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Abstract. The Saliency Network proposed by Shashua and Ullman (1988) is a well-known approach to the
problem of extracting salient curves from images while performing gap completion. This paper analyzes the
Saliency Network. The Saliency Network is attractive for several reasons. First, the network generally prefers
long and smooth curves over short or wiggly ones. While computing saliencies, the network also fills in gaps with
smooth completions and tolerates noise. Finally, the network is locally connected, and its size is proportional to the
size of the image.

Nevertheless, our analysis reveals certain weaknesses with the method. In particular, we show cases in which tt
most salient element does not lie on the perceptually most salient curve. Furthermore, in some cases the salien
measure changes its preferences when curves are scaled uniformly. Also, we show that for certain fragmente
curves the measure prefers large gaps over a few small gaps of the same total size. In addition, we analyze tf
time complexity required by the method. We show that the number of steps required for convergence in serial
implementations is quadratic in the size of the network, and in parallel implementations is linear in the size of the
network. We discuss problems due to coarse sampling of the range of possible orientations. Finally, we conside
the possibility of using the Saliency Network for grouping. We show that the Saliency Network recovers the most
salient curve efficiently, but it has problems with identifying any salient curve other than the most salient one.

1. Introduction the ones that are smooth, long, and closed (see for ex-
ample Fig. 1). Shashua and Uliman (1988) proposed a
In line drawings, certain shapes attract our attention method, which attracted considerable attention, to ex-
more than others. For example, these shapes may beract such shapes from a line drawing. They defined a
function that evaluates the “saliency” of a curve. Their
_ . . function has the following properties. First, when all
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Figure 1 A fragmented circle in the middle of noise. The global
shape of the circle is apparent.

decay with the sections’ accumulated energy and gap
length from the beginning of the curve. Using this
saliency function, Shashua and Ullman defined the
“saliency map” of an image to be an image in which the
intensity value of each pixel is proportional to the score
of the most salient curve emanating from that pixel.

A network of locally connected elements (the
Saliency Networkwas proposed for computing the
saliency map. The Saliency Network’s computation
involves local interactions between image locations,
and its size is proportional to the size of the image.
The network implements a relaxation process that op-

assigned to an element is based on a circular-arc com-
pletion between it and the image point; the weight de-
creases with the total curvature of the arc, preferring
straighter and shorter completions. Unlike Shashua and
Uliman, however, there is no attempt to optimize a mea-
sure of saliency over the set of image curves.
Identifying salient structures in images is one of
the objectives operceptual groupingBy perceptual
grouping, we refer to the (bottom-up) process of group-
ing together structures in the image that are likely
to belong to a single object. Other tasks in percep-
tual grouping are image segmentation and gap comple-
tion. For instance (Herault and Horaud, 1993; Jacobs,
1993; Martelli, 1976; Mohan and Nevatia, 1988, 1992;
Montanari, 1971; Parent and Zucker, 1989; Pavlidis
and Liow, 1990; Weiss, 1988; Williams and Hanson,
1994) extract contours from the image according to cer-
tain optimization criteria, (Ullman, 1976; Ruthowski,
1979; Brady et al., 1980; Horn, 1983; Bruckstein and
Netravali, 1990) compute optimal curves for filling in
gaps, and (Brady and Grimson, 1981; Webb and Pervin,
1984; Finkel and Sajda, 1992; Grossberg and Mingolla,
1987; Heitger and von der Heydt, 1993; Mumford,
1994; Williams and Jacobs, 1995) identify occluded

timizes the saliency measure. As a consequence of theg g subjective contours.

optimization, the network can identify the most salient
curve in the image, which could be either open or
closed. Additionally, the method attempts tofillin gaps
smoothly while simultaneously overcoming noise.

Several studies implemented or extended the
Saliency Network. Shashua and Ullman (1990) devel-
oped a method for grouping which, based on the same
computation, groups together curve pieces that mutu-
ally prefer each other over other candidates. Their new
method, however, is not guaranteed to converge to the
optimal solution. Freeman (1992) used the Saliency
Network to detect salient curves and extract junctions
in the output of steerable filters. He reported that the
method had serious problems with discretization and
grouping, similar to some of the problems we describe
in Sections 5 and 6. In addition, Subirana-Vilanova
and Sung (1991, 1992) extended Shashua and Ullman’s
method to find skeletons of regions.

The problem of marking salient locations in im-
ages (“attention”) is also addressed in the work of Guy
and Medioni (1993). Using a different method from
Shashua and Ullman’'s, Guy and Medioni also pro-
duce a saliency map from an edge image. In Guy and
Medioni’s scheme, each point in the image receives a
saliency value equal to a weighted sum of contribu-
tions from the individual edge elements. The weight

In this paper we provide an analysis of Shashua
and Ullman’s method. We examine both the measure
of saliency and the computational performance of the
Saliency Network. Motivated by both perceptual and
computational reasons, we identify below three criteria
which we believe a measure of saliency should satisfy.
We then analyze Shashua and Ullman’s measure with
respect to these properties. The criteria are:

Fidelity. For consistency with human perception, the
saliency map should highlight the locations in the
image that lie on curves that humans perceive as
salient. In particular, the most salient location in the
saliency map should lie on the curve that is most
salient perceptually. Thus, for example, in Fig. 1 the
most salient location in the saliency map should be
on the circle rather than on any of the surrounding
line segments. In addition, since the Saliency Net-
work provides the most salient curve as well as a
saliency map, this most salient curve coincides with
curve that is most salient perceptually.

Invariance. In different images, objects often appear
in different positions and orientations or in differ-
ent sizes. Since in Computer Vision systems the
positions, orientations, and sizes of the objects are
generally not known in advance, a saliency measure
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for curves should be insensitive to such variations— length. However, our analysis indicates that, when
in practice, it is sufficient for the measure to be in- circles of both the same size and gap length are com-
variant only over the ranges allowed in the set of pared, the measure prefers a circle with one long gap
images being considered. In particular, the measure over a circle with few small gaps of the same total size.
should be invariantto 2D rigid transformations of the In addition to studying properties of the saliency

curves. In addition, the measure should be consis- measure, we also examine the computational proper-
tent over different scales. That is, given two curves ties of the Saliency Network. In particular, we analyze

I'1 andTI's, if T'1 is considered more salient th&, the convergence rate of the network and show that the
thenI'; should remain more salient when the curves run-time complexity of the network in serialimplemen-
are scaled uniformly. tations is quadratic in the number of elements. We then

Performance on Gaps.InFig. 1, asthesize ofthegaps discuss problems due to coarse sampling of the range
between edge elements is increased, our perceptionof possible orientations. We show that, when the range
of the circle fades. We therefore expect the measure of possible orientations is sampled too coarsely, unde-
of saliency to degrade with gaps. Furthermore, in sirable effects may occurin which corners are preferred
the presence of noise, edge contours are often frag-over straight lines. With proper sampling the complex-
mented and contain small, randomly situated gaps. ity of the network becomes at least cubic in the size of
Consequently, we require a saliency measure to pe-the image.
nalize large gaps more than few small gaps of the As mentioned above, we also consider the possi-
same total size. bility of using the Saliency Network for grouping.

We note that, in contrast to other existing methods
) ) . ) for grouping that search over the exponentially large

In our analysis, we found cases in which the Saliency space of all possible image curves (e.g., Herault and

Network violates each of the above three properties. Horaud, 1993: Jacobs, 1993: Parent and Zucker, 1989:

On the issue of fidelity, the network indeed locates Williams, 1994), the Saliency Network recovers the

the perceptually salient curves, so that long, smooth, st salient curve in time complexity that is polyno-

closed curves are preferred over short, wiggly, open mjg| in the size of the image. However, the network

ones. Nonetheless, our analysis reveals cases in whichy st take a single choice at every junction, and curves
the most salient location in the saliency map is not |ying near a salient curve tend to merge into the salient
on the perceptually most salient curve. For example, cyrve because they can benefit from its saliency. As
ifthere are short line segments touching a salient curve, 4 consequence, the network has problems with iden-
then often the short segments shall be judged more iifying salient curves other than the most salient one,
salient than the closed curve. In this situation, the anq has serious difficulties in extracting more than one
most salient location in the network will not lie on object contour in cluttered images.

the closed curve, but it will draw its saliency from the The paper proceeds as follows. Section 2 contains

closed curve. This behavior is also significant compu- gefinitions. Section 3 includes an analysis of the dif-

tationally, because itis indicative of difficulties thatcan  grent properties of the saliency measure. Section 4

occur in attempting to recover the contours of nearby analyzes the time complexity of the network computa-

objects (this is discussed in Section 6 on grouping).  jon, Section 5 analyzes the effects of sampling on the

Since the saliency measure depends only on length oo mpytation. Finally, Section 6 discusses the issue of
and curvature, it is invariant to rigid transformations. using the output of the network for grouping.

We show, however, that attimes the measure changes its

preferences when the curves are scaled uniformly. For

instance, consider a straightline and a circle ofthe same2. Definitions

length. For lengths less than a certain value, the line is

preferred over the circle, whereas for larger lengths this Shashua and Ullman defined their saliency measure as

preference reverses. Shashuaand Ullman’s rankings offollows. For every pixel in the image, there is a fixed

curves, therefore, are not invariant to uniform scaling, set of “orientation elements” connecting the pixel to

even in the range of scalings that are permissible in the neighboring pixels (Fig. 2, left). Each orientation ele-

images they consider. ment is called “actual” or “real” if it lies on an edge in
Finally, the saliency measure can be applied to frag- the underlying image, and otherwise it is called “vir-

mented curves, in which case it will attenuate with gap tual” or “gap” (see Fig. 3). Given a curdécomposed
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Figure2 Example of the connectivity of Shashua and Uliman’s Saliency Network, for the cases of sixteen and twenty-four orientation elements
per pixel. Inthe left pictures, the neighbors of a pigely) are{(x+ Ax, y+ Ay) | max(|AXx|, |Ay|) = Ae}, whereAe = 2 for 16 elements per

pixel andAe = 3 for 24 elements per pixel. Given the pixel neighborhoods in the left pictures, the right pictures show examples of five-element
curves.
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X : KpF wherepii = 1 and whereo is some constant in the
MNP N range [01).! (Shashua and Ullman sgtto 0.7.) o;

o ensures that only actual elements will contribute to the
Figure3 Left: Inputimage is a_binary e_dge map. In_the picture the_ saliency measureg;; is the number of gap elements
black squares represent edge pixels. Right: The Saliency Network is betweenpi and pi, andpij reduces the contribution of

defined on top of the edge map. The network is composed of locally .
connected elements which are called “active” if they lie on edges and 2" element according to the total length of the gaps up

“gaps” if they do not. In the right picture, the dashed line segments tO that element. Further,
between eight-connected pixels represent active elements, and the

remaining line segments represent gaps. For viewing purposes, every Cij — e Ki
element was set to have eight neighbors, although in Shashua and
Ullman’s implementation every element had sixteen neighbors, and with
in our implementation every element had twenty-four neighbors.

)

J
. . Kij =/ k*(s)ds,
of the N + 1 orientation elementg;, pii1, ..., Pi+N P

(Fig. 2, right), the saliency df is defined by
wherex (S) is the curvature at positios K;; reduces

i+N the contribution of elements according to the accumu-
o) = ZU; pij Cij , 1) lated squared curvature from the beginning of the curve.
j=i The saliency of an elemer; is defined to be the
with maximum saliency over all curves emanating frpm

1, if p;is actual _
0, if pjis virtual O(1) = max &(I), )



Extracting Salient Curves from Images 55

whereC(i) denotes the set of curves emanating from where
pi. Shashua and Uliman showed how to compie)

on a network of locally connected elements. Denote by 1, if I'(s)is actual
® (i) the saliency of.the most salient curve of I(_angth o(s) = 0. if I'(s) is virtual
N + 1 or less emanating from,. The measuréy (i) P
satisfies p(S1, &) = p9=>

C(s1, ) = & &%),

®n(@) = max FG, j, Pn_1(j)), 3
N pjeN () (.1, On-a() ®) whereg(s;, &) is the total gap length df betweenrs;

ands, andK (s, ) is the energy of the curve between

whereN (i) is the set of all neighboring elementsm,f s ands,, which are defined by
and whereF () is a function of®y_1() and constants
stored at elementg; and p;. Shashua and Ullman 2
referred to this type of measure as “extensiBlenthe 9(s1, ) = / 1 —o®)dt, (7)
Saliency Network, Sisz
K(s, &) = / KA (O)dt, (8
Sy
Fa, |, on-1(])) = oi + piCijPn-a()),  (4)
A useful tool in computing saliencies is the fol-
which gives lowing rule. Given a curvd™ which is composed of
two smoothly concatenated sectiorig, andI',, the
saliency ofT" is given by
On(i) =0i + pi_max Cijdn_a(j). (5)
pjeN (i)

() = Iy + p®e oy,  (9)
Note that this recurrence relation updates each ele-

ment's saliency by taking a maximum over its neigh- \yhereq(ry) is the total gap length anid (T'y) is the
bors’ saliencies, but does not allow an element to retain gnergy ofr;.

its current saliency. This observation raises the ques- Throughout the paper we will use this continuous
tion of whetherthe saliencies are optimal over allcurves tormulation to analyze the network. In addition, we
that are less than or equal ko elements long or only || present examples of the Saliency Network on sim-
over curves that are exactly elements long. Infact  yjated and real images. Our implementation replicates
the former is true, which we now show. First, note that gnashua and Ullman’s original discrete implementa-
the salie_ncy measure in Eq. (1) is monotonically non- tjgp, except that we increased the number of orien-
decreasing with the number of elemehton acurve.  aion elements per pixel to obtain greater accuracy.
Consequently, atiteratioN + 1 every elementhasthe  \ve ysed twenty-four orientation elements per pixel,

option of choosing the same neighbor as it chose at \yhereas Shashua and Ullman used sixteen elements
iteration N, and thus obtain a new saliency that is N0 pher pixel. Also we sep = 0.7 as in the original im-

less than its current saliency. Therefore, itis sufficient pjementation.
to not include an element’s current saliency when tak-
ing the maximum, because there will be at least one
neighbor through which the element can obtain a new
saliency that is as great as its own.

To make the saliency measubeindependent of the
particular implementation, we introduce a continuous
version ofd. Givenacurve'(s) oflengthl (0 <s </,

s denotes arc length), we defideby

3. Properties of the Saliency Measure

We begin our analysis by examining the saliency mea-
sure proposed by Shashua and Uliman. Section 3.1
below discusses the treatment of cycles. Section 3.2
analyzes the behavior of the measure when applied to
simple curves. Lastly, Section 3.3 analyzes the behav-
ior of the measure when applied to curves that include

|
o) = 0,s)C(0, s)d 6
(r) /()o(sm( SCO.9ds () gaps,
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3.1. Cycles values ofl. The saliency function, therefore, ranks
curves differently when these curves are scaled uni-
The measure of saliency proposed by Shashua and Ull-formly. In another example, we analyze the results of
man is a positive function that increases monotonically applying the saliency measure to a picture containing
with the lengths of the curves in the image. Closed a circle and short line segments connected to it. We see
curves (cycles) are considered to have infinite length, that a short line segment increases its saliency value by
even though they form finite structures in the image. connecting to the circle. As a result of this increase, it
Shashua and Ullman showed that their network is guar- is not unusual for a short segment to become more
anteed to converge when applied to closed curves. salient than a circle. The saliency of the short line seg-
The reason it converges is that the contribution to the ment in this case represents the saliency of the circle,
saliency from remote elements attenuates geometri- but the most salient element is in fact not part of the
cally with the curvature accumulated from the begin- circle.
ning of the curve. In cycles this generates a geometric We begin by deriving explicit formulas for the

series that converges to a finite value. saliency of straight lines and curves. For straight lines
Formally, given a closed cuni, denote byd the C(0,s) = 1 for all s. Therefore, a straight line of
saliency of an element df that is obtained by starting  lengthl will obtain the scored(I") = |. The saliency

from that element and then proceeding once around theof a straight line, therefore, grows linearly with the
curve. Denote bK the total squared curvature of the length of the line.
cycle and byg the cycle’s total gap length. Then by For a circle of radius, the curvature is constant,

repeatedly applying Eq. (9) we obtain x = 1/r, and so for a circular arc of length

D) = @+ p%e D+ pYe ™+ ... CO,5)=e bl —g (12)

P
=0 (10)
1-—p9% The saliency attributed for the circular arc is
3.2. Straight Lines and Circles 50,9 = /SC(O bdt = /Ser‘Zdt
0 0

In this section we compute the saliencies of a few sim- =r2(1- e‘r%). (13)

ple curves. We then use these simple curves to examine

the issues of fidelity and invariance. In general, we will At . th i f the circle i
only be interested in the measure of saliency obtained ” . convergences = o), the saliency of the circle is
for the most salient element of the curve. Through- given by
out this section we shall use the continuous definition

of the saliency measure (Eq. (6)). We consider only o) = lm r¥(1-e ) =r2 (14)
curves with no gaps (we will analyze curves with gaps
in Section 3.3); hence(s) = 1 andp (0, s) = 1 for all The score of a circle, therefore, grows quadratically
s. Equation (6) therefore becomes with the radius (and thus also with the perimeter) of
| the circle.

_ The fact that the saliency of a straight line grows
¢ _/(; CO,9)ds (11) linearly with its length, whereas the saliency of a circle
where grows quadratically with its perimeter, suggests that
., the network may treat the two differently when they

C(0,s) = e oM, are scaled. Consider a straight line of lengtind a

circle of perimetet = 2zr. These two entities will
The examples below demonstrate some of the prob- have exactly the same saliency wHes 0 and when
lems with Shashua and Uliman’s saliency measure. In| = 472 ~ 39.48. (The saliencies in the two cases
particular, we compare the saliency of a line segment of are 0 and 42, respectively.) When & | < 472 the
lengthl to that of a circle of perimetér We show that line will be more salient than the circle, whereas when
for small values of, the straight line is preferred over | > 472 the circle will be more salient. Figure 4 shows
the circle, and that this preference reverses for large an example of three images, each of which contains a
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Figure 4 Lack of scale invariance in the Saliency Network. Top figures: three images that contain a straight line and a circle of roughly the
same length. Bottom figures: the most salient curves that were found in these images. Lengths are 27 (left), 39 (middle), and 84 (right). The
saliency values obtained for the circles are 15.39 (left), 33.60 (middle), and 132.05 (right), and for the lines are 27.06 (left), 39.00 (middle), and
84.00 (right).

straight line and a circle of the same length. Consis- intuitively, the most salient element computed by the
tent with our analysis, the Saliency Network found the network is on one of the line segments connected to
straight line to be more salient than the circle at shorter the circle, thus violating the fidelity requirement. The
lengths, and found the circle to be more salient atlonger reason is that a neighboring line segment may increase
lengths. (In these examples, the circles’ saliencies areits saliency by connecting to the circle, without affect-
attenuated due to discretization effects. In the con- ing the saliency of the circle. Consider, for example,
tinuous case, the saliency of the circles are given by a circular arc of length 1 and curvatureconnected
(1/2m)2. Nevertheless, the lack of scale invariance is smoothly to a circle of radius (which corresponds to
evident even in the presence of these effects. These ef-a single element connected smoothly to the circle via
fects, however, increase the turning point at which the curvaturec). Using Eq. (9) we obtain that the saliency
circle becomes more salient than a line. Discretization of the first element on the arc is
effects are discussed in Section 5.)

A different problem is enc_ountered in the case_of Be = D) + e Dy, (15)
a circle connected to short line segments. Consider
the picture in Fig. 5, left. The circle seems to be the

most perceptually salient curve in thisimage. Counter- where I' represents the circular arc ani is the

saliency of the circle. Now, using Eqg. (12) ,

2

1 _
q>(r):/ CO.9ds=2"S" (16)
0 K

Combining Egs. (14)—(16), we obtain that

1—87'(2 2
Go=""  +e“r2

= (17)

Input inage Saliency map Most salient curve

If we now compare the saliency of the elemehg, to

Figure5 Anexample of acircle with a few short curves connecting  that of the circled, = r? (Eg. (14)), we obtain that
to it. The most salient element (for which = 136.63) was not on ®e > O When

the circle, although its saliency came mostly from the circle (the

saliency of the circle is 130.74). If short gaps were added between 2

the curves and the circle, the circle would become the most salient 1-e + e—Kzr 2
curve in the image. K2

>r2, (18)
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so that

k| < K, (29)
wherex. = 1/r. That is, the element will be more
salient than the circle if and only if it connects to the
circle at a curvature that is less than the curvature of
the circle. This is consistent with the network’s prefer-
ence for straight curves. Notice that if the element is
a line tangential to the curve (= 0) the element will

be more salient than the circle regardless of the circle’s
radius.

This phenomenon, that curves connecting to a circle
may increase their saliencies due to these connection
and actually beat the circle, is more likely to occur for
longer curves. Suppose a cuiveonnects to a circle
C such that the total squared curvaturd'eincluding
the connection point, i&. Then the saliency of the
element onl" that is most distant from the circle is
given by Eq. (15), where? is replaced by , namely,

®. = D) + e Ko.. (20)
The longerT is, the more likely it is to become more
salient than the circle. Suppose for example thas
a straight line of lengththat connects to the circle via
curvaturex. We have thatb(I') = | andK = «2,
which implies

Y R (21)
Now &, > &, when
| +e*r2>r2 (22)
Substituting = 1/«, this implies that
1— efKZ 2
K2 > — ~ Kl— (23)
whenk? is small, or
||
Ke > —. 24
c \/l— ( )

Clearly, the longer the line is, the more likely it is to
become more salient than the circle.

Figure 5, left, shows a picture of a circle with a few
short curves connected to it. When the Saliency Net-
work is applied to this picture, the most salient element
does not lie on the circle, although most of its saliency

S

3.3. Curves with Gaps

One of the most important properties of Shashua and
Uliman'’s saliency network is its ability to fill in gaps
while computing the saliencies. The network handles
gaps by using virtual elements, which compute the
saliencies of curves emanating from their locations
and transfer these saliencies to their neighboring el-
ements. Via these transfers, actual elements evaluate
the saliencies of curves that emanate from their loca-
tions and contain any number of gaps. The network
avoids curves with large gaps by attenuating the scores
of curves exponentially with gap size.

In this section we analyze the performance of the
saliency network in the presence of gaps. Due to the
saliency measure attenuating exponentially with gap
size, the network is capable of overcoming small gaps,
but is unlikely to overcome large ones. As an example,
consider the problem mentioned in Section 3.2, that a
short line segment in the neighborhood of a circle may
increase its saliency by connecting to the circle. One
consequence of the fast attenuation is that this problem
almost disappears when the segment is not physically
connected to the circle. On the other hand, we show
below that, due to the exponential decay, very long
structures (straight lines and circles) obtain very low
scores even when only a small fraction of the curves
are gaps.

Finally, we explore the question of whether the net-
work prefers fragmented curves (dashed lines) over
curves with single gaps of the same total size. At first
glance Shashuaand Ullman’s saliency measure appears
indifferent to this property, because the total size of
gaps is taken into account, irrespective of the fragmen-
tation. In fact, for open curves there is no clear pref-
erence between a curve having many small gaps or a
few long gaps. For closed curves, however, we show
that a curve with a single large gap is preferred over the
same curve with several small gaps of the same total
size; this preference is inconsistent with our criterion
for performance on gaps (Section 1).

In computing the saliency of a fragmented curve,
gaps affect the total score in two ways (see Eq. (1)).
First, gap elements themselves do not contribute at all
to the total score (sincg; = O for virtual elements).
Secondly, the actual elements of the curve that lie on
the other side of a gap are attenuated by a fag¥or

is due to the circle. Indeed, if we disconnect these short whereg is the total gap length accumulated from the
curves fromthe circle, then the circle becomes the most beginning of the curve. Consider, for example, a curve

salient structure in the image.

I with one gap of lengtly. Denote the first part of
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the curve (before the gap) iy and the second part Table 1 @ for a straight infinite line with uniform gaps as a

of the curve (after the gap) by,, and denote by function of p (0 = 0.7). Note that the score for infinite lines

K (0, m) the total squared curvature Bf pIus the gap. gives an upper bound for the score of finite ones.

The saliency of" is given by (Eq. (9)) p 05 07 09 093 095 097 099 1
® 280 6.54 2523 37.25 53.27 90.65 277.560

O = d(I'y) + p% O™,  (25)

From this formulal'; contributes to the saliency &f 53.27, and when 90% of the line includes actual ele-
as if there were no gap, the gap elements contribute ments (10% gaps), the score drops to 25.23. This means
nothing, and the contribution df;, is exponentially that a straight line of length 54 will be better than any
attenuated by?9. Clearly, the longer the portion of line that contains 5% gaps. Similarly, a straight line
I before the gapI(y), the less the saliency af will of length 26 will always be better than an infinite line
be attenuated. If the gap appears near the end of thewith 10% gaps.

curve the saliency df is hardly attenuated. If the gap A similar analysis can be performed for a circle with
appears at the beginning, the entire saliency o at- uniformly distributed gaps. Unlike the infinite straight
tenuated by the fact@d. Notice that since the network  line, here the circle has finite size. Given a circle with
evaluates open curves starting from both endpoints, if a radiusr and fractionp actual elements amgl=1— p
curve contains a relatively smooth section on one of its virtual elements, we set(s) = p for all s, g(0, s) =
sides and a relatively wiggly section on its other side, ds and, using Eq. (12)C(0,s) = e ¥, Thus, the
then the highest score will be obtained when the gaps saliency ofl" is given by

are distributed along the wiggly side.

Consider now a straight line with gaps distributed
uniformly along the line. Letp (0 < p < 1) be the
fraction of the line containing the actual elements, and oo .

N . . . _ @lnp—-=)s
let @ = 1 — p be the fraction of the line which is = p/ e 2 ds, (28)
virtual. We can thus set(s) = p. The gap lengtly 0
of a line segment of lengthis given byql. Since we which, sinceqIn p < 0, simplifies to
are dealing with a straight lin& (0, s) = 1 for all s.

o) = p/ 0% 2 ds
0

Consequently, the expected saliency of a straight line p 29

of lengthl with fractionq in uniform gaps is given by o) = 1 dqino (29)
=z —qinp

(Eq. (6))

| Examples for the values assumed twI"), for
o) = p/ 0%5ds = P (0" —1). (26) p =07, are given ip Table 2, Similar to the case of
0 qlnp straightlines, the saliency of circles attenuates very fast
with gap size. For example, the saliency of a circle of

This score converges aapproaches infinity to radius 16 that contains no gaps is 256. With 5% gaps

Dy = — IE . (27) Table 2 The saliency values of circles with uni-
aqinp form gaps as a function gf andr (for p = 0.7).
Thus, the saliency of an infinitely long straight line p\r 1 2 4 8 16
with uniformly distributed gaps is always finite and, in
fact, proportional tgp/q. Note that, since the saliency 05 042 117 207 258 2.74
measure monotonically increases with the length of a 07 063 196 413 571 6.31
curve, the score of an infinitely long straight line with 09 087 315 917 1755 2274
uniform gaps provides an upper bound on the score of 093 091 338 1063 2291 3221
any finitely long line segment with the same distribu- 095 093 355 11.82 2839 43.70
tion of gaps. 097 096 372 1325 3685 66.41

Examples for the values assumeddy, as a func-
tion of p are given in Table 1. When 95% of the line
includes actual elements (5% gaps), the score is only

099 099 390 14.98 5158 132.48
1 1 4 16 64 256
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its saliency reduces to 43.70. This saliency (43.70) The final issue we discuss is the saliency measure’s
is identical to the saliency of a gap-free circle of ra- preference for how gaps are distributed along a curve.
dius 6.61. Similarly, with 10% gaps the saliency of the Elder and Zucker (1993) conducted experiments which
same circle reduces to 22.74, which corresponds to thedemonstrate that, when a fraction of the boundary of
saliency of a gap-free circle of radius 4.77. an object is missing, humans’ recognition ability is
Next, we analyze the case of a short cuivethat hindered more when the missing fraction is contained
lies near a circle such that the two are not touching. allin one gap than when spread over several gaps. Such
Again, we shall ask whether such a curve may become a property is useful, for instance, in order to overcome
more salient than the circle by using the saliency of noise in the output of the edge detector. For any curve,

the circle. Let®(I") denote the saliency df, let g the saliency measure encourages gaps to be as far as
be the gap length betweé&hand the circle, and leK possible from the starting point. For an open curve
be the total squared curvaturefplus the gap to the  with a fixed total gap length, the best and worst cases
circle. The saliency®. of the first element o is are when the curve has one large gap at the start (worst)
given by or end (best). Since the network evaluates the saliency
of curves from all possible starting points it prefers
®e = D(I") + ple K. (30) that gaps are pushed as far as possible from the smooth
sections of the curve.
We obtain thatb, > @, (recall thatd. = r?) when While for open curves there is no clear preference
for a single long gap versus a few short gaps, for closed
O() + p%  r? > r?, (31) curves such a preference does exist. Consider a circle
I with one large gap. LeF; be the open curve cor-
which implies that responding to the part of the circle that is actual, and
let I'; be the gap. The most salient element on the cir-
1 Kk . i . .
r_2q>(r) >1— p% K. (32) cle will be the first element of ;, since the saliency

measure prefers gaps to be as far as possible from the
Note that since < 1 the right-hand side grows larger ~ Start of the curve. So the most salient curve will go first
as the gap size increases. Consequently, the chancdroughl's, then through, and then loop back tb;.
of an element becoming more salient than a circle by L&t er denote the length of gap,. Since only the
taking its saliency from the circle decreases with the actual elements contribute to the saliency of a curve,
gap size. Suppose finally thatis a straight line of Fhe .sallency obtalneq by going once arqund the circle
length! such that its continuation is tangential to the IS SImply ®(I'). Using Eq. (10) the saliency of the

circle, in which cas@ (I') = I, K = 0. The condition  Circle becomes
oI
(Eq. (32)) becomes ®(T) = ( 1)2 _ (36)
I 1 — par e
1z >1—pf. (33) If the circle now contains, say, two gap sections of

the same total lengtdar, then the saliency obtained by
Forl = 1andp = 0.7 we obtain thatl" is almost never ~ going once around the circle will be reduced. This is

more salient than the circle: because a gap will be closer to the start of the curve. As
1 a consequence, the numerator in Eq. (36) will become

= > 1—(0.7)9 (34) smaller. The denominator, however, will remain un-
r changed since the total gap length and curvature do not

or change. This analysis clearly applies when the circle is
1 fragmented by more than two gaps. Consequently, the

< m : (35) saliency of the circle will become smaller as a result

of fragmentation. An example is given in Fig. 6. The
From this equatiorr, must be extremely smallto allow  figures shows three circles of the same radius and with
an element to win with gaps: Fag = 1, we have the same total gap size. The network prefers the one
r < 1.826, and forg = 2, we haver < 1.400. As that contains one long gap over the ones in which the
| increases the likelihood df becoming more salient  gaps are fragmented. This behavior disagrees with our
increases. performance-on-gaps criterion.
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Figure 6 Three circles of the same radius with the same total gap size. Using Shashua and Uliman’s network the saliency values are 46.8¢

(left), 27.93 (middle), and 23.27 (right).

4. Complexity and Convergence Analysis

In this section we analyze the complexity of Shashua
and Ulliman’s saliency network. Denote the total num-

ber of pixels in the image by and the number of
discrete orientation elements at every pixeldoyrhe

network haspb elements. At each iteration every el-
ement has to evaluate all the saliencies obtained from
elements connected to it. The complexity of each iter-
ation therefore igpb?. The question then is how many
iterations are required before the network converges.
Clearly, if we did not allow cycles the longest curve
may be of lengtlp, and so the total complexity of the

computation would be at mogfb?. But when cycles

Assumer is a circle of radiug with no gaps. Then
K = 2 and

rine
n=-— . 41
- (41)

The number of cycles around the circleGgr). As-
suming one iteration covers one unit of arc length, the
number of iterations for each cycle is2. Thus, from

Eq. (41) the total number of iterations needed to achieve
ane error is

N = 27rn = —r?Ine. (42)

Consequently, the total number of iterations required is

are considered, we show below that the network con- O(rz)_ As an examp|e, the number of Cyc|es required
verges in a linear number of iterations, and so the total to achieve 1% errore( = 0.01, Ine ~ —4.605) is

complexity is indeed (p?b?).
Given a cyclel’, denote byd, the score obtained
after goingn times around the cycle, by the energy

of I', and byg the total gap size. Then from Eq. (10)

the saliency ofl" is ® = ®1/(1 — p9%eK). After

n ~ 2.303r /7 ~ 0.733, and therefore the number of
iterations isN ~ 4.605 2,

Figure 7 shows an image of a gap-free and a frag-
mented circle on a noisy background. As expected,
the Saliency Network chooses the gap-free circle as the

goingn times around the cycle, the accumulated score mostsalient curve. Using Eg. (42), we could predictthe
becomes (this is the finite sum of the geometric series number of iterations for the network to converge on the

in Eq. (10))

1— pngean
Oy = ———— P4 37
n 1_ ,Oge_K 1 ( )
Define the relative error by

-,
)

E = p"%e K,

(38)

We can now compute the number of cyclesheeded
to achieve arE = ¢ error:

Ine =n(glnp — K), (39)

implying that

Ine

gap-free circle: The radius of the circlerisc 11.39,
and one iteration covers an arc lengis ~ 2.983
(r andAs are discussed in the next section). For small

P

|/}\, [ “
£ t 7
~ 7
N ({"r’\\rl\?-\
N NLX Y SN

Most salient curve

Figure 7. Running the Saliency Network on an image with gap-free
and fragmented circles and a background of 200 random line seg-
ments (at the left). The saliency map and most salient curve image
are shown in the center and right pictures, respectively. After 200
iterations, the maximum saliency was 130.8. The time to conver-
gence and the maximum saliency are independent of the number of
background elements.
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pixel. (Shashua and Ullman det=16.) The network
containsp x b processors, a processor for every orienta-
tion element at every pixel in the image. A continuous
arcis assigned between every two elements that meet at
the same pixel in the underlying image. The local cur-
vaturex corresponding to such an arc is approximated
using the formula

As/r?, to obtain 1% error Eq. (42) gives

()

We ran the Network for 200 iterations on the left im-
age in Fig. 7, and the maximum saliency converged to
130.8. This generally agrees (for a 1% relative error)
with r?2 = 1298, as predicted by Eq. (14).

In Fig. 7, the input image has dimensions 12828,
and the example was run on a network with 24 orienta-
tion elements per pixel. The 200 iterations took 54 min-
utes using C code on a Sun SPARCstation 5 with 32M
of memory. Note that the time taken for convergence element. This formula represents the curvature of a
is independent of the number of background elements. circular arc that joins the midpoints of two elements of
So the execution time must be the same if the gap-free the same length. As an example, the gap-free circle of
circle were alone in the image. To illustrate this point, Fig. 7 was generated using a 24-sided regular polygon
Fig. 13 shows an example of two circles, the larger with one element per side and witte = 3. Thena =
of which is the gap-free circle from Fig. 7. The input 7/12, and Eq. (44) gives ~ .08777. Therefore, the
image contains no clutter, but, nevertheless, as beforeradius of the circular-arc approximationris= 1/x ~
the Saliency Network took 55 minutes to converge. In 11.39, which gives the arc length and total squared
practical applications, it is possible for the Network to curvature covered by one iteration to s = ar ~
converge much faster; when this happens, the saliency2.983 andK = «/r ~ .02298, respectively.
values are severely attenuated and have converged to Shashuaand Ullman s&eto be constant, and hence
the wrong measure, due to discretization effects dis- ignored the different sizes of elements of different ori-

2y

46057
As

AS

~ 2004.

(43)

2tan3
T Ae

: (44)

wherea denotes the angle between the neighboring
elements and\e denotes the length of an orientation

cussed in the next section.

By taking the maximal possible circle in the image,
we account for the most number of iterations necessary,
which is O(r?) = O(p), wherep is the size of the

entations. As a result, a horizontal or vertical line of
lengthl obtains the same saliency as a diagonal line
of lengthl /2. Shashua and Uliman’s implementation
therefore encourages curves that are aligned with the

image (we could also obtain this same convergence onmain axes of the image.
an open curve by considering a curve that begins asthe A more critical issue is the number of orientation
maximal circle and then continues by spiraling slowly elements inthe network. Consider for example a nearly
inward). We can therefore conclude that the worst case horizontal straight line segment. Due to aliasing, the
complexity of the network i€ (p?b?), which is the line may be cut in the middle so that one part of the
squared number of elements in the network. line is raised up by one pixel (see Fig. 8). Létl

the length of the line. The saliency of the first element

) . along the line is given by
5. Discrete Implementations

Pe=I4+eK+(1-1e, (45)

Our analysis of Shashua and Uliman’s method has con-

centrated on the theoretical, continuous version of their

Sa”ency measure. Shashua and U”man proposed toWhereK iS the tOtal Squared curvature over the Change

compute this measure using a network of finitely many, in orientationo corresponding to raising the line up by

locally connected elements. In this section we analyze ©ne pixel (which is also the total squared curvature for

the effect of computing the saliency measure on dis- When the line returns to horizontal).

crete networks. We show in particular that the network ~ Consider now a pair of lines of lengtimeeting at a

is extremely sensitive to the number of discrete orien- corner such that they form the same orientation change

tation elements allocated per pixel. a. Since a corner forms only one turn the obtained
Shashua and Ullman’s network has the following Saliency will be

structure. Letp be the number of pixels in the image,

and letb be the number of orientation elements at each

Do =1 +le . (46)
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Figure 8 Discretization effect on a straight line. Left figure: the discretization of a straight line. Right figure: a corner. The saliency value
obtained for a perfectly horizontal line of length 20 is 20.00, the saliency value for a straight line of the same length is 18.41, and the saliency
value of a corner is 19.10.

The approximation in this equation improvesras\-
creases; this happens when the number of sides in the
polygonal approximation increases and as a result fits
a circle more closely. Whemis big so that a good ap-
proximation by a regular polygon would require finer
orientation changes (less tham /), a faithful dis-
cretization of the circle would involve many inflections
(thatis, clockwise turns balanced by counter-clockwise
turns). These inflections would be penalized unduly by
the network.

To see how serious is this discretization effect, we
consider rearranging the ordering of the elements on

Consequently, we obtain the paradoxical result that the thg circle’s polygonal approximation so as to maxi-

corner is more salient than the nearly straight continu- mize the saliency (this of course can considerably re-

ation. Hence straight lines oriented such that they de- \?vuecier:;?eeaf(ljdglt?ezgﬁi rc?lepI(J:irrcz;(lembatl(;2).aln fg;’iurﬁzltaerl,
viate slightly from horizontal will often be less salient P y an (app y)

than corners. Freeman (1992) made a similar observa-regmar polygon witfb sides; each S'd.e now contam.s
tion concerning this aliasing issue when he considered more than one element. Although this representation
applying the Saliency Network to grouping. can havg a much greater sallenqy thgn the ongmal ap-
The discretization problem is carried over to other, proximation, the new se}llency will still pot result In a
more complicated examples. Consider a circle of ra- reasonz_;lble app_roxmatlon to the contlnuoqs saliency
diusr. Whenr is sufficiently small, the circle can be of the circle. This can be seen by the following obser-

approximated by a regular polygon where each side vation. Equation (47) gives the saliency of a regular

includes a single orientation element (Fig. 9). ket polygon withn sides, each of unit length, in terms of

be the total squared curvature corresponding to a turn ZKN the tota! squared guryature assigned for_a tur.n of
£~ The saliency of a similar regular polygon in which

a = 2 /n, wheren is the number of sides of the poly- n de is of lenathis ai b
gon. The discrete saliency of such a regular polygon is every side is otlengthis given by
given by |

=
d=1+eKpeX ... l—eK

1 1
= = — 47 The saliency of a reguldr-sided polygon, therefore,

l-e® 1_e increases linearly with the length of each sideSince
whereAs is the arc length of the circle that is covered | is directly related to the radius of the circumscribed
in one iteration. Returning again to the gap-free circle circle, the saliency of the polygon also increases lin-
in Fig. 7, for this circle = 11.39 andAs = 2.983 (see early with the radius of that circle. Since the continuous
above), and so under discretization its saliency is1.32 ~ saliency of a circle grows quadratically with the radius
WhenAs/r? is small, of the circle (Eqg. (14)), we obtain that, asgrows,
the saliency of the regular polygon will considerably
(48) underestimate the saliency of the circle. In terms of
l—-e? the original polygonal approximation to the circle, this

Figure 9. Discretizing a circle with a regular polygon.

— ;. (49)
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means that for small radii, the saliency of the dis-
cretized circle will grow quadratically with its radius,
but then it will reach a radius after which the saliency
will grow at most linearly.

The results shown in this section establish that the |
Saliency Network faces serious difficulties due to dis-
cretization of the range of orientations. A faithful im-
plementation of the continuous saliency measure would: *
require a very fine discretization. The number of orien-
tation elements needed to completely avoid the prob-
lems mentioned in this section is of the order,#p,
where p is the total number of pixels in the image.
With this number of orientation elements the overall
time complexity of the network (see Section 4) be-
comesO(p?b?) = O(pd).

6. Applications to Grouping

The Sa“ency Network IS V|ev_ve_d by many people_not Figure 10 Shashua and Ullman’s saliency map for a cluttered
only as a mechanism for shifting attention to salient gcene. The scene image (on the left) was smoothed with a Gaus-

structures, but also as a method for the initial group- sian of standard deviation 1 and then the gradient magnitude was
ing of contour fragments_ The problems of identify- thresholded to get a binary image (second picture from the left).
ing salient structures and of grouping contours are not T_his edge image was the inp}Jt to _the network. The third picture
identical. Saliency requires identifying contour ele- displays Shashua and UIImanss_,allency map, and the‘fourth shows
> the curve (71 elements) emanating from the most salient element,
ments that “stand out,” whereas grouping attempts t0 tor which & — 2635.
gather contour elements together into curves, which
can require, for instance, making choices about how |,
a curve continues through junctions. The criteria of |
length and straightness can separate a smooth obje -
from a background of short, broken curves (e.g., a disc
on a background of grass), but they may be inappropri-
ate for segmenting equally-smooth objects in cluttered
scenes, since long smooth curves often will traverse a
few objects. For example, Fig. 10 shows a case where
the Saliency Network successfully finds a curve that be-
longs to an object of interest, but Fig. 11 shows another
case where the most salient curve traverses more thar
one object. Nevertheless, in many cases the salient &
curves may lie on objects of interest, and so may be
useful for grouping.

The Saliency Network computes, for every element,
the saliency of the most salient curve emerging from
that element. For grouping, we would like to recover
the curves that made those locations salient. In fact,
we show in the appendix that, after the network con- Figure 11 Shashua and Ullman’s saliency map for a cluttered
verges, the most salient curves can be extracted in thescene. From left to right, the first picture is the scene image and the
following simple way, which was proposed by Shashua second is an edge image obtained from the scene image by thresh-

. : olding the gradient magnitude. The edge image was the input to the
and Ullman. To extract the optimal (most salient) curve network. The third picture displays Shashua and Uliman’s saliency

emerging from an element, during the computation one map, and the fourth shows the curve (51 elements) emanating from
has to store for every elemepta single pointerr (p) the most salient element, for whigh = 210.1.
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Input image Saliency map Most salient curve
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2nd most salient curve 3rd most salient curve 4th most salient curve

B;

Figure 12 The problem of leeching. Each element of a curve
chooses one neighboring element with which to combine. Conse-
quently the shared element must choose between the two shapes, and
so the best curves emerging frginand p; will merge together. The
larger circle is the most salient curve, and, for all elementen the Figure 13 Shashua and Ullman’s method at image junctions. The
larger Circ|e’q>(pj) = R2. The elements on the smaller circle draw  second, third, and fourth most salient curves start from the open
their saliencies from the larger circle, and the saliencies decrease Curve attached to the circle and then proceed around the circle. The
as the elements get further from the junction element. For every saliencies of the top four curves are 130.8, 122.1, 114.1, and 106.9.
elementp; on the smaller circle,2 < ®(p;) < R2. The saliency of the least salient active element is 68.2.

which points to the second element on the optimal curve over both curves (which actually would give both the
emerging fromp. At the end of the computation, the small and large circles, unless an extra step is used to
best curve fromp can be retrieved by tracing these remove the larger one). This could be problematic if a
pointers starting fromp. To obtain the most salient  grouping system wishes to recover both circles.
curve in the image, we would trace from the most  Figure 13 shows the results of the Saliency Network
salient element. The appendix shows that this tracing on an analogous two-circle example. To get the opti-
procedure follows from the property of extensibility. ~ mal curves, we first traced the curve from the most
The fact that the tracing procedure returns the op- salient element (for whickb = 1308), which gave
timal curves has serious implications for grouping. the larger circle. To compute the second most salient
When two curves share a common section (as in curve, we ignored the elements on the most salient
Fig. 12), the elements on the common section must curve and selected among the remaining elements the
decide between the two curves. So if two different ob- next most salient element. We then traced the curve
jects are touching, then always the best curve through from this element. The traced curve emerged from the
one of the objects will merge into the other; this situa- selected element and then went around the larger cir-
tion is illustrated by the real image example in Fig. 11, cle. We repeated this process to obtain the third most
where the boundary curves of two objects (a flashlight salient curve. The new curve resembled the second
and a telephone) merge together. most salient curve again, except that it was one element
The two-circle example can also be problematic for longer. As discussed above, the saliencies of elements
grouping due to the problem of leeching. Leeching can along the smaller circle attenuate as they become fur-
cause non-salient curves next to a salient one to includether away from the larger circle.
the salient curve as part of them. We have already seen Thus far our analysis has concentrated on the asymp-
an example in which, due to this property, a non-salient totic behavior of the Saliency Network. In their exper-
curve becomes salient unduly (Section 3.2). Another iments, Shashua and Ulliman demonstrated that good
example is shown in Fig. 12, in which the elements on results could be obtained already after a few dozen
the smaller circle draw their saliencies from the larger iterations. In this they relied on the property that after
circle, and as aresult the most salient curves emanatingthe nth iteration the score attributed by the network to
from these elements combine with the larger circle. every element represents the saliency of the best curve
In addition, we show in the appendix that the smaller of lengthn + 1 emanating from the element. There is
circle can only be traced from the least salient element a drawback to this approach, however. Whereas after
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running the network for a small number of iterations locality is further emphasized since the contribution of
the saliency values obtained for short curves already ap-remote elements to the score of a given element atten-
proximate their asymptotic saliencies, long curves still uates with the curvature and gap length separating the
are undervalued significantly. Thisis particularly prob- remote elements from the given element.
lematic when closed curves are considered, because The Saliency Network is also distinguished by not
their asymptotic scores benefit from being considered only highlighting salient locations but in addition pro-
infinitely long. Thus, when the network is run for a viding the curves that make those locations salient.
relatively small number of iterations, closed curves are This requires grouping curve fragments together across
evaluated as if they were short, open curves, and as agaps and through junctions, which requires choosing
result closure would not be encouraged by the network. from an exponential set of possible image curves. In
Furthermore, when the network is not run to conver- contrast (Guy and Medioni, 1993) produces a simi-
gence the tracing procedure is not guaranteed to extractlar edge-based saliency map, but leave open the prob-
the best curve (see Appendix). lem of recovering the salient curves. Similarly, other
To conclude, Shashua and Ullman’s Saliency Net- saliency work such as (Heitger and von der Heydt,
work may be used for grouping, because it is both ef- 1993; Williams and Jacobs, 1995) focuses on revealing
ficient and guaranteed to find the optimal curves in an subjective contours and do not consider curves through
image, according to a measure-of-fitthat prefers length, contour fragments or junctions.
straightness, and few gaps. When the network reaches Our analysis revealed, however, certain weaknesses
convergence, the optimal curves in the image can be with the method. First, we outlined the criteria of fi-
extracted through a straightforward tracing procedure. delity, scale invariance, and performance on gaps. For
The algorithm is efficient because, as we have shown fidelity, we found cases in which the most salient el-
in Section 4, it searches the exponential space of possi-ement does not lie on the perceptually most salient
ble image curves in time that is polynomial (quadratic) curve. Furthermore, we showed cases in which the
in the size of the image. To speed-up the computation saliency measure changes its preferences when curves
even further, Shashua and Ullman recommended run-are scaled uniformly. Finally, we found that for certain
ning the network for a small number of iterations. If fragmented curves the measure prefers large gaps over
not run to convergence, however, the network is no a few small gaps of the same total size.
longer guaranteed to provide the optimal curves, and We believe that the weaknesses of the Saliency Net-
forlonger curves the computed saliencies can be signif- work are due largely to two important properties of the
icantly undervalued. Even if run to convergence, due saliency measure which are imposed by the Network’s
to curve junctions the method still has serious problems computation. The two properties are (1) extensibility
in extracting any salient curve other than the best. The and (2) geometric convergence for cycles. Extensibi-
Saliency Network, therefore, may be useful for direct- lity implies that an optimal curve must be composed of
ing attention to a single object, but will be unsuitable sub-curves that are themselves optimal. Due to exten-
in cluttered images for extracting a number of different sibility, saliencies can be computed efficiently using
objects. a procedure of recursive optimization (dynamic pro-
gramming). One of the benefits of extensibility is that,
although the Saliency Network finds the element from
7. Conclusion which the best curve emanates rather than extracting
the best curve itself, the best curve can be extracted
The Saliency Network is a mechanism for identifying through a simple tracing procedure. Also due to exten-
salient curves in images based on length and straight-sibility, however, curves lying near a salient curve will
ness. The method is attractive for several reasons. First,tend to merge into that salient curve in order to leech on
the measure of saliency generally prefers long and its saliency. Further, extensibility causes the method
smooth curves over short or wiggly ones. In addition, to have difficulties at junctions. When two contours
the network is guaranteed to find the most salient curve meet at a junction, the best curve through at least one
according to the measure. While so doing, the net- of the curves will merge into the other. In addition,
work fills in gaps with smooth completions and toler- the second best curve in the image can be very difficult
ates noise. The network itself is locally connected and to extract. This leaves unclear how one could use the
its size is proportional to the size of the image. The method for grouping in cluttered images.
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The second property exhibited by the saliency mea- problems that we elicited (Montanari, 1971; Martelli,
sure is that the measure decreases in a geometric serie§976; Amini et al., 1990; Geiger et al., 1995). Finally,
when evaluated along a cycle. This property, which our discussion of the Network’s difficulties at junctions
is essential for convergence, was used in this paper toapplies directly to Montanari’s method (Montanari,
compute the network’s time complexity. In particular, 1971), basically because the Saliency Network’s dy-
we showed that the number of times that the network namic programming computation is very similar to
wraps around a circle before converging is linear in the Montanari's. The methods differ in that Montanari’s
radius of the circle, and as a consequence the numbemetwork is not required to converge, and instead the
of iterations on a cycle can be linear in the size of the length of the optimal curve is assumed to be known.
image. Moreover, this results in an overall complexity Nevertheless, the problems of curves merging together
for serial implementations that is quadratic in the size atjunctions and the second best curve being difficult to
of the network. recover (Fig. 13) are still present.

Other difficulties with the Saliency Network are due To summarize, the Saliency Network’s two intrinsic
to effects of discretization. One such effect is the case properties of extensibility and geometric convergence
of a straight line that is almost but not quite horizon- enable the saliency measure to be optimized and the
tal; it turns out that this straight line can be less salient optimal curves to be recovered efficiently (in polyno-
than two line segments of the same total length as the mial time). Atthe same time, they seriously restrict the
straight line that meet at a corner. We also explained set of possible functions that can be used as measures
that the saliency of a circle for small radii will grow of saliency, and as a result the method has problems
quadratically with its radius, as the measure of saliency with scale invariance, leeching curves, and grouping
predicts, but, due to discretization, for large radii will in the presence of junctions. Since these problems
grow at most linearly. Due to such effects, the network’s are results of intrinsic properties, they are difficult to
rankings of curves can be significantly altered when the overcome without fundamentally changing the compu-
range of possible orientations is coarsely sampled. Thetation. In addition, overcoming the aliasing problems
complexity result mentioned above, however, is based would require asymptotically increasing the complex-
on the assumption that the number of discrete orienta- ity of the method, since the discretization is closely
tions per pixel is independent of the size of the image, tied to the use of dynamic programming to efficiently
but with proper sampling, the complexity of the net- optimize the chosen measure. It remains to be seen
work becomes at least cubic in the size of the image. whether variations of the current computation can be

Several of the issues we considered carry over to defined that remedy its main weaknesses while still al-
related work on saliency and grouping. First, none lowing the saliency map and most salient curves to be
of the saliency methods of which we are aware is scale- computed efficiently.
invariant or demonstrates that the method is scale-
invariant over an appropriate range (e.g., Guy and
Medioni, 1993; Heitger and von der Heydt, 1993;
Mumford, 1994; Williams and Jacobs, 1995). Some
methods for grouping, however, use a scale-invariant
measure to accept or reject groups (e.g., Pavlidis and
Liow, 1990; Jacobs, 1993). In addition, the measures
of a good contour used in (Montanari, 1971; Martelli,
1976; Kass et al., 1988; Pavlidis and Liow, 1990;
Jacobs, 1993) do not have a preference between one
large gap and several small gaps of the same total size Appendix: Consequences of Extensibility
In some such cases, the goodness measure evaluates
gaps in a curve by summing the intensity or change in In this appendix, we show two consequences of the
intensity along the curve, making the measure indif- property of extensibility which pertain to using the
ferent to the distribution of the gap elements. Further- Saliency Network for grouping. The first is that exten-
more, grouping techniques that use dynamic program- sibility allows us to easily recover the optimal curves
ming or shortest-paths techniques on a grid of locally after the network converges. The basic idea of extensi-
connected elements are subject to the discretizationbility, which is illustrated in Fig. 14, is that any suffix of

Code Availability

We have made available our C-code implementation
of the Saliency Network. To retrieve the code, ftp to
“ftp.ai.mit.edu,” then log in as “anonymous,” then cd to
“pub/users/tda/,” and then get and uncompress “susal-
code.tar.Z”
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well, after then iterations the best curve emerging from
pi will be the straight line of lengti (and its current
saliency will ben). But if we now trace the point-
ers starting fronp;, we will mistakenly think that the
best curve of length contains a portion of the curved
T, D segment betweep; and pc. This problem could be
avoided if the entire history of the computation were
‘ n ’ stored, but that of course would increase the storage
Figure 14 Characterization of extensible functions. If the most SPpace required by the method considerably.
salient curve fronp; goes througlp; then, at convergence, the most The second consequence of extensibility that we
salient curve fronpi must coincide with the most salient curve from  show is that, when two objects are touching, it can be
pi'd Atszy :gittivtg;‘lz’ gcr’]""e‘;]""err'e”;iczotst tsa‘l'ri]e”;r‘;‘itéﬁ’l‘;f ‘Zgg‘r very difficult to recover the contours of both objects.
ir;terr);tionz the most SF;Iier)\/:vcurve fropﬂpw?l be tEe straigr’n line Consider the two circles shown in Fig. 12'. Isdtte the
of lengthn, but the most salient curve fro; could be along the arc length from elemeng; on the smaller circle to the
curved segment from; to pg. connecting element between the two circles (denoted
by px). The saliency of the larger circle at conver-

. ] ) ) gence isR?, according to Eq. (14). From Eq. (13),
an optimal curve is optimal as well. The following argu- - the sajiency of a circular arc of extesion the smaller
ment shows that at convergence the tracing proceduregjrcle isr2(1— e‘TSZ). Finally, using Eq. (9) we can
described in Section 6 produces the optimal curves. At yerive the saliency of :
any iterationN, we know from the definition of ex-
tensibility (Eq. (3)) that®(p) is the saliency of the
most salient curve emerging fromamong all curves
leaving p of length less than or equal td, and we —r2 4 (R?—r2%e 2,
know thatr (p) points to the next element on that most
salient curve. Therefore, 8 = oo (i.e., at conver-
gence),®(p) is the saliency of the most salient curve
emerging fromp among all possible curves, andp)
points to the next element on that curve. We will as-
sume for simplicity that the optimal curve fromis
unique. Letl” = (po, p1, P2, - - -) be the optimal curve
from some elemenpy. Then for any suffixj of I'

(Ti = (pi, Pi+1> Pit2,--.), 1 > 0), T must be the op-
timal curve fromp;; otherwise, if a different curve;
were more salient thaF;, then from Eq. (5) we could
substitutd™;* for I'; and obtain a new curve fromy that

is more salient thafr. Butif I'j is optimal, thent (p;)
must equabi 1, sincer (p;) points to the nextelement  Acknowledgments
on the optimal curve fronp;. Thus at convergence fol-

lowing the pointers traces out the optimal curve. The authors thank David Jacobs for many fruitful

When the network is not run to convergence, on the discussions. A shorter version of this paper appeared
other hand, the tracing procedure is no longer guaran- e|sewhere (Alter and Bastri, 1996).

teed to give the optimal curve. Consider for instance

the picture in Fig. 14. The picture contains a straight

line of lengthn emerging from an elemen, and it Notes

contains a curved segment between elementand

px, Which merges into the straight line. We choose 1. The formula forpi; appeared in (Shashua and Ullman, 1988) as
the curved segment so that afteiterations it is more pij = [lk=i11 P, but the computation actually performed by

. . . the network (which is given by Eg. (5)) implements the modified
salient (due to having greater length) than the portion of formula given here.

th'e str:?\ight line to .the r.ight op;. Consequently after 5 Note that this definition of extensibility is different from that used
n iterationsr (p;j) will point to the curved segment. As by Brady et al. (1980).

o(p)=r3(l—e?)+e 2R

It can be readily seen thdt(p;) decreases asthe arc
length fromp; to py, increases. Therefore, the salien-
cies of the elements on the smaller circle decrease as the
elements get further away from the junction element,
with the constraint that?> < ®(p;) < R?. As a con-
sequence, if a grouping system were to try and recover
the smaller circle, it would have to trace the curve from
the least salient element on both curves (this tracing
would give both the small and large circles, unless an
extra step is used to remove the larger one.
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