Abstract:

Let M be a smooth, compact, connected two-dimensional, Riemannian manifold without boundary, and let C_ε be the amount of time needed for the Brownian motion to come within (Riemannian) distance ε of all points in M. The first order asymptotics of C_ε as ε goes to 0 are known. We show that for the two dimensional sphere

$$\sqrt{C_\varepsilon} - 2\sqrt{2}\left(\log \varepsilon^{-1} - \frac{1}{4} \log \log \varepsilon^{-1}\right)$$

is tight.

Joint work with David Belius and Ofer Zeitouni.