Cy Maor
University of Toronto

Non-Euclidean elasticity and asymptotic rigidity of manifolds

Abstract:

Liouville's rigidity theorem (1850) states that a map \(f: \Omega \subset \mathbb{R}^d \to \mathbb{R}^d \) that satisfies \(Df \in \text{SO}(d) \) is an affine map. Reshetnyak (1967) generalized this result and showed that if a sequence \(f_n \) satisfies \(Df_n \to \text{SO}(d) \) in \(L^p \), then \(f_n \to \) converges to an affine map.

In this talk I will discuss generalizations of these theorems to mappings between manifolds, present some open questions, and describe how these rigidity questions arise in the theory of elasticity of pre-stressed materials (non-Euclidean elasticity).

If time permits, I will sketch the main ideas of the proof, using Young measures and harmonic analysis techniques, adapted to Riemannian settings.

Based on a joint work with Asaf Shachar and Raz Kupferman.