Ran Gilad-Bachrach Microsoft Research

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy

Abstract:
Applying machine learning to a problem which involves medical, financial, or other types of sensitive data, not only requires accurate predictions but also careful attention to maintaining data privacy and security. Legal and ethical requirements may prevent the use of cloud-based machine learning solutions for such tasks. In this work, we will present a method to convert learned neural networks to CryptoNets, neural networks that can be applied to encrypted data. This allows a data owner to send their data in an encrypted form to a cloud service that hosts the network. The encryption ensures that the data remains confidential since the cloud does not have access to the keys needed to decrypt it. Nevertheless, we will show that the cloud service is capable of applying the neural network to the encrypted data to make encrypted predictions, and also return them in encrypted form. These encrypted predictions can be sent back to the owner of the secret key who can decrypt them. Therefore, the cloud service does not gain any information about the raw data nor about the prediction it made. We demonstrate CryptoNets on the MNIST optical character recognition tasks. CryptoNets achieve 99% accuracy and can make around 59000 predictions per hour on a single PC. Therefore, they allow high throughput, accurate, and private predictions. This is a joint work with Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, John Wernsing.