
Advanced Distributed Algorithms Spring 2019

Lecture 6: May 30
Lecturer: Merav Parter

The next two classes are devoted to the Lovász Local Lemma and its incarnation in distributed algorithms.
We will mainly consider the symmetric version of the Lovász Local Lemma due to its simplicity. The
asymmetric version is stronger and can capture more problems as will be illustrated in the home exercise.

The Lovász Local Lemma (Erdős and Lovász 1975)

Let A1, . . . , An be a collection of (bad) events satisfying that (1) each event Ai depends on at most d other
events, and (2) Pr[Ai] ≤ p for every i. Then if e · p · (d+ 1) < 1, the probability that no bad event occurs is
positive, that is Pr[∧Āi] > 0.

Example 1: 2-Coloring of Hyper-graphs. For a given integer k ≥ 2, we are given a k-uniform n-vertex
hyper-graph G = (V,E) with m edges e1, . . . , em, where each ei ⊂ V has exactly k vertices. In addition,
each edge ei intersects with at most d other edges. Then, if e(d + 1) < 2k−1, there exists a 2-coloring of
the vertices such that no edge is monochromatic. To see this, for every edge ei, let Ai denote the bad event
where the edge ei is monochromatic. When coloring the vertices uniformly at random with two colors, we
get that Pr[Ai] = 1/2k−1. Since 1/2k−1 · e · (d+ 1) < 1, the LLL implies that such a coloring exists.

Example 2: Satisfiability of k-CNF Formulas. Any k-CNF formula in which each variable appears in
< 2k/(ke) clauses is satisfiable. The proof again follows by considering the random assignment and denoting
by Ai the event where the ith clause is not satisfible. We have that Pr[Ai] ≤ 1/2k. In addition, each clause
depends on at most k(2k/(ke)− 1) other clauses. The claim follows by plugging this in the LLL formula.

The LLL as is already has a wide range of applications. However, one limitation of the lemma is that it only
guarantees the existence of a good solution, but does not tell us how to find it. A-priori, it might be the
case that finding the satisfying assignment for the k-CNF formula for example would require an exponential
time. For that purpose, we will now consider the constructive LLL setting.

The Constructive LLL [MT10]

The setting for the constructive LLL is as follows. Given is a collection of discrete and independent random
variables X = {X1, . . . , Xm}, a collection of (bad) events A = {A1, . . . , An} where vbl(Ai) denote the set of
variables on which Ai is defined. Formally, each Ai is a function that maps each assignment to vbl(Ai) to
a bit in {0, 1}. Two events Ai, Aj are dependent of each other, if vbl(Ai) ∩ vbl(Aj) 6= ∅. This defines the
dependency graph G = (A, {(Ai, Aj) | vbl(Ai)∩vbl(Aj) 6= ∅}). Let p be an upper bound on the probability
that each event Ai occurs. Then the dependency graph G satisfies the LLL condition if e · p · (d + 1) < 1
where d is the maximum degree of G.

Goal: Find an assignment to all variables X1, . . . , Xm such that no bad event occurs. In a breakthrough
result, Moser and Tardos [MT10] presented a polynomial time algorithm for this task. The algorithm itself
is very simple, and the key challenge is in bounding its running time.

Moser-Tardos Algorithm (Centralized):

• (1) Initialize all variables with a random assignment.

• (2) While bad event occurs do:

– pick an arbitrary bad event Ai and resample all its variables.

6-1



6-2 Lecture 6: May 30

Witness Tree. The analysis of the MT algorithm is based on the notion of witness tree. Roughly speaking,
witness trees provide a graphical representation for the log of the MT execution. Each step in the execution
will be identified with a unique witness tree and thus bounding the running time will boil down into bounding
the expected number of witness trees that arise throughout an execution. Consider a fixed execution of the
MT algorithm and let Ai,1, . . . , Ai,` be the collection of events resampled in steps 1, . . . , ` of the algorithm.
That is, in the first step of the algorithm, Ai,1 was resampled, then Ai,2 etc., ending with the last resampled
event Ai,`. Note that Ai,j might not be unique, and the same event might get resampled many times (i.e.,
it might be that Ai,3 = Ai,5 and so on). For each time step j ∈ {1, . . . , `}, we define a witness tree Tj as
follows:

The witness tree Tj for the jth resampling step:

• (1) The root of Tj is Ai,j .

• (2) Traverse A ∈ {Ai,j−1, . . . , Ai,1} (i.e., in the reverse sampling order):

– If A has a neighbora (based on the dependency graph G) in the current tree Tj , add it as a
child of the deepest such neighbor (breaking ties based on IDs).

aIn the term neighbor we also include the event A itself, i.e., all events at distance at most 1 from A in the dependency
graph G.

See Fig. 6.1 for an illustration.

E

BA

DC

F

Dependency 
Graph

Resampling sequence:
F,D,E,C,E,B,A,D

A

B F

C D

E
Witness tree
for 7th step

Figure 6.1: Illustration of computing the witness tree for a given log of MT-algorithm.

Observation 6.1 (Uniqueness of trees) For every resampling steps j′ < j, Tj′ 6= Tj.

Proof: Assume otherwise, then since the root of Tj′ , Tj is Ai,j′ , Ai,j (respectively), it must be that Ai,j =
Ai,j′ . This in turn implies that the number of occurrences of Ai,j in Tj must be strictly larger than in Tj′ ,
leading to a contradiction.

Letting Ts be the collection of all possible witness trees of size s, we can state the following:

Exp(#resampling steps) =

∞∑
s=1

∑
Ts∈Ts

Pr[Ts occurs during execution] . (6.1)

To bound the expected number of trees, we will first upper bound the probability that a fixed tree of size s
appears as a witness tree during the execution. Then we will upper bound the number of all possible trees
of size s in G. Combining these two terms will give us the desired upper bound on the number of resampling
steps in the MT algorithm. The next observation follows immediately from the witness tree algorithm:



Lecture 6: May 30 6-3

Observation 6.2 For every witness tree T , every two events Ai, Aj in the same level are independent.

The key lemma shows that in fact all events in the witness tree are independent of each other (event if they
are neighbors in the dependency graph G).

Lemma 6.3 Fix a rooted tree T of size s. Then Pr[T occurs through the execution ] ≤ ps.
Proof Sketch: By Obs. 6.2, every two nodes in the same level are independent. Now consider two nodes
u, v in levels a < b. This implies that u was resampled strictly after b. We then have that by the time that u
is considered to be resampled, v has already been resampled. Therefore even if these nodes share variables,
we use fresh randomness when computing the probability that u will be resampled in level a. Overall, the
probability that events are sampled in different time steps is completely independent, since the algorithm
uses distinct sets of random coins for the shared random variables. This notion is sometimes formalized by
the concept of (infinite) randomness tables.

Lemma 6.4 The total number of trees with of size s is at most n ·
(
s(d+1)
s−1

)
.

Proof: There are n ways of choosing the root of the tree among the n events. We will now bound the
number of trees of size s with a fixed root Ai,j by

(
s(d+1)
s−1

)
which will conclude the proof. Each rooted tree

of size s can be represented by a binary string of length s(d + 1) as follows: order the d + 1 neighbors of
each event lexicographically. Then in the first chunk of d+ 1 bits, specify the neighbors of the root (i.e., the
vertices in level-2 in the tree). Then allocate d + 1 bits for each level-2 vertex and again use d + 1 bits to
specify their children in the tree. It is easy to see that in this way we can encode the entire tree in a unique
manner using s(d+ 1) bits. Since there is a total of s− 1 nodes in the tree, not including the root, and since
each vertex is marked only in the (d+ 1) length bit string of its parent in the tree, there are at most s− 1

ones in this string. Overall, there are at most
(
s(d+1)
s−1

)
possible strings.

Putting it all together: By combining Eq. (6.1) with Lemma 6.3 and Lemma 6.4, get that:

Exp(#resampling steps) ≤
∞∑
s=1

n ·
(
s(d+ 1)

s− 1

)
· ps

≤ n ·
∞∑
s=1

(
s(d+ 1)

s

)
· ps ≤ n

∞∑
s=1

(e(d+ 1))s · ps

≤ n ·
∞∑
s=1

(pe(d+ 1))s = O(n),

where the last inequality follows by assuming that p · e(d + 1) ≤ 1− ε for some constant ε. This completes
the description of the centralized LLL algorithm. We now turn to consider distributed solutions provided
that the dependency graph is the communication graph.

Parallel / Distributed LLL

The original paper by Moser and Tardos [MT10] also provides an efficient algorithm for the distributed or
parallel setting. In the distributed setting, we consider the LOCAL model. Given is the dependency graph
G = (A, E) along with discrete independent random variables X where vbl(Ai) ⊆ X . Each event Ai is
associated with a vertex (processor) vi, where vi knows the distribution of the discrete random variables
vbl(Ai). Since each vertex is associated with an event, we sometime interchange the terminology and might
refer to an event Ai by the vertex vi that holds it.

The goal is to find an assignment to all variables in X that is consistent among all nodes1, and such that no
bad event occurs.

At a first glance, the distributed LLL problem might sound somewhat artificial, however, as we will see it has
a wide range of applications for solving several variants of coloring problems. Recently, it was also proven

1All nodes that share variables agree on the assignment of their shared variables.



6-4 Lecture 6: May 30

to be a complete problem for sublogarithmic LCL problems, and used for “speeding up” local algorithms,
see [CP19, FG17]. Moser and Tardos provided the following distributed algorithm for the problem:

The Distributed Moser-Tardos Algorithm:

• (1) Initialize all variables with a random assignment.

• (2) While bad event occurs do:

– Let B the collection of all bad events that currently hold.

– Let M = MIS(G[B]) be an MIS in the induced graph G[B].

– Resample all random varibles in
⋃

Ai∈M vbl(Ai).

That is, in contrast to the centerlized algorithm, where in each step, only one bad event gets resampled,
in the distributed setting, we resample a maximal collection of independent events. This step is of course
safe as independent events share no variable in common. The correctness is again immediate, and the main
challenge is in bounding the number of MIS computations.

Lemma 6.5 W.h.p., the algorithm applies O(1/ε · log n) calls to the MIS algorithm.

The proof uses again the notion of witness trees. The witness tree is defined exactly as before. Let M1, . . . ,M`

be the collection of MIS computed in each step 1, . . . , ` of the algorithm. For the purpose of computing the
witness tree, we sort all the sampled nodes in non-decreasing order of the step in which they got resampled.
That is, the sorting inside each independent set Mi is arbitrary, and events in Mj for j < i appear strictly
before the events of Mi in this ordering. Note that this ordering of the events can be indeed a legit ordering
for centralized MT algorithm. This is because in the latter, the resampling of bad events is arbitrary and a
resampling of an event Ai ∈Mj cannot fix any other event Ai′ ∈Mj .

The key observation is that sampling the events in this specific form (i.e., as a collection of independent
sets) introduces some structure, and as a result we can provide a stronger characterization for the individual
witness trees.

Lemma 6.6 The witness tree of every node u ∈Mi (i.e., resampled in the ith step) has depth exactly i− 1.

Proof: By induction on i. The base of the induction i = 1 holds vacuously. Now, assume that the claim
holds for j ≤ i − 1 and consider u ∈ Mi. Since all events in Mi are independent, in its witness tree, u has
no neighbor in Mi \ {u}. We next claim that it must be connected to at least one vertex v ∈ Mi−1. In
other words, we show that Mi−1 ∩N+(u) 6= ∅ where N+(u) contains all neighbors of u in G including itself.
To show this, we consider two cases. First, assume that u was not bad in step i − 1 (i.e., the bad event
associated with node u does not hold). This implies that u must had a neighbor that got resampled in step
i − 1 which made u bad in the subsequent step. Next, assume that u was bad in step i − 1. Thus u was a
candidate to join the MIS. If u ∈Mi−1, we are done, and otherwise it must have a neighbor in Mi−1.

Hence, there must be v ∈Mi−1 that is connected as a child of u in its witness tree. By induction assumption
the depth of the witness tree of v is i− 2, thus the depth of the tree of u is i− 1.

We complete the argument by showing that w.h.p. there is no tree of depth O(1/ε · log n) provided that the
LLL condition holds with an ε-slack, that is that e · p · (d+ 1) ≤ 1− ε.

Lemma 6.7 W.h.p. there is no tree Tu of depth O(1/ε · log n).

Proof: There are at most n
(
s(d+1)
s−1

)
trees of size s, each occurs with probability at most ps. Thus, there are

n
(
s(d+1)
s−1

)
· ps trees of size s in expectation. By plugging s = c · 1/ε · log n for some constant c, and using the

fact that e · p · (d+ 1) ≤ 1− ε, we get there are at most 1/nc−1 such trees. The proof follows by the Markov
inequality.

Lemma 6.5 follows by combining Lemma 6.6 with Lemma 6.7. In the next class, we will see an improved
distributed LLL algorithm due to [CPS14], that avoids the MIS computation all together!



Lecture 6: May 30 6-5

References

[CP19] Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the local model. SIAM Journal on
Computing, 48(1):33–69, 2019.

[CPS14] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the lovász local lemma
and graph coloring. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pages
134–143. ACM, 2014.

[FG17] Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for lovász local
lemma, and the complexity hierarchy. In 31st International Symposium on Distributed Computing
(DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[MT10] Robin A Moser and Gábor Tardos. A constructive proof of the general lovász local lemma. Journal
of the ACM (JACM), 57(2):11, 2010.


