Succinct Graph Structures and their Applications

Spring 2018

Lecture 9: June 06

Lecturer: Merav Parter

Additive Spanners

A β -additive spanner H of an unweighted graph G=(V,E) is a subgraph of G satisfying $\mathtt{dist}(u,v,H) \leq \mathtt{dist}(u,v,G) + \beta$ for every vertex pair $u,v \in V$. In contrast to multiplicative spanners where for every integer $k \geq 1$, there is a (2k-1)-spanner with $O(n^{1+1/k})$ edges, there are only 3 additive spanners for stretch values of 2,4 and 6 of size $O(n^{3/2})$, $\widetilde{O}(n^{7/5})$ and $O(n^{4/3})$ respectively [ACIM99, Che13, BKMP10]. Understanding the general size-stretch tradeoff for additive spanners was one of the biggest open problems in the area for the last twenty years. Recently, Abboud and Bodwin have made a quite shocking breakthrough which essentially implies that there are no new additive spanners to be revealed, unless settling for a polynomially large stretch.

Theorem 9.1 [AB17] There is no $+n^{o(1)}$ additive spanners with $O(n^{4/3-\epsilon})$ edges, for any fixed ϵ .

2-Additive Spanners. We start by showing a construction of 2-additive spanners with $\widetilde{O}(n^{3/2})$ edges due to Aingworth et al. [ACIM99]. For simplicity, we present a randomized construction, however, it is easy to derandomize it using standard hitting-set tools. In this context, we say that a vertex v is high-degree if $\deg(v,G) \geq \sqrt{n}$. Let V_h be the subset of high vertices in G. First, we add to the spanner H all the edges incident to the low-degree vertices. Next, we sample a subset S of $O(\sqrt{n}\log n)$ vertices, by adding each vertex $v \in V$ into S with probability $O(\log n/n)$. We then add to spanner a BFS tree rooted at each $s \in S$. Formally, $H = \bigcup_{s \in S} BFS(s) \cup \bigcup_{v \notin V_h} E(v,G)$. It is easy to see that H has $O(n^{3/2} \cdot \log n)$ edges. We next show that H is a 2-additive spanner.

Lemma 9.2 W.h.p., for every $u, v \in V$, $dist(u, v, H) \leq dist(u, v, G) + 2$.

Proof: Unlike multiplicative spanners, here it is not sufficient to make the stretch argument only for neighboring pairs $(u,v) \in E$, but rather we need to show it for every pair. Fix $u,v \in V$ and let P be some u-v shortest path in G. If $P \subseteq H$, we are done as $\mathtt{dist}(u,v,H) = |P|$. Otherwise, P must include at least one high-degree vertex w (actually, it must have at least two!). By Chernoff bound (a hitting-set argument), w.h.p., w has a neighbor $s \in N(w) \cap S$. Let T be the BFS tree T rooted at s that was added into H and let $P_1 = \pi(u, s, T)$, $P_2 = \pi(s, v, T)$ be the s - u and s - v paths in this tree T. Consider the u-v path $P_3 = P_1 \circ P_2$ obtained by concatenating P_1 and P_2 . Since $T \subseteq H$, we have that $P_3 \subseteq H$ and thus by the triangle inequality:

$$dist(u, v, H) \le |P_3| = |P_1| + |P_2| \le dist(u, w, G) + 1 + dist(w, v, G) + 1 \le dist(u, v, G) + 2.$$

The lemma follows.

4-Additive Spanners. We next show a construction of 4-additive spanners with $\widetilde{O}(n^{7/5})$ due to Chechik [Che13]. We now call vertex v high-degree if $\deg(v,G) \geq n^{2/5}$ and low-degree otherwise. Let V_h be the subset of high-degree vertices. For every u,v, let $\pi(u,v)$ be the unique shortest-path between u and v in G (we break shortest-path ties in a consistent manner).

- (1) Add to H all edges incident to low-degree vertices.
- (2) Sample a subset S of $\Theta(n^{2/5} \log n)$ vertices, by adding each v into S independently with probability $p_S = \Theta(\log n/n^{3/5})$. Add to H, a BFS tree of each $s \in S$.

 $^{^{1}}$ Unlike multiplicative spanners, additive spanners are interesting only for the unweighted case.

9-2 Lecture 9: June 06

(3) Sample a subset T of $\Theta(n^{3/5} \log n)$ vertices, by adding each v into T independently with probability $p_T = \Theta(\log n/n^{2/5})$. For each $v \in V_h$, let $s(v) \in N(v) \cap T$ and for every $t \in T$, let $B(t) = \{v \in V_h \mid s(v) = t\}$. Add the edges $\{(v, s(v)) \mid v \in V_h\}$ to H.

(4) For each $t, t' \in T$, define $\Phi_{t,t'}$ by:

$$\Phi_{t,t'} = \{\pi(u,v) \mid u \in B(t), v \in B(t'), \pi(u,v) \text{ has at most } n^{1/5} \text{ high-deg vertices}\}.$$

(5) In each set $\Phi_{t,t'}$ for $t,t' \in T$, pick the shortest path and add it to H.

We next analyze the construction and start with size analysis.

Observation 9.3 (Size) H has $\widetilde{O}(n^{7/5})$ edges.

Proof: Steps (1,2,3) clearly add $\widetilde{O}(n^{7/5})$ edges. In Step (5), for each pair t,t', we add $O(n^{1/5})$ edges to H. Since $|T| = O(\log n \cdot n^{3/5})$, overall this adds $O(|T|^2 \cdot n^{1/5}) = \widetilde{O}(n^{7/5})$ edges.

Claim 9.4 (Stretch) $dist(u, v, H) \leq dist(u, v, G) + 4$.

Case 1: $\pi(u,v)$ has more than $n^{1/5}$ high-deg vertices. We claim that the number of vertices that have a neighbor on the path $\pi(u,v)$ is $\Omega(n^{3/5})$. Formally, letting $N(\pi(u,v)) = \bigcup_{x \in \pi(u,v)} N(x)$, we will show that $|N(\pi(u,v))| = \Omega(n^{3/5})$. The claim follows by noting that each vertex can have at most 3 neighbors on a given shortest-path, and thus the neighborhood sets of N(x), N(x') for $x, x' \in \pi(u,v)$ are effectively almost vertex-disjoint (i.e., each vertex is counted at most 3 times in these N(x) subsets). By the hitting set argument, we get that there exists $s \in N(\pi(u,v)) \cap S$. Since we added a BFS tree rooted at s to H, we get a stretch of +2 (same argument as in the 2-additive case).

Case 2: $\pi(u,v)$ has at most $n^{1/5}$ high-deg vertices. Let x the closest high-degree vertex to u on $\pi(u,v)$ and let y be the closest high-degree vertex to v on this path. Since $\pi(u,v)$ has at least one edge not in H (otherwise, we are done), we get that $x \neq y$. Let t = s(x) and t' = s(y). By definition, $\pi(x,y) \in \Phi_{t,t'}$. If $\pi(x,y)$ is added in step (5), then $\pi(u,v) \subset H$, and we are done. Otherwise, in Step (5), the algorithm picks the shortest path $\pi(x',y') \in \Phi_{t,t'}$ and adds it to H. We now consider the following u-v path P in H where

$$P = \pi(u, x) \circ (x, t) \circ (t, x') \circ \pi(x', y') \circ (y', t') \circ (t', y) \circ \pi(y, t).$$

Let $\ell = |\pi(x', y')|$, we have:

$$\mathtt{dist}(u,v,H) \leq |P| = \mathtt{dist}(u,x,G) + 2 + \ell + 2 + \mathtt{dist}(y,v,G) \leq \mathtt{dist}(u,v,G) + 4 \;,$$

where the last inequality follows by the fact that $|\pi(x,y)| \ge |\pi(x',y')| = \ell$, by the selection of $\pi(x',y')$ in Step (5). The stretch argument follows.

References

- [AB17] Amir Abboud and Greg Bodwin. The $\frac{4}{3}$ additive spanner exponent is tight. *Journal of the ACM* (*JACM*), 64(4):28, 2017.
- [ACIM99] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM Journal on Computing, 28(4):1167–1181, 1999.
- [BKMP10] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners and (α, β) -spanners. ACM Transactions on Algorithms (TALG), 7(1):5, 2010.
- [Che13] Shiri Chechik. New additive spanners. In *Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms*, pages 498–512. SIAM, 2013.