Abstract:

We consider the generalized doubling integrals of Cai, Friedberg, Ginzburg and Kaplan. These generalize the doubling method of Piatetski-Shapiro and Rallis and represent the standard L-function for pairs of irreducible, automorphic, cuspidal representations \(\pi \) - on a (split) classical group \(G \), and \(\tau \) - on \(GL(n) \). The representation \(\pi \) need not have any particular model (such as a Whittaker model, or a Bessel model). These integrals suggest an explicit descent map (an inverse to Langlands functorial lift) from \(GL(n) \) to \(G(\text{appropriate } G) \). I will show that a certain Fourier coefficient applied to a residual Eisenstein series, induced from a Speh representation, corresponding to a self-dual \(\tau \), is equal to the direct sum of irreducible cuspidal representations \(\sigma \otimes \sigma' \), on \(G \times G \), where \(\sigma \) runs over all irreducible cuspidal representations, which lift to \(\tau \) (\(\sigma' \) is the complex conjugate of an outer conjugation of \(\sigma \)). This is a joint work with David Ginzburg.

https://weizmann.zoom.us/j/98304397425