Abstract:

We consider the generalized doubling integrals of Cai, Friedberg, Ginzburg and Kaplan. These generalize the doubling method of Piatetski-Shapiro and Rallis and represent the standard L-function for pairs of irreducible, automorphic, cuspidal representations π on a (split) classical group G, and τ on $\text{GL}(n)$. The representation π need not have any particular model (such as a Whittaker model, or a Bessel model). These integrals suggest an explicit descent map (an inverse to Langlands functorial lift) from $\text{GL}(n)$ to G (appropriate G). I will show that a certain Fourier coefficient applied to a residual Eisenstein series, induced from a Speh representation, corresponding to a self-dual τ, is equal to the direct sum of irreducible cuspidal representations $\sigma \otimes \sigma'$ on $G \times G$, where σ runs over all irreducible cuspidal representations, which lift to τ (i.e., is the complex conjugate of an outer conjugation of σ). This is a joint work with David Ginzburg. https://weizmann.zoom.us/j/98304397425