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Abstract In the future, analysis of social networks will conceivably move from
graphs to hypergraphs. However, theory has not yet caught up with this type of data
organizational structure. By introducing and analyzing a general model of prefer-
ential attachment hypergraphs, this paper makes a step towards narrowing this gap.
We consider a random preferential attachment model H(p,Y) for network evolution
that allows arrivals of both nodes and hyperedges of random size. At each time step
t, two possible events may occur: (1) [vertex arrival event:] with probability p > 0
a new vertex arrives and a new hyperedge of size ¥;, containing the new vertex and
Y; — 1 existing vertices, is added to the hypergraph; or (2) [hyperedge arrival event:]
with probability 1 — p, a new hyperedge of size Y;, containing Y; existing vertices, is
added to the hypergraph. In both cases, the involved existing vertices are chosen at
random according to the preferential attachment rule, i.e., with probability propor-
tional to their degree, where the degree of a vertex is the number of edges containing
it. Denoting the total degree in the hyper graph by D, = Dy + Zﬁ;é Yi,weallowY; > 1

to be any integer-valued random variable satisfying (i) lim;_,c IIEE[[IIK?]’]_/; =T €(0,),
(ii) E[|1/D; — 1/E[Dy]|] = o(1/t) and (iii) E [Y;?/D}] = o(1/t). Furthermore, if ;
is either deterministic (i.e., not random) or satisfies |E [Y,z] = o(t), assumptions (ii)
and (iii) can be omitted. We prove that the H(p,Y) model generates power law
networks, i.e., the expected fraction of nodes with degree k is proportional to kB,
where § = 1 +I". This extends the special case of preferential attachment graphs,
where Y; = 2 for every 7, yielding =1+ ﬁ Therefore, our results show that the
exponent of the degree distribution is sensitive to whether one considers the struc-
ture of a social network to be a hypergraph or a graph. We discuss, and provide
examples for, the implications of these considerations.
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1 Introduction

Random structures have proved to be an extremely useful concept in many disci-
plines, including mathematics, physics, economics, and communication systems.
Examining the typical behavior of random instances of a structure allows us to un-
derstand fundamental properties of the structure itself.

In the context of graph structures, the foundations of random graph theory were
laid in a seminal paper by Erdds and Rényi in the late 1950°s [8]. Subsequently,
several alternative models for random structures, suitable for different kinds of ap-
plications, have been suggested. One of the most important alternative models is
the preferential attachment (PA) model [14, 2], which was found to be particu-
larly suitable for describing a variety of phenomena in nature, such as the “rich
get richer” phenomenon, which cannot be adequately simulated within the original
Erd&s-Rényi model. It has been shown that the preferential attachment model cap-
tures some universal properties of real-world social networks and complex systems,
such as heavy tail degree distribution and the “small world” phenomenon [12].

While graphs are extremely versatile and useful structures for representing in-
terrelations among entities, one of their limitations is that they only capture dyadic
(or binary) relations. In real-life, however, many natural, physical, and social phe-
nomena involve k-ary relations for k > 2, or even relations of variable arity. For
example, collaborations among researchers, as manifested through joint coauthor-
ships of scientific papers, may be better represented using hyperedges instead of
edges. Figure 1(a) depicts the hypergraph representation for coauthorship relations
on four papers: paper 1 authored by {a,b,e, f}, paper 2 by {a,c,d, g}, paper 3 by
{b,c,d} and paper 4 by {e, f}. Likewise, wireless communication networks [1] or
social relations captured by photos which appear on social media also give rise to
hyperedges in a natural way [17]. Affiliation models [11, 13], which are a popular
model for social networks, are commonly interpreted as bipartite graphs, when, in
fact, they may sometimes be represented more conveniently as hypergraphs. For ex-
ample, Figure 1(b) presents the bipartite graph representation of the hypergraph H
of Figure 1(a). While there have been attempts to reduce hypergraphs to graphs by
converting every hyperedge to a clique, as this paper will show, this indirect analysis
of hypergraphs can lead to inaccuracies. Sometimes, it is only possible (or conve-
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Fig. 1 (a) A hypergraph H with 7 nodes and 4 edges. (b) A bipartite graph representation of H. (c)
The observed graph G(H): every hyperedge is replaced with a clique.
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nient) to access the observed graph G(H) of the original hypergraph H, namely,
only the pairwise relation between players is visible or given (see Figure 1(c)). In
some cases, this structure may be sufficient for the application at hand. However, in
many cases (e.g., when studying degree distribution), direct analysis of the original
hypergraph is needed for more accurate results. In order to deal with the latter cases,
we tackle the more precise, albeit somewhat harder, analysis of hypergraphs.

The study of hypergraphs, and in particular random hypergraph models, has its
roots in a 1976 paper by Erd6s and Bollobas [3], which offers a model analogous
to the Erd6s-Rényi random graph model [8]. Several interesting properties of the
evolution of random hypergraphs in this model were recently studied [6, 7, 10].

A similar transition (from graphs to hypergraphs) for the preferential attachment
model was first studied by Wang et al. in [15], which defined a basic evolving hyper-
graph model with vertex arrival events and constant-size hyperedges. Specifically,
at every step, m — 1 new nodes enter the network and a new edge of size m is added
containing the m — 1 new nodes and one existing node chosen by preferential attach-
ment, i.e., with probability proportional to its degree. Analyzing the degree distribu-
tion, it was shown that the resulting hypergraph follows a power law with exponent
m+2. Note, however, that the model of [15] generates restricted hypergraphs. First,
they are acyclic, since hyperedges cannot be added between existing nodes. Second,
the hyperedges are uniform, i.e., of the same size. Third, every two nodes share at
most one hyperedge. Hence the model results in a limited class of uniform hyper-
graphs that is analogous to the class of frees within the family of graphs.

Our work was motivated by the fact that most actual aplications where hyper-
graph structures come into play do not fall in the limited class of [15]. Aiming to
model a larger set of networks, we extend the G(p) evolving graph model of Chung
and Lu [4], which allows edge arrivals, to include hyperedges of random hyper-
edge size. Thus, we allow more complex structures for the resulting hypergraphs,
including cycles and nonuniformity.

The main technical contribution of this paper is an analysis of the degree dis-
tribution of random preferential attachment hypergraphs, showing that they possess
heavy tail degree distribution properties, similar to those of random preferential at-
tachment graphs. However, our results also show that the exponent of the degree
distribution of a random preferential attachment model is sensitive to whether one
considers the structure to be a hypergraph or a graph. In fact, in the setting of hy-
peredges which grow in size, namely ¥; — oo, the exponent can drop below 2.

The model proposed here extends Chung and Lu’s model [4] by supporting hy-
pergraphs, and moreover, allowing hyperedges of random size. The process starts
with an initial hypergraph, and at each time step ¢, a new hyperedge of random size
joins the network. With probability p, this new hyperedge includes a new node and
possibly other existing nodes, i.e., nodes which have arrived before time #, and with
probability 1 — p, all the nodes of the new arriving hyperedge are existing nodes.
Our model allows the hyperedge sizes to be random (with some restrictions), and
the existing nodes of each hyperedge are selected randomly according to the prefer-
ential attachment rule, namely, with probability proportional to their degree.
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Fig. 2 The exponent 3 of a preferential attachment (PA) graph and a 3-uniform hypergraph as
a function of p (the probability of a new vertex arrival event). In graphs, 3 is between 2 and 3,
whereas in 3-hypergraphs 3 is between 2 and 2.5.

We show that the degree distribution of the resulting hypergraph follows a power
law, i.e., the fraction of nodes with degree k is proportional to kB, with exponent

E|D;] /¢t
B=1+I, where F:limﬂ

im e —p € (0,00) .

This naturally extends the known result for the Chung and Lu’s model for graphs.
Graphs are a special case of hypergraphs where hyperedges are always of size 2.
In [4], Chung and Lu showed that for graphs in their model B = 1+ ﬁ, even
when more than one edge (of size 2) is added to the network as each time step. Fig 2
illustrates the difference in 8 between a hypergraph model with hyperedges of size
3 and a graph model with 3 new edges at each time step as a function of p, the vertex
arrival event probability.

Hence our results indicate that the seemingly natural approach of studying a hy-
pergraph by looking at its observed graph might entail some inherent inaccuracies,
and one should exercise care when applying it. In particular, it matters if the ob-
served graph was generated by a graph or by a hypergraph evolution mechanism,
since the two models generate observed graphs with different degree distributions.

This paper makes a step towards narrowing the gap between theory and practice
in complex systems. Given a hypergraph system, it has long been possible to study
it empirically in order to calculate its degree distribution, check whether or not it
is heavy tailed, compute the exponent of the power law, and so on. However, the
available theoretical models fell short of enabling us to accomplish these tasks ana-
lytically. The approach presented in this paper provides a useful technique toward a
better theoretical understanding of these complex systems.

Related work. As a reference point, we consider the random preferential attach-
ment graph model of Chung and Lu [4]. In that model, starting from an initial graph
Gy, at any time step one of the following two possible events occur: (1) a vertex
arrival event, occurring with probability p, where a new vertex joins the network
and selects its neighbor from among the existing nodes via preferential attachment,



Random Preferential Attachment Hypergraphs 5

or (2) an edge arrival event, occurring with probability 1 — p, where a new edge
joins the network and selects its two endpoints from among the existing nodes via
preferential attachment.

It is shown in [4] that the degree distribution of the random preferential attach-
ment graph follows a power law, i.e., the probability of a random vertex to be of
degree k is proportional to kB, with exponent § =1+ ﬁ. A similar result can be
shown in a setting where, at each time step, d edges join the graph instead of only
one hyperedge (in either a vertex arrival event or an edge arrival event) [12]. This
result holds even if at each step a random number of edges join the network, as long
as the number of new edges has constant expectation and bounded variance.

The rest of the paper is organized as follows. Sect. 2 describes the model in detail
and states our main results. Sect. 3 offers a discussion and both simulated and real-
data examples. Sect. 5 presents conclusions and future questions. Sect. 4 gives a
proof of the main theorem.

2 Model and results

Preliminaries. Given a set V and an integer £ > 1, let V&) be the set of all un-
ordered vectors (or multisets) of k elements from V. A finite undirected graph G is
an ordered pair (V,E) where V is a set of n vertices and E C V@ is the set of graph
edges (unordered pairs from V, including self-loops).

A hypergraph S is an ordered pair (V,&’), where V is a set of n vertices and
& UL, V(@ is a set of hyperedges connecting the vertices (including self-loops,
i.e., multiple appearance of a vertex in a hyperedge). When all hyperedges have the
same cardinality k, the hypergraph is said to be k-uniform. A graph is thus simply
a 2-uniform hypergraph. The degree of a vertex v in edge e, d(v,e), is the number
of times that v appears in e. The degree d(v) of a vertex v is the number of time it
appears in all hyperedges (counting multiplicities), i.e., d(v) = ¥ ced(v,e). F is
d-regular if every vertex has degree d.

In the classical preferential attachment graph model [2], the evolution process
starts with an arbitrary finite initial network Gy, which is usually set to a single
vertex with a self-loop. Then this initial network evolves in time, with G; denoting
the network just before time step ¢. Let d;(x) denote the degree of vertex x in G;.
In every time step ¢, a new vertex v enters the network. On arrival, v attaches itself
to an existing vertex u chosen at random with probability proportional to d; (u), i.e.,

dy (u)

Yec, di(w)

the preferential attachment rule is: ~ P[u is chosen] =

The Preferential Attachment Hypergraph Model. Similar to the classical pref-
erential attachment graph model [4], the evolution of a hypergraph in our model
occurs along a discrete time axis, with one event occurring at each time step. We
consider two types of possible events on the hypergraph at time ¢: (1) a vertex ar-
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rival event, which involves adding a new vertex along with a new hyperedge, and
(2) a hyperedge arrival event, where a new hyperedge is added.

We consider a nonuniform, random hypergraph where we allow multiple appear-
ance of a vertex in a hyperedge. Similar to [4], our preferential attachment model,
H(Ho, p,Y), has three parameters:

1. A probability 0 < p <1 for vertex arrival events.

2. An initial hypergraph Hy given at time 0.

3. A sequence of random independent (possibly differently distributed) integer
variables Y = (Yo,Y1,Y2,...), for ¥; > 1, which determine the cardinality of the
new hyperedge arriving at time 7.

We next describe the process by which the random hypergraph H(Hy, p,Y) grows
in time. Start with the initial hypergraph Hy at time 0. At time ¢ > 0, the graph H;
is formed from H; as follows.

e Draw a random size Y; for the new hyperedge, independently of H;.

e With probability p, add a new vertex u to V, select ¥; — 1 vertices from H; (possi-
bly with repetitions) independently according to the preferential attachment rule
in H;, and form a new hyperedge e that includes u and the ¥; — 1 selected vertices.

e Else, with probability 1 — p , we select ¥; vertices from H, (possibly with repeti-
tions) independently according to the preferential attachment rule in H;, and form
a new hyperedge e that includes the Y; selected vertices.

We make some assumptions on Y;, the size of the hyperedge added at time ¢.

-1
Namely, denoting the total degree at time by D, = Z di(v) = Do+ Z Y,
veH; i=0
we make the following three assumptions:

. E[D]/t
im E v —p € (0,0, M
|5~ 57| = o0 @
|l =0 ,
D[ ]E [D[}
le
E [th} = o(1/1). 3)
Note that if Yp,Y,Y>,... are not random, but rather chosen deterministically, as-

sumption (2) is satisfied trivially, and assumption (3) follows from assumption (1)
and can thus be omitted. Furthermore, if £ [Ytz] = 0(t), then it can also be shown that
assumption (2) and assumption (3) follow noting that D; >t and E[|D, —E[D,] ] <
\/VAR [D;]. Letting my, denote the number of nodes of degree k at time ¢ (i.e., in
the hypergraph H;), and n, denote the total number of nodes at time ¢, we note that

My < ij,, = n, <O(t) foreveryk>1. 4)
J



Random Preferential Attachment Hypergraphs 7

Main results. The main result of the paper is the following theorem.

Theorem 1. In the H(Hy, p,Y) model, assuming Eq. (1), (2) and (3), and letting

r k—1 ]
M, = : 5
T asr II;Ilj+1+F ’ ©)
. E[mk.t]
for every fixed k > 1 we have }Lm T = M, . (6)

Furthermore, if Y; is deterministic or if E [Yﬂ = o(t), then assumptions (2) and (3)
can be omitted and assumption (1) simplifies to }Lm t(}’f)iip) =T € (0,00).

Since M, is proportional to k~(+D) (See. [16]), and the number of nodes at time ¢
is concentrated around p - ¢, the following is a direct corollary of Thm. 1.

Theorem 2. Under the assumptions of Thm. 1, the expected degree distribution of
a hypergraph H(Hy, p,Y) follows a power law with exponent f = 1+1T. lLe., as
t — oo, the expected fraction of nodes with degree k is proportional to kB,

3 Discussion and Examples

Social network models have contributed much to our understanding of human so-
ciety in many fields, such as knowledge retrieval, marketing, economics, sociology,
and more. However, social structures are complicated and cannot be fully mod-
eled as ordinary networks (or graphs). They are composed of dyads, triads, fam-
ilies, clans, tribes, and communities. Other than dyads, all of these structures are
more accurately modeled as hyperedges, rather than ordinary edges. For example,
many social network activities, such as coauthorship, Instagram, WhatsApp group
messages, group photos, and more, involve multi-party groups that are best repre-
sented as hyperedges, or - collectively - as a hypergraph. However, theory has not
yet caught up with this type of data organization. By introducing and analyzing a
model of preferential attachment hypergraphs, the current paper attempts to narrow
this gap. We next discuss some of the implications of our result and provide some
examples from simulations and real data.

Result Validation. We first validate our theoretical results via simulations. Recall
that our results hold with expectation and not necessarily with high probability.
Figure 3 presents the cumulative degree distribution of two hypergraphs. The first
hypergraph is a 7-uniform hypergraph (i.e., all hyperedges are of size 7) and with
a vertex arrival probability of p = 0.5. From Thm. 2, we have f =1+ ﬁ =
2.07. We plot the cumulative degree distribution with the fit that follows from the
theoretical probability of Eq. (5) which lead to a power law degree distribution with
exponent 3. We repeat the same process for a hypergraph with two edge sizes, 2
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or 3, with equal probability. I.e. ¥; = 2 or Y; = 3, each with probability 0.5, and a
vertex arrival probability of p = 0.5. For this case, we have f = 1 + % =2.25.
Again we compare the resulting distribution with the theoretical results. For both
examples, the theoretical results provide a good fit.

1F H(0.5,7)
H(0.5, 2.5)
0.100 E
=
=
©
-8 0.010 ¢ E
(=
0.001 |
.
1 1 1 1 N, 1
1 10 100 1000 104

Node degree

Fig. 3 The cumulative degree distributions of two example hypergraphs with the corresponding
B as computed in the paper. H(0.5,7) is a 7-uniform hypergraph with hyperedge size 7 and an
edge arrival event probability of 0.5. Theorem 2 implies that § = 1 + 77—705 =2.07. H(0.5,2.5)
is a hypergraph with hyperedge sizes of 2 or 3 with equal probability and an edge arrival event

probability of 0.5. Theorem 2 yields = 1 4 y23= =2.25.

Observed Graphs. Hypergraph-structured social organizations are often approxi-
mated by graphs. One typical concrete way of achieving this is by replacing each
hyperedge e of the given hypergraph H with a collection of graph edges forming a
clique subgraph C(e) over the vertices of e (see Figure 1). The resulting social net-
work, denoted G(H), is sometimes referred to as the observed graph of the original
hypergraph H. A natural question that arises when considering this approach, how-
ever, concerns the accuracy of such approximation. What is the price of simplifying
the given social structures into graphs?

To address this question, we compare the properties of generated observed graphs
against those of preferential attachment hypergraphs. The comparison is based on
analyzing the resulting degree distribution and power law parameters in the two
representations. Our results suggest that while approximations of hypergraphs by
observed graphs may be qualitatively correct, they are typically quantitatively inac-
curate. While both the preferential attachment hypergraph model and the observed
graph approximation model exhibit a power law degree distribution, the exponent of
the distribution changes between the two models.

We first consider the special case of H(Hy,p,Y) with constant hyperedge size
Y, = d. For simplicity, we denote the resulting d-uniform hypergraph by H(p,d).

Corollary 3.1 The degree distribution of a d-uniform hypergraph H(p,d) follows
a power law with B(H) = 1+d/(d — p).
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As mentioned earlier, in many cases it is only possible to access the observed
graph G(H) that results from the underlying hypergrph H. (Recall that the set of
nodes of G(H) is identical to that of H, and for every hyperedge e € H, edges are
created in G(H) to form a clique C(E) between all the nodes in e.) For this case one
can now prove the following:

Claim 3.2 The degree distribution of the observed graph G(H (p,d)) resulting from
a d-uniform hypergraph H(p,d) follows a power law with B(G) = 1+d/(d — p).

s e G'=PA(1,3)
G=G(H(1,3))
0.100 F o, 4

=
8 o010} 4
2
a

0.001 ¢ .

————— B(G) =3
104 == === B(G) =25
5 10 50 100 500 1000

Node degree

Fig. 4 The cumulative degree distributions of two example networks: an observed graph G =
G(H(1,3)) derived from a 3-uniform hypergraph H(1,3) with average degree 6 (in green), and a
preferential attachment graph G’ = PA(1,3) with average degree 6, same as G(H(1,3)) (in blue),
and their corresponding theoretical § values as derived from our results. Note that §(G) # B(G').

This above claim is supported by simulation results depicted in Figure 4. We
show the cumulative degree distribution of the observed graph G = G(H(1,3))
where H(1,3) is a 3-uniform hypergraph. By Claim 3.2, B(H(1,3)) = 1 + °; =
2.5. As can be seen in the figure, B(H(1,3)) is a good fit to the cumulative degree
distribution of G, so B(G) = B(H).

Note that G has an average degree of 6, since at each time step, one hyperedge
of size 3 is added to the network, which gets translated into 3 graph edges in G.
We therefore pose the following interesting question. Suppose we generate such a
new graph G’ = PA(1,3), with expected degree 6, according to the classical graph
preferential attachment model. Then each new node must join G’ with 3 new edges,
just as in G. But what will be the 8 value of the degree distribution of G’ in this case?
Chung and Lu’s result for preferential attachment graphs [4] implies that §(G') =
14+2/(2—1) =3. Hence B(G) and B(G’), the observed degree distributions of G
and G’ respectively, turn out to be different (see Figure 4).

An immediate implication of this example is that one should be careful in de-
termining the appropriate model to capture the observed degree distribution for a
given application. In particular, one must decide if the generative model is that of a
hypergraph or that of the classical graph model.
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Fig. 5 The cumulative degree distributions of a hypergraph H(0.5,6) and its observed graph
G(H(0.5,6)). H has hyperedges of expected size 6. However, it is a nonuniform hypergraph, i.e.,
hyperedge sizes are selected at random between sizes 2 to 9. The edge arrival event probability is
0.5. The two cumulative degree distributions are different, particularly on low degrees.

The situation is even more complex for nonuniform hypergraphs, as here, Claim
3.2 no longer holds. Figure 5 presents the cumulative degree distribution of a hy-
pergraph H(0.5,6) and its observed graph G(H(0.5,6)). The hypergraph has an ex-
pected hyperedge of size 6. However, it is a nonuniform hypergraph, i.e., hyperedge
sizes are selected uniformly at random between sizes 2 to 9. The edge arrival event
probability is 0.5. One can clearly see that the two cumulative degree distributions
are different, in particular on low degrees. The hypergraph cumulative degree dis-
tribution behaves linearly, while the cumulative degree distribution of the observed
graph is more complex and is curved in the low degrees. It follows that choosing
to model a social network as either a graph or a hypergraph will influence the anal-
ysis. Stated more explicitly, when the dataset comes from a hypergraph, using a
hypergraph model instead of an observed graph model is clearly a better choice.

Figure 5 reveals another interesting connection in network theory and complex
systems. According to Newman’s seminal work [5], when calculating the exponent
of the power law, it is a good practice to neglect all the nodes whose degree is among
the (roughly) 6 lowest degrees in the network. This is a very useful idea which, in
fact, works very well in practice. However, deleting these smallest degree nodes can,
in certain cases, be akin to ignoring 90% of the data in a network. The hypergraph
model suggested herein can be used to explain why the lowest-degree nodes are such
“troublemakers”: this is because these nodes come from hypergraphs. Indeed, when
moving from a graph to a hypergraph, the lowest-degree nodes do suddenly behave
well, as can be seen in Figure 5.

Real Data, Hypergraph Example. In this section we consider a real hypergraph,
the coauhtorship social network Co—-HEPT, constructed from research papers that
were published in the High Energy Physics Theory section of arXiv in the years
1991-2003 and were part of KDD cup 2003 [9]. In Co-HEPT, each author is a
vertex and each research paper is a hyperedge connecting the authors of the paper.
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Fig. 6 An example of the hypergraph of the coauthorship network Co-HEPT. Every paper is a
hyperedge. The cumulative degree distribution of both the hypergraph and the observed graph are
plotted together with the best fit for the distributions. For the hypergraph we get a power law
distribution (Zipf with cutoff), but the observed graph exhibits a logarithmic distribution.

Over all there are 18,268 authors and 25,168 hyperedges (i.e., papers). The edge
sizes range from 1 to 8, with an average of 2.51 authors per paper.

Figure 6 shows the cumulative degree distribution of both the hypergraph (green)
and the observed graph (blue) of this network. To demonstrate our discussion above
we used Mathematica to find the best fit distribution for the degree distribution (note
that we show the cumulative degree distribution, but the fitting was done directly on
the degree distribution [5]). As we claim the result are different, while the best fit
for the hypergraph data (darker dashed green) is a power law degree distribution (a
Zipf distribution with cutoff) the best fit for the observed graph (darker dashed blue)
was a logarithmic distribution. We compared the root mean square error of both
distributions with the real data of the hypergraph and the Zipf distribution produced
an error which was 3.5 times smaller than the error of the logarithmic distribution.
Moreover, when we enforced the best fit of the observed graph to be a power law,
the results were even worse with different beta.

4 Proof of the Main Theorem

We now prove the main result of the paper, Theorem 1. During our analysis we use
the following lemma, which can be found in [4].

Lemma 1. [4] Suppose that a sequence {a, } satisfies the recurrence relation

b
ary1 = (1—;)a,—|—cl for t>1y.

Furthermore, suppose IILm by =b >0 and lle ¢; = c. Then tlim a; [t exists and
oo ) —00

tlima,/t =c/(1+Db).

—yoo
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As a first step, we find a recursive representation for my ;| in terms of my ,
for smaller k¥ < k. Note that mo; = mg for every . This follows nodes of degree
0 cannot be included in future edges, and every new node arrives with degree 1.
Therefore, we focus on my; for k > 1. Let .%; denote the o-algebra generated by the
hypergraphs Hy, . . ., H;. Intuitively, .%; encodes all the history until time 7. For k > 2
we have

min{Y; k—1}
E [mk,t+l ‘ ytayt} = Z]P)[dt+1(v) =k|Z,Y] = Z mk—j7t€5(—j.]< )
v j=0

where /£ _ ik is the probability that a node with degree k — j at time ¢ will have
degree k at time 7+ 1. Note that ¢} _ =0 for every j > ¥; since at time ¢ the degree
could increase by at most the size of the edge added at time ¢, namely Y;. Also note
that my_;, = O for every j > k since all nodes are of degree at least 1. In order to
evaluate £, we denote P(i;n,q) = (") -4'(1—¢)"", and consider the following
two possible cases for a node v satisfying d;(v) =k — jand d; 11 (v) = k:

1. 0 < j < min{¥;,k— 1}, at time ¢ no new nodes were added, and the new
edge contained v exactly j times (this happens with probability (1 — p) -

P(j;Y, (k—j)/Dr))
2. 0<j<min{Y; —1,k— 1}, at time ¢ a new node was added and the new edge
contained v exactly j times (this happens with probability p-P (j;Y,—1, (k— j)/Dy))

Thus, for every k > 2 we have

min{Y; k—1} k—j
E[miser |- 72,Y,] = (1—=p) ), mk—jAt'IP)<j;th>

j=0 D

min{¥;—1,k—1} k*j
+p Y mk_j,;P(j;Kl,) : 7

j=0 Dr

Similarly, for k = 1 we have
1 Y Y -1
E[ml,tH |<%7Yt] = (1_P)'ml,r' I—— +pmy-(1—— +p, (8)
Dt Dl‘

where here we added a p to account for the new node that arrives with probability p.
We now show that the resulting network follows a power law. To this end, we note
that combining Ineq. (4) and Eq. (2), the following lemma follows.

Lemma 2. For everyt > 0 and fixed k > 0, we have

o[-

< o(1),

where o(1) tends to 0 as t — oo.
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We now prove Theorem 1.
Proof of Theorem 1: We prove Eq. (6) by induction on k. For k = 1, taking expec-
tation on both sides of Eq. (8) yields

1\"! 1—p
E[m 1] =E ml,t'<1—Dt> (1— D, > +p.
Hence
) (1-5)]
E[m >E(m, |1— 1— +
[ 1,t+1] { 1t ( D, D, P
Y,—p EY]—p
> E [ 1— > E 1—— —o(1
{ml’t < : ﬂ r WU]( E[Dy] tp—oll).

€))

where the last inequality follows from Lemma 2 and the independency of ¥; from
D; and my ;. In the other direction we have

1 I-p
Elm <E|m,- 1= +
[m141] < A Lt 1+(I’,—1)/Dz< Dy, >] P

I Y, — Y, — Y?
=K m1,f~(1 [p):|+P < E[mu-(l— ! p+‘>}+p

D +Y,—1 D,  D?
r . 2
<E ml,r(l—YtD p)]HE[O(t)'Ez} +p
L t t
EY:] —
SE[ml,t] (1_W) +P+0(1)v (10)

where the penultimate inequality follows from Ineq. (4), and the last inequality fol-
lows from Eq. (3) and Lemma 2. Considering Ineq. (9) and (10), and applying
Lemma 1 with (a;,b;,¢,) set to (E[my,],(E[Y;] —p)t/E[D:],p£0o(1)), with the
corresponding limits » = 1/I" and ¢ = p obtained by Eq. (1), we have

fim P

= = p-M;.
f—yo0 1+1/r P

Hence the induction basis follows. Next, assuming the claim for k, we prove it for
k+ 1. Taking expectation on both sides of Eq. (7), we write

E[m] =%+ (1-p)-Elp(¥)]+p-Elp(¥; —1)] , an

where W represents the expectation of the first two terms in Eq. (7), namely,
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’ k= ! k—j
¥ =(1-p) ZE {mk—jﬁt‘P(LYt,D]>} +pZE |:mk_j7[~]P’(j§Yt—l, D ]>]
t j:0 t

Jj=0

w00 (=5) 0 (-5)")
mkfu-k;tl <Y,(1—p) (1 —kgll)YIIer(Y,—l) <1_kD—t1)er>] |

and the expectation of the remaining terms is represented using the notation

min{nk—1} k—j
o) = Y, moger (i 5L) .
= D

=E

+E

Considering Eq. (11), we show that ¥ is the dominant term and both E [¢(¥;)] and
E[p(Y; — 1)] are negligible. By Ineq. (4), we have

min{Y; k—1} Y, k— i J k— i Yi—j
Y, Y J) .(1_ ]>
min{Y; k—1} N J _\Y—J
o0 % () (57) %)
j=2 J Dl‘ DY

min{Yik=1} N 1\ Vik
o0 %, (5) (-5)

IA

j=2
YZ .kZ min{¥; k—1} Y, -k ji—2
o) XK -nm, kN
<0() e ,:Zz D,

If Y, < Dy, we have
Y2 k? Y?
oY) < O(1)- "~ k2 = 0("t> :

whereas if ¥; > D;, we have

o(%) < 0(t). Yo s O k/D)" 21

D7 (Yi-k/Dy) —1
Y2kt (Y,/D,)*
< O) 21— =Y, /Dy \t/FH)
W) ~p e k—1
Y2 . kk (k* 2)k72 Y2
< O0() = o W=2) T oL
SO0 e —1 - o\U'p)

where the penultimate inequality follows since the expression e - x% is maximized
at x = . Thus in any case, we obtain
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Therefore, by Eq. (3),
Elp(¥;)] < o(1). (12)

Similarly
Elp(Y,—1)] < o(1). (13)

We now provide tight bounds for ¥. Similar to the case where k = 1, we have

w < E|:mk,z' (I_Wt;f’)k)] +]E[0(t).;t;} k
k—1
D,

+]E{mk_1,,~ ~((1p)-Yt+p~(Ytl))}

KELW)—p) -
< &lm) (1- “CHZ) 4 B o

where the last inequality follows from Eq. (3) and Lemma 2. We now derive a lower
bound for ¥'. We have

Y >E :mk,t ((l—p) (1—];?) tp (“MKDZ_I)))]

+ E -mk_l’t'kD_fl ) (1_(](_1)D(IY’_1)) '(Yt(l—P)-Fp(Yt—l))]

(52 5 (£ ]

D,

By Lemma 2 and Eq. (4), we have

¥ > E[my,] (1-%) —o(1)

T E [me] '1][;[_1),1]'(Emp)E {0 (’gz)}

= &) (1- 250 ) s ] g (B p) o).
5)

where the last inequality follows from Ineq. (3). Plugging Ineq. (12), (13), (14) and
(15) into Eq. (11), we obtain

W) +E [mk,u] Q : (E [Yt] —p)io(]) '

E[mgii1] = E[me,]- (1 T TE| E[D;]
(16)
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Therefore, applying Lemma 1 with (a,,b;,¢;) set to

(£ EEPE ) oL @l p) o)

with the corresponding limits » = k/I" and ¢ = (,ll,mE [me_1,] /1) (k—1)/T" ob-
tained by Eq. (1), we have

E[me] _ . Elmer,] (k=1)/T
———= =lim .
t—yo0 t t—oo t 1+k/F

Hence, by the induction hypothesis, we obtain

k—1

Mk:Mkfl'kJrF ;

thus concluding the proof of Thm. 1. O

5 Conclusion

We conclude with some discussion and directions for future work. In the future,
hypergraph models are likely to replace graph models at the core of social structure
analysis. This is due to the fact that hypergraph data is available, and hypergraphs
generate considerably more accurate pictures of the reality of social structures, as
this paper shows. It is therefore hoped that the preferential attachment hypergraph
model, as suggested herein, will contribute a modest step towards the next leap in
the study of social structures.

It may be interesting to study next a setting where p is not constant but rather a
sequence, p;, which depends on the time ¢ and tends to 0, i.e., lim;_. p; = 0. We
find this to be an exciting new research direction, which can provide explanations to
a variety of phenomena that are not captured in the current model.
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