Abstract:

Every word \(w(x_1, \ldots, x_r) \) in a free group, such as the commutator word \(w=xyx^{-1}y^{-1} \), induces a word map \(w:G^r \to G \) on every group \(G \). For \(g \in G \), it is natural to ask whether the equation \(w(x_1, \ldots, x_r) = g \) has a solution in \(G^r \), and to estimate the "size" of this solution set, in a suitable sense. When \(G \) is finite, or more generally a compact group, this becomes a probabilistic problem of analyzing the distribution of \(w(x_1, \ldots, x_r) \), for Haar-random elements \(x_1, \ldots, x_r \) in \(G \). When \(G \) is an algebraic group, such as \(SL_n(C) \), one can study the geometry of the polynomial map \(w:SL_n(C)^r \to SL_n(C) \), using algebraic methods.

Such problems have been studied in the last few decades, in various settings such as finite simple groups, compact p-adic groups, compact Lie groups, and simple algebraic groups. Analogous problems have been studied for Lie algebra word maps as well. In this talk, I will mention some of these results, and explain the tight connections between the probabilistic and algebraic approaches.

Based on joint works with Yotam Hendel, Raf Cluckers and Nir Avni.