free families.

Definition 5.4 (Cover Free Families) Given a ground set {1, 2, . . . , k′}, a family of k-sets S1, . . . , Sk ⊂
{1, . . . , k′} is a ∆-cover free family if for each set of ∆ + 1 indices i0, i1, . . . , i∆ ∈ {1, . . . , k}, it holds that

Si0 \
⋃∆
j=1 Sij 6= ∅. That is, no set Si is a subset of the union of ∆ other sets.

Intuitively, with ∆ cover free families, a k-colored graph G can be recolored with k′ colors within a single
round: consider a vertex v with color i and let i1, . . . , i∆ be the colors of its neighbors. Then, each color
j ∈ {1, . . . , k} corresponds to a set Sj , and v picks a color in Si \

⋃∆
j=1 Sij . Hence all vertices are legally

colored with k′ colors.

Lemma 5.5 (Efficient Cover Free Families) (1) For every k, there is a (∆) cover free family with
ground set of size k′ = O(∆2 log k) and k sets S1, . . . , Sk ⊂ {1, . . . , k′}. (2) For every k and ∆ ≥ c · k1/3,
there is a ∆-cover free family of size k and ground set k′ = O(∆2).

As we have seen in class, (1) follows by the probabilistic method and (2) follows by an algebraic approach.

From Randomized LB to Deterministic LB. To illustrate how randomized lower bounds can yield
deterministic lower bound, we consider the problem of ∆ coloring of trees (where ∆ is the maximum degree).
In the previous semester, you have seen a deterministic algorithm that computes (∆ + 1) coloring for trees
using O(log∗ n) rounds. As trees can be colored with 2 colors, one can ask about the complexity of coloring
a tree using less colors. This turns out to be considerably harder, even for omitting just one color, and using
∆ colors instead of ∆ + 1.

Lecture 5: May 19 5-3

Fact 5.6 [Randomized LB for Trees] Any randomized algorithm for ∆-coloring of a tree with error p requires

O(min{log∆ log 1/p, log∆ n}) rounds.

In particular, by setting p = 1/n we get a lower bound of O(log∆(log n)) rounds, which is in fact tight. We
will now show how to translate this lower bound to a deterministic one:

Lemma 5.7 ∆-coloring of n-vertex trees requires Ω(log∆ n) deterministic rounds.

Note that we cannot simply plug p = 1 in Fact 5.6, since in the randomized setting, unlike the deterministic
one, nodes are not given unique identifiers. Therefore the deterministic setting is somewhat stronger and we
might get an improved lower bound compared to using Fact 5.6 with p = 1.

To show this claim we will show that any deterministic algorithm Adet that runs in t rounds can be converted
into an O(t)-round randomized algorithm Arand that succeeds with probability 1/2n/2.

Algorithm Arand:

• (1) Each vertex v picks an n-bit ID uniformly at random.

• (2) Define G(2t+1) = (V, {(u, v) | distG(u, v) ≤ 2t + 1}) and apply one step of Linial’s coloring
reduction of Lemma 5.2. This results in n2 log 2n = n3 colors.

• (3) Apply Adet on G using the colors from the previous step as 3 log n bits of ID.

To bound the failing probability of Arand, observe that it can only fail if there is a collision in the n-bit IDs
generated in the first step. This can happen with probability at most n2/2n. Since the algorithm runs in
O(t) rounds, by plugging it in Fact 5.6, we get that t = Ω(log∆ n).

Gaps in Deterministic Complexity (Bounded Degree Graphs). Finally, we consider the family of
general graphs with bounded degree ∆ = O(1), and an LCL problem with locality of 1 (i.e., an LCL that
can be verified in a single round). We will show that any algorithm that runs in sub-logarithmic number of
rounds can be automatically sped to run in O(log∗ n) rounds. This implies a hole in the landscape of the
deterministic round complexity of bound degree graphs: there are no LCL problems with a round complexity
O(log log n) or O(

√
log n), i.e., there is a hole between O(log n) and O(log∗ n).

Consider an algorithm Adet that solves the LCL problem in ε · log∆ n rounds for some small constant
ε = 1/(8 + 4 log β) where β is the universal constant from Lemma 5.3. We will show that there exists a
determenstic algorithm A′det that solves the problem in O(log∗ n) rounds.

Algorithm A′det:

• (1) Define the power-graph G(t′) with max-deg ∆t′ for a sufficiently large constant t′ = 4 + log β.

• (2) Color G(t′) with β ·∆2t′ colors using Lemma 5.3.

• (3) Set n′ = β ·∆2t′ and run Alg. Adet on the graph G where nodes are told that the number of
nodes is n′.

We analyze the round complexity of Alg. A′det. The coloring step takes O(t′ · log∗ n) = O(log∗ n) rounds.
Note that all colors in the t′/2 neighborhood of each vertex are unique. Running Alg. Adet in the third step
takes on the n′-vertex graph takes

ε · log∆(β ·∆2t′) ≤ t′/2

rounds, thus the vertex cannot detect that the number of nodes is incorrect. The proof can also be generalized
for LCL problems with locality bound of r ≥ 2, see [CKP16].

5-4 Lecture 5: May 19

References

[CKP16] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized
and deterministic complexity in the local model. In FOCS, 2016.

[Cou] Lecture notes on distributed graph algorithms. https://disco.ethz.ch/courses/podc/lecturenotes/LOCAL.pdf.
Accessed: 2019.

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193–
201, 1992.

[NS95] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on Computing,
24(6):1259–1277, 1995.

