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When is it Possible to Identify 3D Objects From Single Images
Using Class Constraints?
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Abstract. One approach to recognizing objects seen from arbitrary viewpoint is by extracting invariant properties

of the objects from single images. Such properties are found in images of 3D objects only when the objects
are constrained to belong to certain classes (e.g., bilaterally symmetric objects). Existing studies that follow this
approach propose how to compute invariant representations for a handful of classes of objects. A fundamental
question regarding the invariance approach is whether it can be applied to a wide range of classes. To answer this
question it is essential to study the set of classes for which invariance exists. This paper introduces a new method
for determining the existence of invariant functions for classes of objects together with the set of images from which
these invariants can be computed. We develop algebraic tests that determine whether the objects in a given class can
be identified from single images. These tests apply to classes of objects undergoing affine projection. In addition,
these tests allow us to determine the set of views of the objects which are degenerate. We apply these tests to several
classes of objects and determine which of them is identifiable and which of their views are degenerate.
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1. Introduction library. To avoid comparing the image to all the models,
indexing tables were proposed (Jacobs, 1992; Lamdan
Inferring the identity of objects despite variations due to and Wolfson, 1988; Weinshall, 1993). To determine
changes in viewing position is a fundamental problem whether a given object can produce the image, the ob-
in objectrecognition. One problem that arises whenwe ject model must contain 3D information of the object.
attempt to recognize 3D objects from single 2D images Therefore, model construction generally requires the
is that some information about the shape of objects is acquisition and matching of two or more images of the
lost with projection. Consequently, a particular image object.
could be the result of projecting any of infinitely many Invariance offers an alternative to the model-based
objects. Determining which of these objects have in approach. In this approach objects are recognized
fact produced the image is impossible unless further by extracting image properties that are invariant to
constraints are imposed. Two common approaches tochanges in viewing positions. Unfortunately, the in-
solving this problem are the model-based and class- variance approach cannot be used directly as a method
based invariance approaches to recognition. for identifying general 3D objects from single 2D im-
Model-based methods (Fischler and Bolles, 1981; ages since, as has been shown in (Burns et al., 1993;
Huttenlocher and Ullman, 1990; Lowe, 1985; Ullman Clemens and Jacobs, 1991; Moses and Ullman, 1992),
and Basri, 1991) approach recognition by storing a fi- single 2D images of general 3D objects exhibit no
nite library of object models in the system memory. viewpoint invariance. One possible approach then is
Given an image, the identity of objects in the image is to recognize objects from two or more views (Hartley,
determined by comparing theimage tothe modelsinthe 1993, 1994; Quan, 1995, 1996; Yan et al., 1997).
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Alternatively, we may recognize objects using invari- Our approach is based on the following principles.
ant functions if we limit the method to certain classes of A system can identify an object unequivocally from a
objects. Such invariants will distinguish between ob- given image if and only if that object is the only ob-
jects that belong to a certain class, but in general will ject, among the objects of interest, that can produce the
not distinguish them from objects outside the class. A given image. (Of course one can design systems that
system for recognizing objects from single images us- identify objects according to, say, maximal-likelihood
ing invariants typically proceeds in two stages. In the principles. We do notdeal with such a framework here.)
first stage the class of the object is recognized, and in We therefore develop a method for exploring the set of
the second stage the invariant properties of the class areambiguous image$mages that can be produced by at
used foridentification. The advantage of usinginvariant leasttwo objects ofthe same class. Clearly, if no further
functions for such classes is twofold. First, invariants constraints are imposed an object cannot be identified
are computed from single images; hence also object from an ambiguous image. Therefore, given a class of
models can be constructed from single images. Sec-objects we attempt to determine the set of ambiguous
ond, invariants can distinguish between objects even if images of the class. If we find that all the images in the
models for these objects are not stored in the systemclass are ambiguous we conclude that the class is not
memory. Invariant functions have successfully been identifiable from any view. If some of the images are
used for certain classes of objects, e.g., planar, bilateralnon-ambiguous, then the class is identifiable, and the
symmetric, or polyhedral objects (Forsyth et al., 1991; ambiguous images are considered degenerate. Below
Jones and Poggio, 1995; Moses and Ullman, 1992; we develop algebraic tests to determine the set of am-
Mundy and Zisserman, 1994; Poggio and Vetter, 1992; biguous images of a class. These tests depend on the
Rothwell et al., 1992; Sparr, 1992; Sugimoto, 1994; choice of projection model. In this paper we introduce
Weiss, 1988), see a recent review in (Zisserman et al., tests for objects (given as 3D point sets) undergoing
1995). Nevertheless, restricting the class of objects is affine projection (that is, 3D affine transformation fol-
not always sufficient for invariants to exist (e.g., Moses lowed by an orthographic projection).
and Ullman, 1992). The rest of the paper is organized as follows. Sec-
It is of interest, therefore, to study whether the in- tion 2 introduces the general framework of our work.
variance approach can be extended to handle a wideln Section 3 we use this framework to develop algebraic
range of classes of objects. Existing studies are limited tests for classes of objects that undergo affine projec-
to merely a handful of examples of particular classes. tion. In Section 4 we apply these tests to a number of
These studies, however, offer no general tools to ex- classes of objects. We conclude with a discussion of
tend their results to other classes of objects. In this pa- our results in Section 5.
per we develop a method to identify the set of classes
for which invariant functions exist. Our method will 2. General Framework
identify classes for which there exist invariants that
can distinguish betweeall the different objects in a  Object recognition (taming) can be expressed as a
given class (as opposed to invariants that distinguish mapping from a set of images to a set of object names.
between subsets of the objects, in which case different In general, we would like any image of a given ob-
objects may give rise to the same invariant values). We ject to be mapped to the object name. However, it is
call these classeislentifiable classes We introduce not always possible to define such a mapping. This
necessary and sufficient conditions for such invariants is because an image of an object depends not only
to exist. For the identifiable classes we can also use on the shape of the object, but also on its position,
our method to detect thaegenerate viewsiews from the projection model, and other imaging parameters
which the invariants cannot be computed. Our method (e.g., camera parameters). As aresult, different objects
is general and does not depend on a specific choice ofmay produce the same image, and therefore the inverse
a class. While we supply algebraic tests to determine imaging function, from images to objects, cannot be
whether objects in a given class can be distinguished defined in such cases. Below we limit our discussion
from single images we do not supply a method to con- to images of objects that vary because of camera posi-
struct explicit invariants that will identify the objects. tion (thatis, we do not consider changes of illumination
Also, the problem of determining the class of the object direction, background, etc.). In this section we discuss
is not addressed in this paper. the conditions under which a mapping from a set of
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images to a set of object names can be defined. Weplanar objects these views are degenerate since many

first outline conditions which are independent of the
projection model. Later, we develop algebraic tests
for detecting these conditions for the case of objects
undergoing an affine projection.

We call two objectsQ andQ’, equivalentfand only
if every image ofO is also an image 0O’ and vice
versa. Clearly, no recognition algorithm can discrimi-
nate between two equivalent objects. The choice of
projection model determines the set of equivalent ob-
jects. For example, under the affine projection model
every two objects that are related by a 3D affine trans-
formation are equivalent. When two objects are not
equivalent dlifferen) they may still share some of their
images. In this case too no recognition algorithm can
identify an object from an ambiguous image. If two
objects share an image, they will also share other im-
ages which differ by image plane transformations from
each other. Such images are cakgplivalent images
Similar to the equivalent objects, the set of equivalent
images is determined by the projection model. For ex-
ample, for rigid objects undergoing orthographic pro-
jection two images are equivalent if they are related by
a 2D rigid transformations, whereas under the affine
projection model two images are equivalent if they are
related by a 2D affine transformation. For a given ob-
ject, we define aviewto be the set of all equivalent
images. It is clear that if two objects share an image
they will also share the set of images that are in the
same view. It follows that any recognition function
cannot identify an object from any of the images in its
set ofambiguous viewsWe will therefore alternately

different planar objects can be confused from images
that were taken from these viewing directions.

The following two simple examples demonstrate the
use of ambiguous views for determining whether a
given class of objects is identifiable. Consider first the
extreme case in which the class of objects contains all
the objects described hy-tuples of 3D points. It is
easy to show that, for this class of objects, every image
is ambiguous. (There are at least two different objects
that can project to the image.) Since it is impossible
to identify a given object from its ambiguous views,
it is impossible in general to construct a mapping that
can discriminate between any two objects. This is a
weaker version of the result that for the class of 3D
point sets there exists no view invariance (Burns et al.,
1993; Clemens and Jacobs, 1991; Moses and Uliman,
1992). Itfollows that to define a recognition mapping it
is necessary to restrict the domain of the naming func-
tion. In our work we restrict the domain by imposing
two types of constraints. First we constrain the set
of objects considered by the system (e.g., the class of
bilaterally symmetric objects as opposed to the set of
general 3D objects). In addition, we may constrain the
set of images considered for each object in the class
(e.g., excluding the side viewing direction of planar
objects). Note that when we consider all 3D point sets
it is not sufficient to restrict only the set of views since
for this class of objects every view is ambiguous.

Another extreme case of class constraintsis provided
by the model-based approach to recognition. In this
paradigm only finite sets of objects are considered. For

consider in the rest of this paper ambiguous views and a finite set of objects the set of ambiguous views is

ambiguous images.

Note that ambiguous views are related but not iden-
tical to accidental views The term “accidental view”
oftenis used to describe a view of an object from which

finite (at most quadratic in the number of objects in

the set; this is a consequence of Proposition 2 below),
and so by excluding the ambiguous views we obtain
identifiable classes. Thus, every finite class of objects

a non-stable image is obtained (see, e.g., Weinshallisidentifiable. Below we concentrate oninfinite classes

and Werman, 1997). That is, a view is accidental if a
small change in the viewing direction will cause a large

of objects.
Our task then is to determine, given an infinite class

change in the appearance of the object. Such instability of objects, the set of views from which the objects can
often is caused as a result of a change of aspect of thebe identified. Formally, given a class of obje€tslet

object due to self occlusion. Degenerate views, in con-
trast, are views from which an object appears identical

Zc be the set of all images of, and let\; denote the
set of names of objects i, we seek to determine the

to another object of the same class. Degeneracy, there-set of imaged C Z¢ on which the naming mapping

fore, is a property which depends on the class, while

accidentalness is a property of the object irrespective
of the class. In many cases accidental views are also

NC:I_C —)NC

degenerate. For instance, consider the side views of acan be defined. Note that usuaNg will be isomorphic
planar objects. These views are accidental, since theto C. In this case the existence of this mapping would

object appears as a line. Likewise, within the class of

imply that shape reconstruction of objects of the class
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from single images is in principle possible if the class
constraints are known.

Since without imposing further assumptions itis im-
possible to determine the identity of an object from an
ambiguous view, the ambiguous views will restrict the
domain ofNe. The setZ., therefore, will denote the
non-ambiguous images 6f

Our general idea can be summarized as follows. An

objectO e C is identifiable from a view? if and only
if there exists no different obje@’ € C that shares the
view ¥ of O.

is4, wherel € R"is avector whose components are all
ones. We shall also assume thds sufficiently large
to induce invariance whenever such invariance exits.
Note that we consider two objects that contain the same
set of points but ordered differently as different objects.
This assumption can be dropped for some of our results
(see Section 5).

We denote an image by ac matrix |, that consists
of the location of the object points in the image. lLet
be an image obtained as a result of an affine projection
of O. | is produced by applying a 3D affine transfor-

Below we consider the case of objects that undergo mation toO followed by an orthographic projection.

affine projection. For these objects we develop alge-

braic tests that, given a class of objettsletermine the
setZ. of its non-ambiguous images. Whép # ¢
we say thaC is identifiable In such a case we may
also use our tests to determine the setlefenerate
viewsof C, the viewing directions from which ambigu-
ous images are produced. WHEn= ¢ we say that’

is not identifiable from any view.

3. Identification Under Affine Projection

In this section we develop tests for identification of 3D
objects undergoing affine projection. An image is an
affine projection of a given object if it is obtained by ap-
plying a 3D affine transformation to the object followed
by an orthographic projection. (Affine projectionis the

model of choice in several recognition studies (Jacobs,
1992; Koenderink and van Doorn, 1991; Lamdan and
Wolfson, 1988; Tomasi and Kanade, 1992; Ullman and

Specifically, the image positioqy € R? of an object
pointp; € R® of O taken from a view’ is given by

g = Aupi +1,

where Aq is a 2x 3 linear matrix of rank 2 and <
R2. The subscripf represents the viewing direction
from which the image is observed. This will be defined
below. The result of applying this affine transformation
to O can be written in a matrix form as

| = A;O+1t17.
Two objects,0 and O’, share an image if there
exist two 2x 3 matrices of rank 2A; and Ag, and two
vectorst, s € R?, such that

| = A)O+1t1T = A;O' +s1".

Aview under the affine projection model is the set of

Basri, 1991), see (Jacobs, 1992; Basri, 1996) for more images that are 2D affine equivalent (namely, related
on this transformation). The tests are applied to objects by a 2D afflneTtransformatpn). That is, bothand
given as ordered 3D point sets. We assume here thatl’ = Acpl +t17 (whereAyp is a 2x 2, non-singular

all the points are visible in every considered view. Itis

matrix) are affine equivalent and therefore belong to

possible, however, to use our results in cases of partial the same view o©. (Below we use the letteA to
(or self) occlusion by considering subsets of the points denote a 3x 3 linear transformationfzp to denote a

of the objects.

3.1. Notation

Given an objecD consisting oh ordered pointg; =
(X1, Y1, 207, ..., Pn = (Xn, Yn, Z0) ', we write O in a
matrix form as a 3x n matrix O = [p1, p2, ..., Pnl-
Further, we denote the rows &f by X, y, z € R" and
by rowm(O) the row space ofO (which is the vector
space spanned by y, z). Throughout the paper we
shall assume that the object poirgs, . . ., p, are non-
coplanar. Thisimpliesthatthe rank of sgeow(O), 1)

2 x 2 linear transformation, and, to denote a 2 3
linear transformation.) Clearly, whenever two objects
share an image from a given view, they will also share
all images in that view. An affine viewis defined by
the set of matriced\,p A, where Ayp is an arbitrary
2 x 2 non-singular matrix. Itis not difficult to see that
under affine projection a view is determined uniquely
by a unit vectofr € R® such thatA,¥ = 0 (or, in other
words, by a point on a unit sphere), sinkg, A;Vv = 0
for every 2D affine matri¥d;p. Below we shall use the
notationAy to denote a % 3 matrix of a given viewy.
Given two objects© andO’, we define their & n
joint matrix J(O, O’) to contain the rows oD and



O’ and the vectot stacked on below each other in the
form:

@)
O/
1T

J(0,0) = (1)

In Section 3.2 below we show that the ranklghD, O’)
can be used to determine whetli@and O’ are affine
equivalent, share a view, or are completely disjoint.

3.2. Tests for ldentification

Two objects,O and O’, are calledaffine-equivalent
if there exists an affine transformation, ax33 non-
singular matrixA and a vectot € R3, such that
O = AOQ' +t1T. In this case every image @ is
also an image 00’ and vice versa (see Proposition 1
below). Clearly, under the affine projection, it is im-

possible to distinguish between objects that are affine-

equivalent. Otherwise, i©’ cannot be obtained from
O by applying an affine transformation @ then the
two objects are calledffine-different Following is

a list of necessary and sufficient conditions for affine
equivalence.

Proposition 1. The following conditions are equi-
valent

(a) O= A0 +t1T for some3x 3non-singular matrix
A and a vectot € R®,

(b) rank(J(0, O")) = 4.

(c) Every image of O is also an image of &nd vice
versa.

(d) O and O share more than a single view.

Proof: (a) = (b): Assume thatD = AO + t1T.
Since bothO and O’ are non-planar (both ranks of
spar(row(O), 1) and spartrow(Q’), 1) are 4) it follows
that rankJ(O, O’)) > 4, and since the rows oD
contain only linear combinations of the row vectors of
O’ and1, it follows that rankJ (O, Q")) is exactly 4.
(b)= (a): Assume that rarfd (O, O')) = 4. By our
assumption the rank of spaow(Q’), 1) is 4. It fol-
lows that rowfO) C spar{row(Q’), 1). In particular, it
follows that there exists a3 3 matrix A and a vector

t € R® such thatO = AOQ’' +t1T. The matrixA is
clearly non-singular because otherwise it will contra-
dict our assumption that the rank of sgaow(O), 1)

is 4.
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(@)= (c): Assumetha® = AO'+t1". Letanimage
of O taken from a viewing directiofi be

| = AgO 41117, 2)

DenoteAy = AyA andt, = Agt + t;. The image of
O’ which is identical tal is given by:

A0 + tng. (3
This can be easily verified since
| = AqO +1t;17
= AdAO +117) + ;17 = A;O' +t,17.
4)

(c) = (d): Trivial.

(d)= (a): Assume tha® andO’ share more than one
view. Denote the common views 6fby V; and¥, and
of O’ by 0; and(, respectively. Let; andl, be two
common images obtained with the different views,

l; = Ay, O = By, O’ +t17
/ T (5)
I, = AQZO = B(]ZO +sl',

where

and

R le R sz
Bul - [by1i| ) Bu2 - I:by2 ’

are non-singular matricesa(, ..., by, denote their
row vectors), and = (tx,t,)" ands = (s, s,)" are
two translation vectors. (Without loss of generality we
may translatd, andl;, so thatAg, and Ag, will bring

O to the images with no translation.) Sinteandl,

are obtained from different views (and so they are not
related by a 2D affine transformation), then without a
loss of generality,, is linearly independent afy, and

ay,. Denote by

ay, by, tx
A=|a,|, B=|by, |, andt'=|t,,
a'X2 ng S(
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From (5) it follows that

AO=BO +11'. (6)
By construction,A is non-singular. We can therefore
chooseA’ = A~1B andt” = A~t to obtain
O=A0 +t"17. (7)
The matrix A’ is clearly non-singular because other-

wise it will contradict our assumption that the rank of
sparfrow(0), 1)) is 4. ]

a vectom which is orthogonal to the sp&iow(0O’), 1)
such that

X1 = CxXz + CyY2 + C;Zo + C11 + 1, 9)
where x5, Y2, and z, are the row vectors ofO'.
Since rankJ(O, Q")) = 5, it follows thaty,, z; €
sparixy, Xz, Y2, Z2, 1} or equivalentlyy;, z; € span
{n, X2, ¥2, 22, 1}. Consequently,

O =A0 +1t1T +0y". (10)

Finally, sincel ¢ row(O) it follows that ranKO —

To determine the set of ambiguous views of a class 11Ty — 3. The rank ofiyT is 1, therefore, rantA ')
we need to develop necessary and sufficient conditions > 2 since rank0’)=3 it follows that rankA)
for two affine different objects to share a view. These > o

conditions are specified in Proposition 2 below.

Proposition 2. The
equivalent

following conditions are

(@) There exist a single direction e R? and transla-
tiont € R? such that A0 = A;O’ +t17, where
Ay and A are 2 x 3 matrices of rank.

(b) rank(J(O, O')) =5.

() O = AO +t17 + Un', where A is a3 x 3

matrix and rankA) > 2,t € R3 ¥ € R3is

a non-zero vectgrandn € R" is orthogonal to

sparirow(Q’), 1). (O’ shares the view of O.)

O = AO' +t17 + 95", where A is & x 3 matrix

and rankA) = 3,7 € R® is a non-zero vector

andn € R" wheren ¢ sparrow(Q’),1). (O’

shares the view of O.)

(d)

Proof: (a)= (b): Assume that there exists a single
direction¥ such thatA;O = A;O’ +t17. LetB =
[As, —Ag, —t] be a 2x 7 matrix. We obtain that
BJ(O, O) =0. (8)
Since rankAy) = rank(A;) = 2 it follows that
rank(B) = 2. This implies that raniJ (O, O’)) < 5.
Since O is non-planar (the rank of speow(O), 1)
is 4) it follows thatJ(O, O’) > 4. It must be differ-
ent than 4 because and O’ share only a single view,

We next show that the view dD shared withO’ is
V. Let Ag be a 2x 3 matrix such thaA;v = 0 thenO’
shares the view with O:

AgO = Ag(AQ +t1T +UnT) = AJAD' + AgtlT.
(11)

(c)= (d): Assumetha® = AOQ' +t1T +Un" where
¥ = (vx, vy, v7)T, rank A) = 2 and

A=[aay,a]".

Assume without a loss of generality that depends
on a, anday, and thata, is independent ofy. Let
a=ayx x ay, let

B = [(a — vx(a; — @), (@ — vy(a, — @), v,a]",

and lety’ = n+ (a,—a)" O. It can be readily verified
that
O=A0+U"=BO' +0yp'". (12)
By construction rankB) = 3 andn’¢ sparrow(O),
! .It can be shown as in the previous case that the view

of O shared withO’ is V.
(d)= (a): Assume thaD = AOQ +t;17 + UpT.

and therefore they cannot be affine-equivalent (Propo- Consider the images @ taken from a directiof. Let

sition 1, (d)= (b)). Therefore, ranki (O, O')) = 5.
(b)= (c): Assume thatrarid (O, O)) = 5. At least
one of the rows oD must be independent of the rows
of O’ and the vectod. Assume without the loss of
generality that this row i%;. It follows that there exists

A be a 2x 3 matrix of rank 2 such tha&v = 0. It
follows that

AO = Ay(AD + 11" +Un ) = AJAD' + Agty 1.
(13)
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Figure 1 Three hammer-like shapes composed of identical parts but differ in the shapes of their heads by generic affine transformations.

Let Ag = Ay A andt = Agty, then we obtain
AO = AO' +117. (14)
Sincen ¢ sparfrow(0’), 1) thenO and O’ cannot be

affine equivalent. Hence, according to Proposition 1,
¥ must be unique. |

4. Examples

In this section we apply the tests developed in Section 3

to several classes of objects. For each class we deter

mine the set of views from which the objects of the class
can be identified. Some ofthese classes are showntob
identifiable from most or all views. Other classes are
shown to be non-identifiable from any view. We begin

with classes of objects that are composed of the same

set of parts, but the relative position and orientation of
their parts may vary across objects (Section 4.1). We

then proceed to discuss classes of objects which have

two identical parts, except that one part may appear
at different position and orientation with respect to the

second part. Inthis case the shape of the parts may vary
across objects (Section 4.2). Next, we consider classes

that contain combinations of sub-structures, that is one
part of the object is a function of the other parts (Sec-
tion 4.3). Finally we consider classes of objects that

can be expressed as combinations of prototype objects

(Section 4.4).

4.1. Objects With Same Set of Parts

é'ect O € Cp

to another, and by the relative size or stretch of one
part with respect to another. Some examples for such
classes are hammers, screwdrivers, cars, and chairs.
Figure 1 shows three hammer-like shapes with identi-
cal handles and heads which differ by affine transfor-
mations. Formally, a clag% is defined by an ordered
set of part§Qs, ..., Qm} whereQ; are 3x n; matri-
ces for some arbitrarg; > 3. An objectO < Cp is
given byO =[Py, ..., Py], where the 3« n; matrices
P = fi(Q;) describe the parts @. The functionsf;
determine the identity of the objects in the class.
Below we limit our discussion tq fij} that re-
present affine transformations. In this case, an ob-
can be written in a matrix notation as
O = [Py,..., Py, whereP, = B Q; + s 1T for
1 <i < m. B are 3x 3 non-singular matrices and
s € R3 both vary between the different objects in
the class. Below we assume that every [@@gris non-
planar, that is, the rank of sp@ow(Q;), 1) is 4.
Note that this representation of a class is non-unique.
It is possible to transform evel®; by the same affine
transformation, and still obtain the same set of objects
by compensating for this affine transformationBn

ands . Likewise, the representation of an objectis non-
unique since it is possible to transform the object by
an affine transformation and obtain an equivalent rep-
resentation of the object. The ambiguity in the rep-
resentation of the object will be handled by applying
Proposition 1. Notice, however, thattransforming every
part by a different affine transformation would deform
the object and will not produce an equivalent represen-
tation of the object.

The next proposition establishes that if the shape of

Many classes of interest contain objects all of which the objects in a class may change by applying general
are composed of the same set of parts. The identity affine transformations to their parts then the class is
of an object within the class is defined by the ex- non-identifiable from any view. If however we restrict

act position and orientation of one part with respect the transformation applied to the parts to scaling and
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stretching along any three fixed directions we obtain 2. To show this we need to show that for every choice

classes which are identifiable from almost all views.

Thisimplies, in particular, thatitis possible in principle

to extract the relative scale and stretch of objects’ parts

from single images.

Proposition 3. Given m> 1 non-planar object parts
denoted by8 x n matrices Q(1 < i < m), the class
Cp ={[P1,....,Pn]|P =B Q +slT]}is:

1. Non-identifiable for general affine transformatjon
that is for arbitrary 3 x 3 non-singular matrices B
and translationss € R®.

2. Non-identifiable for pure translatiorthat is for
B = | and arbitrarys € R3.

3. Identifiable from almost all views for scaling and
stretching along any three fixed directions. For
examplescaling and stretching along the three pri-
mary axes correspond to diagonal &1d constant

s € R. In this case degenerate views are obtained

only for¥ = (v1, v, v3)" such that; = 0for some
1<i<3

Proof:

1. It will be sufficient to show that this class is not
identifiable even if we restrict the translationgo

be the same across objects. To show this we need

to show that for every choice of obje@ e Cp
and every choice of view there exists an affine-
different objectO’ € Cp that shares the view of
O. LetO =[Py,..., Pn]whereP, = BQi+s1"
forl <i <m,andletO’ =[Pj,..., P,] where
P’ = B/Q; + s 1T for another set o/ and for
1 < i < m. Since the matrice8; determine the
identity of the object it follows that givefB; } andv
we need to find matricg/} and a viewd such that
O andO’ will share an image. We s&; = B; and
B/ = Bj + Ur;" for some non-zero vectar € R3
such that raniB)) = 3 andB/ # |. It is readily
verified thatO andO’ are affine-different (since the
first parts ofO and O’ are related by the identity

matrix, while the other parts are not). Furthermore,

the two object$ andO’ share an image when both
are taken from the viewing directioh That is,
A;O = A;O'. To prove it, it is sufficient to show
that A;P/ — AP, = 0. This can be easily verified
as follows.

Ay(P = P) = Ay(B — B)Qi = A Qi,

and sinceAsV = 0 we obtain that\;(P' — P) = 0.

of object O (determined bys) and view?V there
exists an affine different obje€®’ (determined by

§ # s) that shares the view of O. Let O =
[P, Ps, ..., Pn]suchthatP, = Q; +s1', and let

O =[P, P} ..., P\l suchthatP/ = Q; +s51'.

We sets; = s, ands’ =5 + AV for 2 <i < nfor
some arbitrary; £ 0. In this caseD and O’ are
affine-different since their first parts are related by
a different translation than their second parts, and
they share the view of O since

AP = P) = Aus —s) =A4AV=0.

. We show this for scaling and stretching along the

three primary axes (that is, for diagori&land con-
stants). Note that since we can redefine the class
by applying a (possibly different) affine transfor-
mation to each part this will imply that the class
is identifiable for stretching in any three fixed di-
rections. To show that this class is identifiable we
need to show that, given an obj&dtand a viewy,
any objectO’ that shares the view of O must be
affine equivalentt®. LetO = [Py, ..., Py]where

R = BQ +s1T, and letO’ = [P],..., P}]
where P/ = B/Q; + s1' for another set oB/.
Since O and O’ share the views of O then there
exists a viewd such that

A0 = A;O' +117.

Without loss of generality, we can assume tBat=

B; = | ands; = s{ = 0 (since we can choose to
consider any of the objects that are affine equivalent
to O’). This implies that

AgPL = AgP +t17
Au(BiQ +s17) = Au(B/Qi + 517 +1t17).

The first equation implies thét= ¥ and that = 0
(sinceP; = P; and Py is non-planar), and so the
second equation becomes

Ay(Bi — B)Q; =0.

SinceQj is non-planar we obtain th&g (B —B/) =
0. If B =Bforl <i <mthenO andO’ are
identical. It follows thatB; — B/ = OrT for some
r £ 0 (since the only vectow for which A;w = 0
is of the formw = AV). However, since both;
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Figure 2  Anoverlay of the leftmost hammer (solid) with the other two hammers (dashed). Notice that the handles of the hammers are identical

whereas their heads differ.

T

Figure 3 An overlay of the leftmost hammer (solid) and each of the other two hammers (dashed) taken from their common views. The
common views are (0.29;0.41, 0.87) and (0.32;-0.73, 0.60). Notice that for every view of the leftmost hammer we can produce infinitely
many different hammer-like shapes that look identical to this hammer.

andB/ are diagonal alsér ™ must be diagonal. But

hammer. It follows that the class of objects with the

since¥ contains no zero components, the only way Same parts which may differ by an arbitrary affine trans-
to obtain zeros in all non-diagonal components is formation is non-identifiable. Notice that according to

by settingr = 0. This, however, will imply again
thatB; = B/ for1 <i < m, and soO andO’ are
identical. |

An example to these results is shown in Figs. 1-3. In

Proposition 3(3) if we allow the parts to only scale and

stretch in three fixed directions we would not be able
to find two hammers with a common view except for a

small set of degenerate views.
A special case of this proposition is the case that the

these figures we show three hammer-like objects with class composed of objects of two identical pas &

identical handles, but their heads differ by an arbitrary

Q2). Notice that the actual shape of the parts was not

linear transformation. We constructed these hammers used in the proof, so even the negative results extend to

as follows. We first constructed the leftmost hammer.
Then, we arbitrarily selected two views and modified

the head of the hammer according to the proof of Propo-

sition 3(1) so as to obtain two different hammers that
will share those views with our original hammer. Note
that according to the proposition we could do this to
any desired view, and that at every view we could find
infinitely many different hammers (determined by the
choice of r) that share this view with our original

classes suchthatall the parts of a given object are identi-
cal. In Section 4.2 below we further explore the case of
objects such that the parts of a given object are iden-
tical, but the parts may differ across the objects in the
class.

We can conclude that a set of objects that consist of
identical set of parts cannot be identified if the objects
differ by arbitrary affine transformation or translation
of their parts. However, if the objects in the class differ
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by scaling or stretching of the parts, then they can be in general the identity of the objects can be determined
identified from almost all of their images. from single images. Two objects with repeated struc-
tures may have exactly the same parts, but these parts
may differ in their relative location or size across the
objects. These studies determine the shape of the parts,
but leave the relative position and size of the parts un-
known. Below we show that if we permit the parts to
be related by an arbitrary transformation then the class
ill not be identifiable (and thus objects that have the
same parts will be confused). Thisimplies that the rela-
tionships between the parts cannot be uniquely recov-
ered from single images, which is equivalent to saying
that the problem of calibrating an affine camera from
two images is inherently ambiguous. If however we
consider a class of objects with repeated structures in
which the transformation relating the parts is the same
across objects (such as in the case of bilaterally sym-

4.2. Repeated Structures

The next set of classes that we consider consists of
objects each of which contains two identical, non-
planar parts except that these parts are related by a
affine transformation (so one part is translated, rotated,
stretched, or reflected with respect to the other). Real
objects that contain symmetries (e.g., faces, chairs) of-
ten belong to this class. An object from the cléss

has the following form:

O=[P,BP+s1T],

with B 3 x 3 non-singular matrix anele R*. In con-  metric objects) then for most choices of transformation
trast to the classes discussed in Section 4.1 now theine class is identifiable from almost all views.
shape of the parts (denoted By may also vary across It is straightforward at this point to show that the

objects. We consider below two cases. First we con- jass of objects with repeated structures whose parts
sider the case that the affine transformation relating the 5,6 rejated by an arbitrary affine transformation is not

two parts may vary across objects. Then we consider jgentifiable from any view. This can be seen by apply-
the case that this affine transformation is the same for ing Proposition 3(1) witlQ; = Q,, which tells us that
allthe objects in the class. A special case for this latter 5 gypset of this class. the objects that have the same
class is the class of bilaterally symmetric objects, in parts, cannot be identified from all their views. Conse-
which the identical parts are related by a reflection. quently, no invariants can distinguish between all the
Note that for repeated structures the two parts in objects in this class.

an object are identical up to an affine transformation.  Nexi we consider the case that the same affine trans-
However, we assume that in the image we know which o mation relates the two parts in every object. We show
is the first partand which is the second part. Inpractice, that for most choices of an affine transformation the
when we compute invariance for such objects we may cjass determined by this transformation is identifiable
need to try both orderings of the parts in the image.  from almost all views. The degenerate views in this

Invariants for objects with repeated Structures un- cage Jie along at most three great circles on the viewing
dergoing 3D-to-2D projective transformations were in- sphere. We list these views in Proposition 4.

troduced in (Mundy and Zisserman, 1994). In addi-

tion, invariants for bilaterally symmetric objects and Proposition 4. Given a3 x 3 non-singular matrix B
objects composed of planar repeated structure underand a vectors € R3, the clas<’g s is identifiable from
both affine and projective transformations were pre- all views? € R? unlesst is an eigenvector of B o¥
sented in (Fawcett et al., 1994; Mitsumoto et al., 1992; is |ocated on at most three great circles on the viewing
Moses and Ullman, 1992; Poggio and Vetter, 1992; sphere which depend on BThe additional degenerate
Sugimoto, 1994). These studies showed that the classyiews are listed in Tablé.)

of repeated structures induces invariance on the set of

images. The basic intuition is that, when an image of = The proof is given in Appendix A. The additional
an object with repeated structures is given, this image degenerate views listed in Table 1 depend on the ma-
will in general contain two copies of the same struc- trix B, and, in particular, on the number of different
ture. Thus, under the appropriate conditions, the shapeeigenvectors and different eigenvaluesBf The de-

of the repeated part can be recovered up to an affine (orgenerate views include all the eigenvectorsBofFor
projective) transformation by simply using a stereo al- convenience, we list the degenerate views according to
gorithm (Faugeras, 1992; Koenderink and van Doorn, the Jordan form of the matriB, B = A"BA. The
1991). Nonetheless, these studies do not determine ifviews are given in terms of , wherev’ = A~lv. Note
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Tablel Listof degenerate views for the clagss, in addition to
the eigenvectors dB, listed according to the number of different
eigenvalues and different eigenvector8ofThe degenerate views
are given in terms of’, whereV’ is an eigenvector of the Jordan
form of B.

No. of No. of
Case eigenvectors eigenvalues Constraintg’on

@
(b)
©
(d)
(e)
®

v/ = 0forsome 1< i < 3.

/
vy =0.

no identification from any view.
o o

vz =0o0rv, =0.

only eigenvectors.

P O W owow
P RN RPN

;o ;o
vz =0o0rv; =v, =0.

Figure 4 An image of a chair. The circles mark the positions of

. o . feature points in the image.
that given a vectov’ it is straightforward to recover

the corresponding view = Av’. Furthermorey is an
eigenvector oB if and only if v’ is an eigenvector of
the Jordan fornB. Note also that in certain cases the
actual list of degenerate views is smaller than what is
specified in Table 1 since the list of vecterdancludes
vectors that correspond to complex vievsEvidently,
only real view vectors are geometrically feasible.

As an example consider the class of bilaterally sym-
metric objects. In this case the matirepresenting
reflection about a plane is given by

a chair, and feature points extracted manually. Using
the assumption that the chair is bilaterally symmetric
we have recovered its affine shape. To demonstrate the
accuracy of this reconstruction we aligned the obtained
shape with two images of the same chair taken from two
different viewing positions (Fig. 5). As can be seen, the
transformed feature points of the recovered shape align
well with the corresponding image features, indicating
that our affine reconstruction is accurate.

Next, we demonstrate that there exist different rep-

100 etitions (that is, different choices & ands) that are
B=|0 1 0 consistent with Fig. 4, but lead to quite different re-
0 0 -1 constructions. This implies that unle8sands are

determined the object is not identifiable from a sin-
ands = 0. B has three eigenvectors and two different gle image. To show this we have derived the shape of
eigenvalues, corresponding to the second row of the ta-the chair assuming a false repetition (by replacBig
ble. SinceB is already in its Jordan form then = V. with a rotation matrix of 60 about the vertical axis of
Accordingly, bilaterally symmetric objects are identi- the chair and keeping = 0). This reconstruction is
fiable from all views except for those which coincide consistent with Fig. 4, but is inconsistent with the ac-

with the symmetry plany = «[1, 0, 0] + [0, 1, 0], tual 3D shape of the chair. To demonstrate this we have
and the direction perpendicular to the symmetry plan, aligned the obtained shape with the same two images
v=[0,0,1]. of the chair by minimizing the least-squares error in

The following example demonstrates that bilaterally the position of the feature points (Fig. 5). As can be
symmetric objects are identifiable from single images, seen the transformed feature points poorly align with
whereas objects with repeated structures are not iden-the corresponding image features, indicating that the
tifiable when the kind of repetition is unknown (that reconstructed shape in this case is inconsistent with
is, with arbitraryB ands). To show this we consider  the 3D shape of the chair.
an image of a bilaterally symmetric object (a chair).

We show that the 3D structure of the chair can be re-

covered correctly from this image if we restrict the 4.3. Combinations of Sub-structures

class to bilaterally symmetric objects, whereas if we

allow arbitrary affine repetitions the image gives rise to Next we consider classes of objects in which one part
ambiguous reconstruction. Figure 4 shows animage of can be expressed as a linear combination of the other
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Figure 5 Aligning the affine shape of the chair derived assuming it is bilaterally symmetric to two other images of the same chair. The plus
signs mark the position of the transformed model points and the circles mark the position of the corresponding image points.

Figure & Aligning the affine shape of the chair derived assuming a false repetition to two other images of the same chair. The plus signs mark
the position of the transformed model points and the circles mark the position of the corresponding image points. The lines connecting pairs of
corresponding points illustrate the displacements obtained.

parts. Below we consider only classes of objects with location of every point on then'th parts can be ex-
three or more sub-structures. When the number of partspressed as a linear function of time- 1 corresponding

is two we obtain the case of repeated structures, which points in the other parts, where the same linear function
was discussed in Section 4.2. Intuitively, objects that is applied to all the points. An object from the class
belong to these classes contain one part whose shap&sg, . g, , s has the following form:

is the average of the rest of the parts after these parts

are aligned (that is, rotated and translated to a common O =[Py, P ..., Pql,

coordinate frame). While it is difficult to find such

classes in practice, we are interested in them since it whereP, are 3x n matrices defining the shape of the
is possible to build such classes such that their objectsi’th part (1< i < m),

will have the same degrees of freedom as planar objects

.....

do (2n, wheren is the number of points on the object). Pn=BiPi+ByP,+ -+ Bn1Pn1+51",
Yet, as is shown below, unlike the class of planar objects
these classes are not identifiable from any view. B are 3x 3 non-singular matrices, arsde R%. No-

In a class that contains a combination of sub- tice that the case tha&®, is a linear combination of
structures an object is divided into > 2 parts. The  the rest of the parts in the ordinary sense (that is,



Py = Zim:_ll Bi B) is included as a special case of this
definition obtained by setting; = 8| ands = 0. The
results below will hold for this special case as well.

In Proposition 5 below we show that fon > 2,
identification is impossible from all views even when
all the matricesB3; ands are the same for all objects in
the class.

Proposition 5. Given3 x 3non-singular matrices B
wherel <i <m—1,m > 3, and givens € R3, the
classCg,. ... B, ,.s IS NOt identifiable from any view.

Proof: Here we prove the proposition fon > 3.
The proof form = 3 is given in Appendix B. To show
this we need to show that for every choice of objéct
and viewv there exists an affine different obje@t and
aview( so thatO andO’ share the view and( respec-
tively. According to Proposition 2(d) it is sufficient to
show that there exists an obje@t in the class such
thatO = AQ' +t17 + 05T for ¢ sparirow(Q’), 1)
and for some non-singul@andt. In particular, it will
be sufficient to show this foA = | andt = 0, so that
O = O’ + 05" for n L sparrow(Q’), 1).

Let O = [Py, P ...,Py], with P, =
mIBP +sl’. WesetO = [P],Pj,..., P
such that

PP=PR+0 ford<i<m), (15
wheren™ = [n{,n),...,nT]. To belong to the class
the objectO’ must satisfy the following equation:

m—1
Pn=Y BP +sl.
i=1

(16)

Combining (15) (the case= m) and (16) we obtain
that

m-—1
Pl =Pn+in =) BP +sT.
i=1

17

Plugging in the firsm — 1 equations in (15) into (17)
and rearranging we obtain

(18)

It is left to show that for every view there exists
a non-trivial vectom™ = [n{, ..., nt] that solves the
above equations subject to the constr&@xiy = 0 and
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1"n = 0. The last two equations and Eq. (18) con-
tain 3n + 4 homogeneous equationsrim unknowns.
Sincem > 4, mn > 3n+ 4 forn > 3, and so for
any choice ofr a non-trivial solution will exist. It fol-
lows that for every’ there exists an object given by
O’ = O — 05" that shares the viewwith O. Hence,
the class is not identifiable. =

We next discuss the counting argument for the case
m = 3. In this case, an object has the foth =
[Py, P>, Ps] whereP; = BP, +CP, +s1', B and
C are 3x 3 non-singular matrices, arsc= R®. Below
we assume in addition that rapk Py, P»)) = 7.1 If
we rely only on counting arguments we may be misled
to believe that the clag%; ¢ s is identifiable. Consider
for example the counting arguments given in (Werman
and Shashua, 1995). Given an objéct Cg ¢ s, SUP-
poseO includesn points. An image ofO gives 2
measurements. Together withclass constraints (the
linear relations between the first two parts and the third
part) they give rise tor8equations. The number of vari-
ables in these equations are as follows. The shafe of
is defined by & variables. The projection parameters
(the parameters of a 3D-to-2D affine transformation)
are eight. A 3D affine reference frame can be obtained
by picking the position of four points, hence such a
frame involves setting 12 parameters. Therefore, the
total number of variables isn3+ 8 — 12 = 3n — 4.
According to a counting argument the number of equa-
tions obtained, B, is sufficiently large to determine the
values of the B — 4 unknowns, and so in theory using
elimination we should be able to recover the shape of
the object from the equations. However, the underlying
assumption in counting arguments is that the counted
equations are allindependent and consistent. In classes
which contain combinations of sub-structures this as-
sumption is violated, and so the identity of the objects
cannot be recovered from single images, as was shown
above in Proposition 5.

4.4. Combinations of Prototypes

Finally, we consider classes of objects that can be ex-
pressed as linear combinations of some prototype ob-
jects. That is, l1e{Oq, O,, ..., O} be a set of proto-
type objects, all with the same number of points, and
assume further thatthe row spacesofal(1l < i < k)

are linearly independent (that is, the union of the row
spaces is of rankl3, and thatl does not belong to
these spaces. The objects in the class can be described
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by combining thek prototypes, that isQ € C if and
only if it can be written as

O = O, fora; eR.

k
i=1

Poggio and Vetter (1992) (see also (Jones and
Poggio, 1995) already showed that this class is iden-

tifiable. Our tools provide a short and elegant proof 5

for this case and establish that identification is possible
from all views.

Proposition 6. The objects in the clagsare identi-
fiable from all their views.

Proof: To show this we need to show that, given an
object O and a viewv, any objectO’ that shares the
view ¥ of O must be affine equivalent 0. Let O =

Zikzl a; O; and letO’ = Z:‘Zl Bi O; share the view
of O. It follows that,

k k
AV<Z% oi) = Aﬂ(z,ai oi) +t17.  (19)
i=1 i=1
This can be written as

k
> (A — i ANO —t1T =0. (20)
i=1

taking averages of the prototype objects, these new ob-
jects would tend to look similar to the prototype objects
and assume the same perceptual category. If indeed for
this kind of classes identification is possible then one
may be able to distinguish between different exemplars
of such a category even if the specific exemplar is being
seen for the first time.

Summary and Discussion

A fundamental question regarding the invariance ap-
proach is whether it can be applied to a wide range of
classes. To answer this question it is essential to study
the set of classes for which invariance exists. In this
paper we investigated the invariant representations that
discriminate between all the objects of a given class.
We addressed the problem of determining, given a class
of objects, the set of images from which the objects can
be identified. Our approach is based on exploring the
set of ambiguous images. We developed a number of al-
gebraic tests to determine the ambiguous images under
affine projection, and applied these tests to a number
of classes of objects.

We now consider a number of assumptions we have
made and discuss how they should be relaxed in future
work.

Projection ModelOur tests were developed for objects
which may undergo affine projection. We intend in the
future to develop similar tests for other, more realistic

Since the row spaces of all the prototype objects are projection models. We would like to note, however,

linearly independent, and sindedoes not belong to
these spaces, we obtain that
aiAy— BiA=0 (21)
andthat = 0. Thus,A; andAg are related by the scale
factorc; = Bi/a; forall 1 < i < k, and obviously all
these scale factorg (1 < i < k) must be identical.
(Note also that neither; andg; can be zero because the
rank of bothAy and Ay is 2.) This implies that = @

andO and O’ are affine equivalent (sind®’ = cO).
O

The reason this class is of interest is the following.

that some of our results (e.g., Proposition 3) apply also
to rigid objects undergoing weak-perspective projec-
tion. Similarly, some of the results in Proposition 3
and 4 can be extended quite easily to the case of ob-
jects undergoing perspective projection.

Constructive TestsAlthough our tests can determine
which classes are identifiable and from what views, the
tests at their present form are not constructive. That is,
the tests cannot be used to derive the invariants for the
objects. Consequently, our approach may serve only
as a first step in deriving invariance for new classes of
objects. In particular, it can be used to avoid seeking in-
variance for classes for which invariance does not exist.
In addition, for identifiable classes our method can be

Suppose thatthe set of prototype objects is composed ofused to determine the set of views from which objects

a few similar objects that belong to a single perceptual

category, say, two chairs, and suppose that “reason-

are identifiable and exclude the ambiguous views.
Dealing with Noiseln our tests we did not take into ac-

able” correspondences between feature points on thecount the effect of noise on identifiable classes. Obvi-

objects can be assigned (by applying form and function
considerations). Then, if we construct new objects by

ously, if we allow for noise, more images may become
ambiguous. One possible way to detect sensitivity to
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noise in classes of objects is by looking at the singular distinguish these classes from one another. This prob-
values of the matrix (01, O,), which was introduced  lem too is beyond the scope of this paper.

in Section 3.2. However, those singular values depend
on the specific representation chosen for the obj@gts
andO,, so we must somehow “normalize” the objects
first. We can do this by replacing the rows®@f andO,

by orthonormal bases (that are also normal to the vec-

tor 1). Denote the new representation By and O,, . . -
) P Oy 2 Proof: We will show that the clasSg s is identifiable

it can be shown that the singular valuesiO;, O,) MO :
are related to the angles between the two row spaces of 'O all views? € R* except for the degenerate views
0, and0,. Specifically, the rank o (05, Oy) is ex- which are the views that are eigenvaluesBoénd the

actly 7 minus the number of zero angles between thesev'.eWS listed i n lable 1. To Show .thISAWG wil show that
spaces. In the presence of noise objects in the classd'Ven an objecD < CB*,S’ and a view there eX'St.S an
may be confused when these angles are small. Thus,aﬁme. different O.bJAeFO € Cps that shgres the view
by verifying that the angles between the row spaces of O if and °”'¥ ifvis a dggengrate VIew. .
exceed a certain threshold one can guarantee that the . Let O and O’ be two affine different objects ifle,s
objects will not be confused due to noise. given by

The objectsin ourtes'ts we assumed Fhat the objects are O =[Pi, P €Cas, (A1)
given as ordered point sets. In particular we regarded

two objects that contain the same set of points ordered whereP, = BP, + s1", and

differently as two different objects. Several of our re-

sults are not affected by this assumption. For example, O =[P}, P;)] € Cgs, (A2)
the class of objects with identical parts and the class of

objects with repeated structures are closed under per-whereP, = BP; + s1'.

mutation of the objects’ points. (One only has to find Suppose tha®’ shares only the view with O. It
correspondence between the different parts of the samefollows that there exist two 3 non-singular matrices
object.) Furthermore, classes which were shown to be A; and A; and a vectors; € R? such that
non-identifiable remain non-identifiable even if we re-

Appendix A: Repeated Structures

In this appendix we prove Proposition 4.

lax this requirement. We intend in the future to extend A;O = AgO' +t,17. (A3)
our tests to other objects that consists of non-ordered

points. In addition, it is clearly of interest to develop In particular, sincgd andO’ share a view, also their
tests for contour images, and gray-level images. parts share the same view. That is,

Invariance In this paper we concentrated on analyzing

whether given classes are identifiable. For classes that APy = AgP] + 1517 (A4)

are not identifiable it may still be possible to extract T , T T
invariants from single images. These invariants will Ag(BPL+5s1') = Ag(BP +s1') +t11".

not suffice to discriminate between all the objects of (A5)

the class, but will distinguish only between subsets of

the objects. Developing tests for such classes s leftfor Note that although we assumed th@t and O’
future research. are affine different, it might still be the case that
Classifying the object& he first step of applying class-  their parts are affine equivalent. Therefore, the rank
based invariance to images involves classifying the ob- of J(Py, P)) < 5. In addition, we assumed that
ject in the image. Unfortunately, it is impossible to both parts are non-planar, that is, both ranks of
both classify the object and recover its specific identity sparirow(Py), 1) and spatrow(P;), 1) are 4. This
using invariance, since this will contradict the result implies that rankJ(Py, P))) > 4. Below we ana-
that there exists no view invariance that can discrim- lyze each of the two cases, radk Py, P)) = 5and
inate between all 3D objects. In practical systems it rank(J(Py, P))) = 4, separately.

may be the case that many of the objects belong to a

small number of classes, in which case one may enu- Case |. Suppose that rarill (P, P))) = 5. Accord-
merate all these classes, or find some properties whiching to Proposition 2(a), the two part8; and P, have
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exactly one view in common, From (A4) it follows
that the projection matri®g belongs to the view, and
similarly from (A5) it follows that the projection matrix
A; B belongs to the view. Therefore,A;¥ = 0 and
also A;BV = 0. By definition of Ay, the only vector
w that satisfiesA;w = 0 is of the formw = AV. In
particular it follows thatBV = AV. ConsequentlyQ’
shares the view of O when rankJ(P;, P)) =5if
and only ifV is an eigenvector dB, which implies that
V is a degenerate view.

Casell. Suppose that rargid (P;, P))) = 4. Accord-
ing to Proposition 1, the partB; and P; are affine
equivalent, and so there exists ax33 non-singular
matrix D and a vectot e R3 such that
PL=DP; +117. (A6)
We will use the following two claims to prove that
O’ shares a single viewwith the objectO only if ¥ is
an eigenvector oB or V is listed in Table 1.

Claim 1. O’ shares the view of O if and only if

there exists a vectar € R® such thatr # 0, and the

commutator matri¥B, D] = BD — DB satisfies
[B,D] =0r". (A7)

Claim 2. For every3 x 3 non-singular matrices B
and D, if

[B,D]=0r" #£0

for somer e R3 thenV¥ is an eigenvector of B oF is
listed in Tablel.

These two claims imply tha®’ shares the view of
OwhenrankJ(Py, P;)) = 4onlyif¥isan eigenvector
of B orVis listed in Table 1. a

We now turn to proving these two claims.

Proofof Claim 1: If O’ shares the view of O then

(A4) and (A5) must be satisfied. Since we also assume
here that their parts are affine equivalent it follows that
(A6) must be satisfied as well. Plugging (A6) into (A4)

we obtain that

Ay(DP] +11T) = AgP] + 1,17, (A8)
Rearrangingwe obtain
(AgD — Ag)P] + (At —t1)1" = 0. (A9)

Since we assume th& is non-planar (the rank of
spar{row(P;), 1) is 4) the coefficients oP; and1 in
the last equation must vanish, namely,

AD — Ag=0

Agt —t1 = 0. (AL0)

Consider now Eq. (A5). Replacing; by A;D and
PL by DP] + t1T we obtain
AB(DP; +1t17) = A;DBP, + 1,17,  (All1)
wheret, = (A;D — Ay)s+ t;. Rearranging, we get
Ay(BD — DB)P; + (A;Bt —t)1" =0. (A12)

Again, sinceD’ is non-planar the coefficients mustvan-
ish, namely,

A;(BD-DB)=0
A¢Bt —t, = 0.

(A13)
(A14)

It is immediate to see that there always exists
that satisfies (A14) for any viewing directiofigsince
t should satisfy a system of two independent linear
equations in three unknowns). Since réAk) = 2 it
follows that there are two cases for which (A13) can
be satisfied. The firstisiBD — DB = 0. In this case
(A13) will vanish for all viewing directiong. In par-
ticular it follows that in this cas® and O’ will share
all their views (that is,O0 and O’ are affine equiva-
lent). We are therefore left with the second case where

BD — DB = ¥rT for some non zero vectare R3.
O

Proofof Claim 2: To prove this claim we will use
the Jordan form of the matri®. The Jordan formB,

is obtained fromB by a similarity transformation, that
is, B = A“1B A for some 3x 3 non singular matrix
A. If D andr satisfy (A7) for a given matriB and a
vectorv, thenD’ = A"IDA andr’'T = r T A satisfy
the same equation fd andv’ = A~lv. Thus, rather
than showing that for every two non-singular matrices
B and D and a viewV there exists a non-zero vector
r that satisfies (A7) only i7 is degenerate, we may
instead show that for every matrikin a Jordan form, a
matrix D’, and a vecto¥’ there exists a non-zero vector
r’ only if V' is as specified in Table 1. Note however
that the matrice and D’ and the vectors’ andv’

are defined over the complex field. Nevertheless, this
will not affect our proof, since by proving the claim for
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Table 2 The shape of the commutatdd [F] as a function of the number of eigenvectors and eigenvaluBs & s the Jordan
formof B, 4; (1 <i < 3) are the eigenvalues & and fij; (1 <i, j < 3) are the components &f.

No. of eigen-  No. of eigen-
Case vectors values B G=[B, F]
aM 0 O 0 (M —22)fiz (A1 —23) f13
(@) 3 3 0 x» O (2 — 1) f21 0 (A2 —23) f23
0 0 i3 (a—20fa1 (A3 —22)fa2 0
a0 O 0 0 (A1 — A3) f13
(b) 3 2 0 » O 0 0 (A1 — A3) fo3
0 0 3 (A3 —2rpfar (A3 —21)f32 0
M@ 0 0
© 3 1 0 & O 0
0 0 a
a1 0 f21 —f11+4 f22 (A1 —23) faiz+ f23
(d) 2 2 0 A O 0 —fo (A1 — A3) fo3
0 0 23 (A3—2p)far —far+ (A3 — A1) fa2 0
M 100 for —fui+ fa f23
©) 2 1 0 O 0 —fa 0
0 0 N 0 —fa1 0
Mo 100 for —fu+ foo —fio+ fo3
(0] 1 1 0 i 1 fg1 —for+ fao —foo+ f33
0 0 A\ 0 —fa1 —fan

every complex matrix®’ we prove in particular that
every real matriXD satisfies the claim.

To derive the six cases listed in Table 1, let us first

list the forms that a commutat® = [B, F] of a Jor-

dan form matrixB takes according to the number of

independent eigenvectors and eigenvalueB.ofhese
forms are listed in Table 2. In our cage,= D’. Note
that[B, D'] = v'r'T # 0ifand only ifGj; = virj and
G # 0. We next show that there exists a veatog 0
that satisfiess;; = vir; only if V' is an eigenvector of
B orV is listed in Table 1.

(b)

(€)

(a) B has 3 independent eigenvectors and 3 different (d)

eigenvalues. In this casgr/ = 0,for1<i < 3.
SinceG # 0 it follows that at least one of the
matrix entry is non-zero. In particular it follows
that for some # j, (A\; — Aj)Dj; # 0. That is
virj # 0. Sincevjr{ = 0, it follows thatv{ = 0.
The three eigenvectors d are of the form
(v}, 0,0)7, (0,v5,0)T, and (0, 0, v3) ", note that
v #0foralll <i < 3ifand only if ¥ cannot

()

be expressed as a linear combination of any two

of the eigenvectors dB. If the eigenvectors oB

are all real we exclude by this from the viewing

sphere exactly three great circles through all pairs

of eigenvectors. If some of the eigenvectorsBof
are not real we exclude from the viewing sphere
even less views.

B has 3 independent eigenvectors and 2 different
eigenvalues. In this casg = 0. We next show
that if v; # 0 thenv; = 0O (in this casey’ is an
eigenvector of8. Assume that both # 0 and

vy # 0. In this case = 0 sincevir; = vir; =

vy = 0.

B has 3 independent eigenvectors and only 1
eigenvalue. This case has been handled in Sec-
tion 4.2. In this case every is an eigenvector.

B has 2 independent eigenvectors and 2 different
eigenvalues. In this casg = 0 orv, = 0. We
next show that if both, # 0 andvj # 0 thenr’ =

0 contradicting our assumption. Sineg; = 0
thenr; = 0. Further, since,r; = Oitfollows that

r; = 0. This implies that the entire first column
of G is zero. Thereforey;r; = dy; = 0. But now
alsovjry = —dj, = 0.

B has 2 independent eigenvectors and only 1
eigenvalues. In this casg = 0, and therefore,

V' is an eigenvector. We next show thabjf # 0
thenr’ = 0 contradicting our assumption. Since
vory = vprg = 0 it follows thatr; = r; = 0.
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As a result the entire first and third columns®f Claim 3. Foreveryv, there exista matrix D and vec-
vanish. It follows thatl,, = 0 and therefore also  torst € R®andn € R* that satisfy EqgB1)and(B3)
vyry = —dy; = 0. This implies that, = 0. if and only if they satisfy the following equation

(f) B has only 1 independent eigenvectors and 1
eigenvalues. In this casg = 0. We next show  BUn{ + CUn) —Un} =[D, B]P; +[D, C]P,+t'1"
that if v # 0 thenr’ = O contradicting our as- (B4)
sumption. Sinceygr; = 0 it follows thatr; = 0.
The entire first column o6 therefore vanishes, where[D, B] = DB—BD, [D, C] = DC—CD and
and sovyry = dy; = 0. This implies also that  ,, _ (I —B—C)t+(D—)s
vgr, = —dg; = 0, and sincev; # 0 we obtain
thatr, = 0. Thus, also the entire second column
of G vanishes, implying in particular thatr, =
—dj, + d3, = 0. Sincevjr; = dj; = 0, we can
conclude also that;, = 0. Butvgry = —dg, =0,
and again, sincej # 0,r; = 0. 0

It follows that to show that there exists an objéxt
that shares the view with O it suffices to show that
there exist a non-singular matrix and vectors € R?
andn e R3" that satisfy (B4) subject to the constraint
thatn ¢ sparrow(Q’), 1).

Appendix B: Combinations of Sub-structures Proof of Claim3:  (B1) together with (B3) imply that

PL=DP; +0n] +1t17

Proposition 7. Given3 x 3 non-singular matrices P, = DP; +Un; +117 (BS)
B and C and givens € R3, the classCp ¢ s iS not Py = DP+Uni +1t17,
identifiable from any view.

wheren" = [n1, 2, n3]". Using (B3), the third of
Proof: We can prove this by showing that for every these equations can be written in terms of the first two
objectO e Cg.c.s and every views € R3, there exists parts of the objects as follows:
an objectO’ € Cg c s that shares the view with O

(and no o_ther view). N . _ BP,+CP, +s1'
According to Proposition 2(d), i©’ shares a single ) ) o .
view ¢ with O then there exist a % 3 non singular =D(BP +CP,+sl)+Vn; +1t1°. (B6)
matrix D, a vectort € R3, and a vectop, € R®" such
that ReplacingP; and P, by the right hand side of the first
two equations in (B5) we obtain

O=DO +0n" +t17 (B1)

and B(DP; +Unj +1t17) + C(DP; + Un; +t1T)
+s1"=D(BP,+CP,+s1") +Unt +1t17.
n ¢ sparirow(0"), 1). (B2) L s
(B7)

SinceO andQ’ are objects in the clagk c s, they take
the following form: Denotet’ = (I — B —C)t+ (D — I)s, by rearranging

we get
O =[P, P, B3], O =[P, P, P§], (B3)

BUn{ + CUn; —Un3

whereP; = BP,+CP,+s1",andP, = BP,+C P+
o e 3 1T — (DB — BD)P] + (DC — CD)P} +t'1"

Itis therefore sufficient to show that for every object (B8)
O and a viewV there exist a matrixX® and vectors
t € R® andn e R that satisfy Egs. (B1)—(B3). which is identical to (B4).

Plugging in the constraints specified in (B3) into Note that for a fixed matri® and a vectot Eq. (B4)
(B1) results in a set of equations that is specified in contains & linear equations in 8 unknowns, the 8
the following claim: a components of. In the rest of the proof we will show



how given an objecO© and a vectof it is possible to
selectD andt so that a solution to (B4) that satisfies
n ¢ sparrow(Q’), 1) will exist. O

We will consider two cases according to the rank of
the linear system in (B4). To do so, we first show that
the rank of the linear equations in (B4) is either equal
to 3n, or it is smaller or equal tor2

Claim4. Let
W =[BvV, CV, —V].

Given D and a vectot, the rank of Eq.(B4) is kn,
where k is the rank of W.

Proof of Claim 4: Let n1, na andns be thei’th

components of the three vectorg n, andns, respec-
tively, and letp;; andpy; be thei’th points of P; and
P;, respectively. (B4) can be written assets of the
following equations (i < n):

N1
[B\?, C\77 _\7] n2i
n3i

= (DB — BD)p;; + (DC —CD)py; +t.

(B9)

It can be readily verified that the rank of the system
given in (B4) iskn, wherek is the rank ofW.

Below we consider two cases according to the rank
of W (or the rank of (B4)).

Case I. Suppose thatW is singular, that is,
rankW) < 2. In this case the rank of (B4) is at most
2n. We selectD = | andt = 0. This implies that
[D, B] =[D,C] =0, andt’ = 0. (B4) now simpli-
fies to a set of homogeneous linear equations:

BUn] +Clnl —Unf =0. (B10)
To satisfy (B2) we will choose that is perpendicu-
lar to the union of the row space @’ and{1} (and
s0, in particular, it will not belong to this space). This
requirement results in four more homogeneous equa-
tions. Thus, we obtainr8+ 4 homogeneous equations
of rank Zh + 4 or less in & unknowns. Consequently,
there will always exist a non-trivial solution fgrthat
will satisfy both Egs. (B4) and (B2). It follows that
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reconstruction is impossible from any directi@rfor
which rankKW) < 3.

Case Il. Suppose that rarfV) = 3. In this case for
every choice oD andt (B4) is a system of 8 linear
equations of rank 13 with 3n unknowns, the compo-
nents ofy. This system has a non-trivial solution if and
only if it is non-homogeneous. Furthermore, in this
case the solution is unique. We therefore need to find
in this caseD andt for which (B4) is non-homogeneous
and such that the solution to this equation will also sat-
isfy n ¢ sparfrow(Q"), 1). We show this by using the
following two claims:

Claim 5. LetrankW) = 3 and denote E= D +
Or 7. If there exists a non-singular matrix D such that
for every vector the commutatofB, E] # 0 then

1. (B4)is non-homogeneous.
2. The solutionn, to (B4) satisfiegB2).

Claim 6. For any viewV for which rankW) = 3
there exists a matrix D that satisfies the conditions of
claim5.

The same arguments can be made for the m@trix
a

Proof of Claim 5:

1. Wefirst show thatwherH, E] # O for every vector
r then (B4) is necessarily non-homogeneous. (B4)
is non-homogeneous when

[D,B]P; +[D,C]P,+t'1" £0.  (B11)
1 2

Since rankj(Pl’, Py) = 7 this is true if (and only
if) either one of the following conditions holds:

[D.B]#£0, [D,C]#0, or t' #0.

Now [D, B] # 0, since forr
[B,E] #0.

. Given D such that for every, [B, E] # 0, we
will show that anyn € sparfrow(Q’), 1) will vio-
late (B4). Consequently, any solution to (B4) will
satisfy the constraint that ¢ sparfrow(0O’), 1).

Assume, by way of contradiction, that
sparfrow(Q’), 1). In this casey can be expressed
as a linear combination of the rows 6f and of1,
namely

0 [B,D] =

T =rT0 +all, (B12)
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for somer € R3 anda € R. Considering each part

of the object separately we obtain
n =r"P 4+all
ny =r P4 all

ng =r (BP{+CP,+sl") +al". (B13)

Replacing this in (B4) we obtain
BU(r"P; +al”) + CU(r" P, +all)
—00T(BP+CP, +s1") +al")
=[D, B]P; +[D,C]P;+t'1". (B14)

Denotet” = a(B+C — 1)V +0rTs+t'. Rearrang-
ing, we get

(B(D+0r") —(D+0r")B) P
+(CO+uU"H—(D+uU"HC)P;

+t"1" =0. (B15)
SubstitutingE = D + 9rT we obtain
[B, E]P; +[C, E]P, +t"1T = 0. (B16)

Since ranKJ_(Pl/, P;)) = 7 it follows that the above
equation holds only if all the three following equa-

tions hold:

[B,E]=0, [C,E]=0, and t’'=0.

(B17)

However, by our assumptioB[ E] # Oforallr. It

follows that (B17) does not hold, contradicting our

assumption that € sparirow(Q’), 1).
O

Proofof Claim 6: As in Section 4.2, we show this

by first bringingB to a Jordan form. LeB = A"1BA
and letE’ = A"1E Athen [B, E] = 0 if and only if

[B,E] = 0. SinceE = D + UrT we denote also

D' = A'DA v = AW andr’'T = rTA (so that
E'= D’ +v’r’'T). Note thatB, D’, v’ andr’ may be
complex.

We begin by showing that iD’ causes B, E'] #

0 for all complex vectors ’ then there exists a real

matrix D such that for every real vector[B, E] # 0.
Consequently, it will suffice to show that for every

there exists a complex matri®’ such that for every
complexr, [B, D’ + v'r’] # 0. ConsiderD’ that
satisfies this requirement. DenodeD’ A1 = D; +
iD», whereD; and D, are some 3« 3 real matrices,
and denoteA~Tr’ =rq1 +ir,, wherery, r, € R® and
A-T denotes the inverse d&". If either D; = 0 or
D, = Othenwe are done. Suppose ttBtP;+iD,+
V(ri+iry)] # 0 for everyr; + ir,. It follows that
either

[B,D1+40ry] #0 (B18)

or

[B, D2 + Vry] #0. (B19)

If (B18) is satisfied for every € R, thenD; is the
sought real matrix. Similarly, if (B19) is satisfied for
everyr, thenD; is the sought real matrix. One of these
cases must hold since otherwise, assume that (B18) is
not satisfied for some vectog and that (B19) is not
satisfied for some vectog, then consider the complex
vector = ry +irp, thiscommutatorB, E]will vanish
for r contradicting the assumption th&,[D; +i D>+
v(r1 +irp)] # 0O for everyry + ir,. Consequently,
it is sufficient to show that for every’ there exists a
complex matrixD’ such that for every complex vector
r',[B,D +Vvr'T] #0.

We now turn to showing that for every vectorfor
which rankW) = 3 there exists a non-singular matrix
D’ such that for every’, G = [B, E’] # 0. We show
this by looking at the shape @& = [B, E’] for every
possible form of8 and deriving constraints oR’ that
guarantee tha® = [B, E'] # 0 for any choice of .
Notice that by requiring that rari¥/) = 3 we exclude
those viewss which are eigenvectors &&. Below we
consider six cases according to the number of linearly
independent eigenvectors and different eigenvalues of
B (see Table 2). Notice thd; in this table corresponds
here to the components @&’ (denoted as;), and
sinceE’ = D’ +v'r’'T these components are given by
g; =dj +vrj.

(a) As can be seen in Table 2, whBnhas three dif-
ferent eigenvalue§& = 0 if and only if all the
six non-diagonal elements & are non-zero. In
particular, consider the second row Gf €, =
&, = Oimpliesthatl;, = —vir;andd;, = —vrs.
Therefore, given a view if vf = 0 we can choose
any non-singular matri® such thatl;, = 1, and
if v; # 0 we can choose any such thad;, = 0



anddg, = 1. Note thatv; andv, cannot vanish
simultaneously since that would imply thais an
eigenvector oB.

(b) In this casés = 0 implies in particular thadl;; =
—vjrg anddy; = —vsrg. If v; = 0 we can choose
D such thad;; = 1, and ifv] # 0 we can choose
D such thatl;; = 0 anddj; = 1.

(c) In this case all vectors are eigenvectorBofand
soW is necessarily singular.

(d)—(f) Inthese three cas&s,= 0impliesin particular
thatdy, = —v5r; andd;; = —vgry. If v, = O we
can chooseé such thaidy, =1, and ifv, # 0 we
can choos® suchthady; =0anddy; =1. O
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