New Diameter Reducing Shortcuts: Breaking the $O(\sqrt{n})$ Barrier

Abstract:

For an n-vertex digraph $G=\langle V, E \rangle$, a shortcut set is a (small) subset of edges taken from the transitive closure of G that, when added to G, guarantees that the diameter of $G \cup S$ is small. Shortcut sets, introduced by Thorup in 1993, have a wide range of applications in algorithm design, especially in the context of parallel, distributed and dynamic computation on directed graphs. A folklore result in this context shows that every n-vertex digraph admits a shortcut set of linear size (i.e., of $O(n)$ edges) that reduces the diameter to $\tilde{O}(\sqrt{n})$. Despite extensive research over the years, the question of whether one can reduce the diameter to $o(\sqrt{n})$ with $\tilde{O}(n)$ shortcut edges has been left open.

In this talk, I will present the first improved diameter-sparsity tradeoff for this problem, breaking the \sqrt{n} diameter barrier. Specifically, we show an $O(n^\omega)$-time randomized algorithm for computing a linear shortcut set that reduces the diameter of the digraph to $\tilde{O}(n^{1/3})$. We also extend our algorithms to provide improved (β, ϵ)-hopsets for n-vertex weighted directed graphs.

Joint work with Shimon Kogan.