Abstract:

Let \(n \) be a positive integer, \(F \) be a non-Archimedean locally compact field of odd residue characteristic \(p \), and \(G \) be an inner form of \(\text{GL}(2n,F) \). This is a group of the form \(\text{GL}(r,D) \) for a positive integer \(r \) and division \(F \)-algebra \(D \) of reduced degree \(d \) such that \(rd=2n \). Let \(K \) be a quadratic extension of \(F \) in the algebra of matrices of size \(r \) with coefficients in \(D \), and \(H \) be its centralizer in \(G \). We study selfdual cuspidal representations of \(G \) and their distinction by \(H \), that is, the existence of a nonzero \(H \)-invariant linear form on such representations, from the viewpoint of type theory. When \(F \) has characteristic 0, we characterize distinction by \(H \) for cuspidal representations of \(G \) in terms of their Langlands parameter, proving in this case a conjecture by Prasad and Takloo-Bighash.