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When is it Possible to Identify 3D Objects From Single Images
Using Class Constraints?
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Abstract. One approach to recognizing objects seen from arbitrary viewpoint is by extracting invariant properties
of the objects from single images. Such properties are found in images of 3D objects only when the objects
are constrained to belong to certain classes (e.g., bilaterally symmetric objects). Existing studies that follow this
approach propose how to compute invariant representations for a handful of classes of objects. A fundamental
question regarding the invariance approach is whether it can be applied to a wide range of classes. To answer this
question it is essential to study the set of classes for which invariance exists. This paper introduces a new method
for determining the existence of invariant functions for classes of objects together with the set of images from which
these invariants can be computed. We develop algebraic tests that determine whether the objects in a given class can
be identified from single images. These tests apply to classes of objects undergoing affine projection. In addition,
these tests allow us to determine the set of views of the objects which are degenerate. We apply these tests to several
classes of objects and determine which of them is identifiable and which of their views are degenerate.
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1. Introduction

Inferring the identity of objects despite variations due to
changes in viewing position is a fundamental problem
in object recognition. One problem that arises when we
attempt to recognize 3D objects from single 2D images
is that some information about the shape of objects is
lost with projection. Consequently, a particular image
could be the result of projecting any of infinitely many
objects. Determining which of these objects have in
fact produced the image is impossible unless further
constraints are imposed. Two common approaches to
solving this problem are the model-based and class-
based invariance approaches to recognition.

Model-based methods (Fischler and Bolles, 1981;
Huttenlocher and Ullman, 1990; Lowe, 1985; Ullman
and Basri, 1991) approach recognition by storing a fi-
nite library of object models in the system memory.
Given an image, the identity of objects in the image is
determined by comparing the image to the models in the

library. To avoid comparing the image to all the models,
indexing tables were proposed (Jacobs, 1992; Lamdan
and Wolfson, 1988; Weinshall, 1993). To determine
whether a given object can produce the image, the ob-
ject model must contain 3D information of the object.
Therefore, model construction generally requires the
acquisition and matching of two or more images of the
object.

Invariance offers an alternative to the model-based
approach. In this approach objects are recognized
by extracting image properties that are invariant to
changes in viewing positions. Unfortunately, the in-
variance approach cannot be used directly as a method
for identifying general 3D objects from single 2D im-
ages since, as has been shown in (Burns et al., 1993;
Clemens and Jacobs, 1991; Moses and Ullman, 1992),
single 2D images of general 3D objects exhibit no
viewpoint invariance. One possible approach then is
to recognize objects from two or more views (Hartley,
1993, 1994; Quan, 1995, 1996; Yan et al., 1997).
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Alternatively, we may recognize objects using invari-
ant functions if we limit the method to certain classes of
objects. Such invariants will distinguish between ob-
jects that belong to a certain class, but in general will
not distinguish them from objects outside the class. A
system for recognizing objects from single images us-
ing invariants typically proceeds in two stages. In the
first stage the class of the object is recognized, and in
the second stage the invariant properties of the class are
used for identification. The advantage of using invariant
functions for such classes is twofold. First, invariants
are computed from single images; hence also object
models can be constructed from single images. Sec-
ond, invariants can distinguish between objects even if
models for these objects are not stored in the system
memory. Invariant functions have successfully been
used for certain classes of objects, e.g., planar, bilateral
symmetric, or polyhedral objects (Forsyth et al., 1991;
Jones and Poggio, 1995; Moses and Ullman, 1992;
Mundy and Zisserman, 1994; Poggio and Vetter, 1992;
Rothwell et al., 1992; Sparr, 1992; Sugimoto, 1994;
Weiss, 1988), see a recent review in (Zisserman et al.,
1995). Nevertheless, restricting the class of objects is
not always sufficient for invariants to exist (e.g., Moses
and Ullman, 1992).

It is of interest, therefore, to study whether the in-
variance approach can be extended to handle a wide
range of classes of objects. Existing studies are limited
to merely a handful of examples of particular classes.
These studies, however, offer no general tools to ex-
tend their results to other classes of objects. In this pa-
per we develop a method to identify the set of classes
for which invariant functions exist. Our method will
identify classes for which there exist invariants that
can distinguish betweenall the different objects in a
given class (as opposed to invariants that distinguish
between subsets of the objects, in which case different
objects may give rise to the same invariant values). We
call these classesidentifiable classes. We introduce
necessary and sufficient conditions for such invariants
to exist. For the identifiable classes we can also use
our method to detect thedegenerate views, views from
which the invariants cannot be computed. Our method
is general and does not depend on a specific choice of
a class. While we supply algebraic tests to determine
whether objects in a given class can be distinguished
from single images we do not supply a method to con-
struct explicit invariants that will identify the objects.
Also, the problem of determining the class of the object
is not addressed in this paper.

Our approach is based on the following principles.
A system can identify an object unequivocally from a
given image if and only if that object is the only ob-
ject, among the objects of interest, that can produce the
given image. (Of course one can design systems that
identify objects according to, say, maximal-likelihood
principles. We do not deal with such a framework here.)
We therefore develop a method for exploring the set of
ambiguous images, images that can be produced by at
least two objects of the same class. Clearly, if no further
constraints are imposed an object cannot be identified
from an ambiguous image. Therefore, given a class of
objects we attempt to determine the set of ambiguous
images of the class. If we find that all the images in the
class are ambiguous we conclude that the class is not
identifiable from any view. If some of the images are
non-ambiguous, then the class is identifiable, and the
ambiguous images are considered degenerate. Below
we develop algebraic tests to determine the set of am-
biguous images of a class. These tests depend on the
choice of projection model. In this paper we introduce
tests for objects (given as 3D point sets) undergoing
affine projection (that is, 3D affine transformation fol-
lowed by an orthographic projection).

The rest of the paper is organized as follows. Sec-
tion 2 introduces the general framework of our work.
In Section 3 we use this framework to develop algebraic
tests for classes of objects that undergo affine projec-
tion. In Section 4 we apply these tests to a number of
classes of objects. We conclude with a discussion of
our results in Section 5.

2. General Framework

Object recognition (“naming”) can be expressed as a
mapping from a set of images to a set of object names.
In general, we would like any image of a given ob-
ject to be mapped to the object name. However, it is
not always possible to define such a mapping. This
is because an image of an object depends not only
on the shape of the object, but also on its position,
the projection model, and other imaging parameters
(e.g., camera parameters). As a result, different objects
may produce the same image, and therefore the inverse
imaging function, from images to objects, cannot be
defined in such cases. Below we limit our discussion
to images of objects that vary because of camera posi-
tion (that is, we do not consider changes of illumination
direction, background, etc.). In this section we discuss
the conditions under which a mapping from a set of
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images to a set of object names can be defined. We
first outline conditions which are independent of the
projection model. Later, we develop algebraic tests
for detecting these conditions for the case of objects
undergoing an affine projection.

We call two objects,O andO′, equivalentif and only
if every image ofO is also an image ofO′ and vice
versa. Clearly, no recognition algorithm can discrimi-
nate between two equivalent objects. The choice of
projection model determines the set of equivalent ob-
jects. For example, under the affine projection model
every two objects that are related by a 3D affine trans-
formation are equivalent. When two objects are not
equivalent (different) they may still share some of their
images. In this case too no recognition algorithm can
identify an object from an ambiguous image. If two
objects share an image, they will also share other im-
ages which differ by image plane transformations from
each other. Such images are calledequivalent images.
Similar to the equivalent objects, the set of equivalent
images is determined by the projection model. For ex-
ample, for rigid objects undergoing orthographic pro-
jection two images are equivalent if they are related by
a 2D rigid transformations, whereas under the affine
projection model two images are equivalent if they are
related by a 2D affine transformation. For a given ob-
ject, we define aview to be the set of all equivalent
images. It is clear that if two objects share an image
they will also share the set of images that are in the
same view. It follows that any recognition function
cannot identify an object from any of the images in its
set ofambiguous views. We will therefore alternately
consider in the rest of this paper ambiguous views and
ambiguous images.

Note that ambiguous views are related but not iden-
tical to accidental views. The term “accidental view”
often is used to describe a view of an object from which
a non-stable image is obtained (see, e.g., Weinshall
and Werman, 1997). That is, a view is accidental if a
small change in the viewing direction will cause a large
change in the appearance of the object. Such instability
often is caused as a result of a change of aspect of the
object due to self occlusion. Degenerate views, in con-
trast, are views from which an object appears identical
to another object of the same class. Degeneracy, there-
fore, is a property which depends on the class, while
accidentalness is a property of the object irrespective
of the class. In many cases accidental views are also
degenerate. For instance, consider the side views of a
planar objects. These views are accidental, since the
object appears as a line. Likewise, within the class of

planar objects these views are degenerate since many
different planar objects can be confused from images
that were taken from these viewing directions.

The following two simple examples demonstrate the
use of ambiguous views for determining whether a
given class of objects is identifiable. Consider first the
extreme case in which the class of objects contains all
the objects described byn-tuples of 3D points. It is
easy to show that, for this class of objects, every image
is ambiguous. (There are at least two different objects
that can project to the image.) Since it is impossible
to identify a given object from its ambiguous views,
it is impossible in general to construct a mapping that
can discriminate between any two objects. This is a
weaker version of the result that for the class of 3D
point sets there exists no view invariance (Burns et al.,
1993; Clemens and Jacobs, 1991; Moses and Ullman,
1992). It follows that to define a recognition mapping it
is necessary to restrict the domain of the naming func-
tion. In our work we restrict the domain by imposing
two types of constraints. First we constrain the set
of objects considered by the system (e.g., the class of
bilaterally symmetric objects as opposed to the set of
general 3D objects). In addition, we may constrain the
set of images considered for each object in the class
(e.g., excluding the side viewing direction of planar
objects). Note that when we consider all 3D point sets
it is not sufficient to restrict only the set of views since
for this class of objects every view is ambiguous.

Another extreme case of class constraints is provided
by the model-based approach to recognition. In this
paradigm only finite sets of objects are considered. For
a finite set of objects the set of ambiguous views is
finite (at most quadratic in the number of objects in
the set; this is a consequence of Proposition 2 below),
and so by excluding the ambiguous views we obtain
identifiable classes. Thus, every finite class of objects
is identifiable. Below we concentrate on infinite classes
of objects.

Our task then is to determine, given an infinite class
of objects, the set of views from which the objects can
be identified. Formally, given a class of objectsC, let
IC be the set of all images ofC, and letNC denote the
set of names of objects inC, we seek to determine the
set of images̄IC ⊆ IC on which the naming mapping

NC : Ī C → NC

can be defined. Note that usuallyNC will be isomorphic
to C. In this case the existence of this mapping would
imply that shape reconstruction of objects of the class
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from single images is in principle possible if the class
constraints are known.

Since without imposing further assumptions it is im-
possible to determine the identity of an object from an
ambiguous view, the ambiguous views will restrict the
domain ofNC . The setĪ C , therefore, will denote the
non-ambiguous images ofC.

Our general idea can be summarized as follows. An
objectO ∈ C is identifiable from a vieŵv if and only
if there exists no different objectO′ ∈ C that shares the
view v̂ of O.

Below we consider the case of objects that undergo
affine projection. For these objects we develop alge-
braic tests that, given a class of objectsC, determine the
set Ī C of its non-ambiguous images. WhenĪ C 6= ∅
we say thatC is identifiable. In such a case we may
also use our tests to determine the set ofdegenerate
viewsof C, the viewing directions from which ambigu-
ous images are produced. WhenĪ C = ∅ we say thatC
is not identifiable from any view.

3. Identification Under Affine Projection

In this section we develop tests for identification of 3D
objects undergoing affine projection. An image is an
affine projection of a given object if it is obtained by ap-
plying a 3D affine transformation to the object followed
by an orthographic projection. (Affine projection is the
model of choice in several recognition studies (Jacobs,
1992; Koenderink and van Doorn, 1991; Lamdan and
Wolfson, 1988; Tomasi and Kanade, 1992; Ullman and
Basri, 1991), see (Jacobs, 1992; Basri, 1996) for more
on this transformation). The tests are applied to objects
given as ordered 3D point sets. We assume here that
all the points are visible in every considered view. It is
possible, however, to use our results in cases of partial
(or self) occlusion by considering subsets of the points
of the objects.

3.1. Notation

Given an objectO consisting ofn ordered pointsp1 =
(x1, y1, z1)

T , . . . ,pn = (xn, yn, zn)
T , we writeO in a

matrix form as a 3× n matrix O = [p1, p2, . . . ,pn].
Further, we denote the rows ofO by x, y, z ∈ Rn and
by row(O) the row space ofO (which is the vector
space spanned byx, y, z). Throughout the paper we
shall assume that the object points,p1, . . . ,pn are non-
coplanar. This implies that the rank of span(row(O), 1)

is 4, where1 ∈ Rn is a vector whose components are all
ones. We shall also assume thatn is sufficiently large
to induce invariance whenever such invariance exits.
Note that we consider two objects that contain the same
set of points but ordered differently as different objects.
This assumption can be dropped for some of our results
(see Section 5).

We denote an image by a 2×n matrix I , that consists
of the location of the object points in the image. LetI
be an image obtained as a result of an affine projection
of O. I is produced by applying a 3D affine transfor-
mation toO followed by an orthographic projection.
Specifically, the image positionqi ∈ R2 of an object
pointpi ∈ R3 of O taken from a vieŵv is given by

qi = Av̂pi + t,

where Av̂ is a 2× 3 linear matrix of rank 2 andt ∈
R2. The subscript̂v represents the viewing direction
from which the image is observed. This will be defined
below. The result of applying this affine transformation
to O can be written in a matrix form as

I = Av̂O + t1T .

Two objects,O and O′, share an imageI if there
exist two 2×3 matrices of rank 2,Av̂ andAû, and two
vectors,t, s∈ R2, such that

I = Av̂O + t1T = AûO′ + s1T .

A view under the affine projection model is the set of
images that are 2D affine equivalent (namely, related
by a 2D affine transformation). That is, bothI and
I ′ = A2D I + t1 T (whereA2D is a 2× 2, non-singular
matrix) are affine equivalent and therefore belong to
the same view ofO. (Below we use the letterA to
denote a 3× 3 linear transformation,A2D to denote a
2× 2 linear transformation, andAv to denote a 2× 3
linear transformation.) Clearly, whenever two objects
share an image from a given view, they will also share
all images in that view. An affine vieŵv is defined by
the set of matricesA2D Av̂, whereA2D is an arbitrary
2× 2 non-singular matrix. It is not difficult to see that
under affine projection a view is determined uniquely
by a unit vector̂v ∈ R3 such thatAv̂v̂ = 0 (or, in other
words, by a point on a unit sphere), sinceA2D Av̂v̂ = 0
for every 2D affine matrixA2D. Below we shall use the
notationAv̂ to denote a 2×3 matrix of a given view,̂v.

Given two objects,O andO′, we define their 7× n
joint matrix J̄(O,O′) to contain the rows ofO and
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O′ and the vector1 stacked on below each other in the
form:

J̄(O,O′) =

 O

O′

1T

 . (1)

In Section 3.2 below we show that the rank ofJ̄(O,O′)
can be used to determine whetherO andO′ are affine
equivalent, share a view, or are completely disjoint.

3.2. Tests for Identification

Two objects,O and O′, are calledaffine-equivalent
if there exists an affine transformation, a 3× 3 non-
singular matrix A and a vectort ∈ R3, such that
O = AO′ + t1T . In this case every image ofO is
also an image ofO′ and vice versa (see Proposition 1
below). Clearly, under the affine projection, it is im-
possible to distinguish between objects that are affine-
equivalent. Otherwise, ifO′ cannot be obtained from
O by applying an affine transformation toO then the
two objects are calledaffine-different. Following is
a list of necessary and sufficient conditions for affine
equivalence.

Proposition 1. The following conditions are equi-
valent:

(a) O= AO′ + t1T for some3×3non-singular matrix
A and a vectort ∈ R3.

(b) rank( J̄(O,O′)) = 4.
(c) Every image of O is also an image of O′ and vice

versa.
(d) O and O′ share more than a single view.

Proof: (a)⇒ (b): Assume thatO = AO′ + t1T .
Since bothO and O′ are non-planar (both ranks of
span(row(O), 1)and span(row(O′), 1)are 4) it follows
that rank( J̄(O,O′)) ≥ 4, and since the rows ofO
contain only linear combinations of the row vectors of
O′ and1, it follows that rank( J̄(O,O′)) is exactly 4.
(b)⇒ (a): Assume that rank( J̄(O,O′)) = 4. By our
assumption the rank of span(row(O′), 1) is 4. It fol-
lows that row(O) ⊆ span(row(O′), 1). In particular, it
follows that there exists a 3× 3 matrix A and a vector
t ∈ R3 such thatO = AO′ + t1T . The matrixA is
clearly non-singular because otherwise it will contra-
dict our assumption that the rank of span(row(O), 1)
is 4.

(a)⇒ (c): Assume thatO = AO′+t1T . Let an image
of O taken from a viewing direction̂v be

I = Av̂O + t11T . (2)

DenoteAû = Av̂ A andt2 = Av̂t + t1. The image of
O′ which is identical toI is given by:

AûO′ + t21T . (3)

This can be easily verified since

I = Av̂O + t11T

= Av̂(AO′ + t1T )+ t11T = AûO′ + t21T .

(4)

(c)⇒ (d): Trivial.
(d)⇒ (a): Assume thatO andO′ share more than one
view. Denote the common views ofO by v̂1 andv̂2 and
of O′ by û1 andû2 respectively. LetI1 and I2 be two
common images obtained with the different views,

I1 = Av̂1 O = Bû1 O′ + t1T

(5)
I2 = Av̂2 O = Bû2 O′ + s1T ,

where

Av̂1 =
[

ax1

ay1

]
, Av̂2 =

[
ax2

ay2

]
,

and

Bû1 =
[

bx1

by1

]
, Bû2 =

[
bx2

by2

]
,

are non-singular matrices (ax1, . . . ,by2 denote their
row vectors), andt = (tx, ty)

T ands = (sx, sy)
T are

two translation vectors. (Without loss of generality we
may translateI1 and I2 so thatAv̂1 and Av̂2 will bring
O to the images with no translation.) SinceI1 and I2

are obtained from different views (and so they are not
related by a 2D affine transformation), then without a
loss of generalityax2 is linearly independent ofax1 and
ay1. Denote by

A =
ax1

ay1

ax2

 , B =
bx1

by1

bx2

 , and t ′ =
 tx

ty,

sx

 .
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From (5) it follows that

AO = BO′ + t′1T . (6)

By construction,A is non-singular. We can therefore
chooseA′ = A−1B andt′′ = A−1t to obtain

O = A′O′ + t′′1T . (7)

The matrix A′ is clearly non-singular because other-
wise it will contradict our assumption that the rank of
span(row(O), 1)) is 4. 2

To determine the set of ambiguous views of a class
we need to develop necessary and sufficient conditions
for two affine different objects to share a view. These
conditions are specified in Proposition 2 below.

Proposition 2. The following conditions are
equivalent:

(a) There exist a single direction̂v ∈ R3 and transla-
tion t ∈ R2 such that ÂvO = AûO′ + t1T , where
Av̂ and Âu are2× 3 matrices of rank2.

(b) rank( J̄(O,O′)) = 5.
(c) O = AO′ + t1T + v̂ηT , where A is a3 × 3

matrix and rank(A) ≥ 2, t ∈ R3, v̂ ∈ R3 is
a non-zero vector, and η ∈ Rn is orthogonal to
span(row(O′), 1). (O′ shares the vieŵv of O.)

(d) O = AO′ + t1T + v̂ηT , where A is a3×3 matrix
and rank(A) = 3, v̂ ∈ R3 is a non-zero vector,
and η ∈ Rn whereη 6∈ span(row(O′), 1). (O′

shares the vieŵv of O.)

Proof: (a)⇒ (b): Assume that there exists a single
direction v̂ such thatAv̂O = AûO′ + t1T . Let B =
[ Av̂, −Aû, −t] be a 2× 7 matrix. We obtain that

BJ̄(O,O′) = 0. (8)

Since rank(Av̂) = rank(Aû) = 2 it follows that
rank(B) = 2. This implies that rank( J̄(O,O′)) ≤ 5.
Since O is non-planar (the rank of span(row(O), 1)
is 4) it follows that J̄(O,O′) ≥ 4. It must be differ-
ent than 4 becauseO andO′ share only a single view,
and therefore they cannot be affine-equivalent (Propo-
sition 1, (d)⇒ (b)). Therefore, rank( J̄(O,O′)) = 5.
(b)⇒ (c): Assume that rank( J̄(O,O′)) = 5. At least
one of the rows ofO must be independent of the rows
of O′ and the vector1. Assume without the loss of
generality that this row isx1. It follows that there exists

a vectorη which is orthogonal to the span(row(O′), 1)
such that

x1 = cxx2+ cyy2+ czz2+ c11+ η, (9)

where x2, y2, and z2 are the row vectors ofO′.
Since rank( J̄(O,O′)) = 5, it follows that y1, z1 ∈
span{x1, x2, y2, z2, 1} or equivalentlyy1, z1 ∈ span
{η, x2, y2, z2, 1}. Consequently,

O = AO′ + t1T + v̂ηT . (10)

Finally, since1 6∈ row(O) it follows that rank(O −
t1T ) = 3. The rank of̂vηT is 1, therefore, rank(AO′)
≥ 2. Since rank(O′)= 3 it follows that rank(A)
≥ 2.

We next show that the view ofO shared withO′ is
v̂. Let Av̂ be a 2× 3 matrix such thatAv̂v̂ = 0 thenO′

shares the vieŵv with O:

Av̂O = Av̂(AO′ + t1T + v̂ηT ) = Av̂ AO′ + Av̂t1T .

(11)

(c)⇒ (d): Assume thatO = AO′ + t1T + v̂ηT where
v̂ = (vx, vy, vz)

T , rank(A) = 2 and

A = [ ax, ay, az ]T .

Assume without a loss of generality thataz depends
on ax anday, and thatax is independent ofay. Let
a= ax × ay, let

B = [(ax − vx(az− a)), (ay − vy(az− a)), vza ]T ,

and letη ′ = η+ (az−a)T O. It can be readily verified
that

O = AO′ + v̂ηT = BO′ + v̂η ′ T . (12)

By construction rank(B) = 3 andη ′ /∈ span(row(O),
1).

It can be shown as in the previous case that the view
of O shared withO′ is v̂.
(d)⇒ (a): Assume thatO = AO′ + t11T + v̂ηT .
Consider the images ofO taken from a direction̂v. Let
Av̂ be a 2× 3 matrix of rank 2 such thatAv̂v̂ = 0. It
follows that

Av̂O = Av̂
(
AO′ + t11T + v̂ηT

1

) = Av̂ AO′ + Av̂t11T .

(13)



Identify 3D Objects from Single Images 101

Figure 1. Three hammer-like shapes composed of identical parts but differ in the shapes of their heads by generic affine transformations.

Let Aû = Av̂ A andt = Av̂t1, then we obtain

Av̂O = AûO′ + t1T . (14)

Sinceη 6∈ span(row(O′), 1) thenO andO′ cannot be
affine equivalent. Hence, according to Proposition 1,
v̂ must be unique. 2

4. Examples

In this section we apply the tests developed in Section 3
to several classes of objects. For each class we deter-
mine the set of views from which the objects of the class
can be identified. Some of these classes are shown to be
identifiable from most or all views. Other classes are
shown to be non-identifiable from any view. We begin
with classes of objects that are composed of the same
set of parts, but the relative position and orientation of
their parts may vary across objects (Section 4.1). We
then proceed to discuss classes of objects which have
two identical parts, except that one part may appear
at different position and orientation with respect to the
second part. In this case the shape of the parts may vary
across objects (Section 4.2). Next, we consider classes
that contain combinations of sub-structures, that is one
part of the object is a function of the other parts (Sec-
tion 4.3). Finally we consider classes of objects that
can be expressed as combinations of prototype objects
(Section 4.4).

4.1. Objects With Same Set of Parts

Many classes of interest contain objects all of which
are composed of the same set of parts. The identity
of an object within the class is defined by the ex-
act position and orientation of one part with respect

to another, and by the relative size or stretch of one
part with respect to another. Some examples for such
classes are hammers, screwdrivers, cars, and chairs.
Figure 1 shows three hammer-like shapes with identi-
cal handles and heads which differ by affine transfor-
mations. Formally, a classCP is defined by an ordered
set of parts{Q1, . . . , Qm} whereQi are 3× ni matri-
ces for some arbitraryni > 3. An objectO ∈ CP is
given byO = [ P1, . . . , Pm], where the 3×ni matrices
Pi = fi (Qi ) describe the parts ofO. The functionsfi
determine the identity of the objects in the class.

Below we limit our discussion to{ fi } that re-
present affine transformations. In this case, an ob-
ject O ∈ CP can be written in a matrix notation as
O = [ P1, . . . , Pm], where Pi = Bi Qi + si 1T for
1 ≤ i ≤ m. Bi are 3× 3 non-singular matrices and
si ∈ R3; both vary between the different objects in
the class. Below we assume that every partQi is non-
planar, that is, the rank of span(row(Qi ), 1) is 4.

Note that this representation of a class is non-unique.
It is possible to transform everyQi by the same affine
transformation, and still obtain the same set of objects
by compensating for this affine transformation inBi

andsi . Likewise, the representation of an object is non-
unique since it is possible to transform the object by
an affine transformation and obtain an equivalent rep-
resentation of the object. The ambiguity in the rep-
resentation of the object will be handled by applying
Proposition 1. Notice, however, that transforming every
part by a different affine transformation would deform
the object and will not produce an equivalent represen-
tation of the object.

The next proposition establishes that if the shape of
the objects in a class may change by applying general
affine transformations to their parts then the class is
non-identifiable from any view. If however we restrict
the transformation applied to the parts to scaling and
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stretching along any three fixed directions we obtain
classes which are identifiable from almost all views.
This implies, in particular, that it is possible in principle
to extract the relative scale and stretch of objects’ parts
from single images.

Proposition 3. Given m> 1non-planar object parts
denoted by3× n matrices Qi (1 ≤ i ≤ m), the class
CP = {[ P1, . . . , Pm] | Pi = Bi Qi + si 1T ]} is:

1. Non-identifiable for general affine transformation,
that is, for arbitrary 3×3 non-singular matrices Bi
and translationssi ∈ R3.

2. Non-identifiable for pure translation, that is, for
Bi = I and arbitrarysi ∈ R3.

3. Identifiable from almost all views for scaling and
stretching along any three fixed directions. For
example, scaling and stretching along the three pri-
mary axes correspond to diagonal Bi and constant
s ∈ R. In this case degenerate views are obtained
only for v̂ = (v1, v2, v3)

T such thatvi = 0 for some
1≤ i ≤ 3.

Proof:

1. It will be sufficient to show that this class is not
identifiable even if we restrict the translationssi to
be the same across objects. To show this we need
to show that for every choice of objectO ∈ CP

and every choice of vieŵv there exists an affine-
different objectO′ ∈ CP that shares the vieŵv of
O. Let O = [ P1, . . . , Pm] wherePi = Bi Qi +si 1T

for 1 ≤ i ≤ m, and letO′ = [ P′1, . . . , P′m] where
P′i = B′i Qi + si 1T for another set ofB′i and for
1 ≤ i ≤ m. Since the matricesBi determine the
identity of the object it follows that given{Bi } andv̂
we need to find matrices{B′i } and a viewû such that
O andO′ will share an image. We setB′1 = B1 and
B′i = Bi + v̂r T

i for some non-zero vectorr i ∈ R3

such that rank(B′i ) = 3 andB′i 6= I . It is readily
verified thatO andO′ are affine-different (since the
first parts ofO and O′ are related by the identity
matrix, while the other parts are not). Furthermore,
the two objectsO andO′ share an image when both
are taken from the viewing direction̂v. That is,
Av̂O = Av̂O′. To prove it, it is sufficient to show
that Av̂ P′i − Av̂ Pi = 0. This can be easily verified
as follows.

Av̂(P
′
i − Pi ) = Av̂(B

′
i − Bi )Qi = Av̂v̂r T

i Qi ,

and sinceAv̂v̂ = 0 we obtain thatAv̂(P′i − Pi ) = 0.

2. To show this we need to show that for every choice
of object O (determined bysi ) and view v̂ there
exists an affine different objectO′ (determined by
s′i 6= si ) that shares the vieŵv of O. Let O =
[ P1, P2, . . . , Pm] such thatPi = Qi + si 1T , and let
O′ = [ P′1, P′2, . . . , P′m] such thatP′i = Qi + s′i 1

T .
We sets′1 = s1 ands′i = si + λi v̂ for 2 ≤ i ≤ n for
some arbitraryλi 6= 0. In this caseO and O′ are
affine-different since their first parts are related by
a different translation than their second parts, and
they share the vieŵv of O since

Av̂(P
′
i − Pi ) = Av̂(s′i − si ) = λi Av̂v̂ = 0.

3. We show this for scaling and stretching along the
three primary axes (that is, for diagonalBi and con-
stants). Note that since we can redefine the class
by applying a (possibly different) affine transfor-
mation to each part this will imply that the class
is identifiable for stretching in any three fixed di-
rections. To show that this class is identifiable we
need to show that, given an objectO and a viewv̂,
any objectO′ that shares the vieŵv of O must be
affine equivalent toO. LetO = [ P1, . . . , Pm] where
Pi = Bi Qi + si 1T , and let O′ = [ P′1, . . . , P′m]
where P′i = B′i Qi + si 1T for another set ofB′i .
SinceO and O′ share the vieŵv of O then there
exists a viewû such that

Av̂O = AûO′ + t1T .

Without loss of generality, we can assume thatB1 =
B′1 = I ands1 = s′1 = 0 (since we can choose to
consider any of the objects that are affine equivalent
to O′). This implies that

Av̂ P1 = Aû P′1+ t1T

Av̂(Bi Qi + si 1T ) = Aû(B
′
i Qi + si 1T + t1T ).

The first equation implies thatû = v̂ and thatt = 0
(since P1 = P′1 and P1 is non-planar), and so the
second equation becomes

Av̂(Bi − B′i )Qi = 0.

SinceQi is non-planar we obtain thatAv̂(Bi−B′i ) =
0. If Bi = B′i for 1 ≤ i ≤ m then O and O′ are
identical. It follows thatBi − B′i = v̂r T for some
r 6= 0 (since the only vectorw for which Av̂w = 0
is of the formw = λv̂). However, since bothBi
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Figure 2. An overlay of the leftmost hammer (solid) with the other two hammers (dashed). Notice that the handles of the hammers are identical
whereas their heads differ.

Figure 3. An overlay of the leftmost hammer (solid) and each of the other two hammers (dashed) taken from their common views. The
common views are (0.29,−0.41, 0.87) and (0.32,−0.73, 0.60). Notice that for every view of the leftmost hammer we can produce infinitely
many different hammer-like shapes that look identical to this hammer.

andB′i are diagonal alsôvr T must be diagonal. But
sincev̂ contains no zero components, the only way
to obtain zeros in all non-diagonal components is
by settingr = 0. This, however, will imply again
that Bi = B′i for 1 ≤ i ≤ m, and soO andO′ are
identical. 2

An example to these results is shown in Figs. 1–3. In
these figures we show three hammer-like objects with
identical handles, but their heads differ by an arbitrary
linear transformation. We constructed these hammers
as follows. We first constructed the leftmost hammer.
Then, we arbitrarily selected two views and modified
the head of the hammer according to the proof of Propo-
sition 3(1) so as to obtain two different hammers that
will share those views with our original hammer. Note
that according to the proposition we could do this to
any desired view, and that at every view we could find
infinitely many different hammers (determined by the
choice of r ) that share this view with our original

hammer. It follows that the class of objects with the
same parts which may differ by an arbitrary affine trans-
formation is non-identifiable. Notice that according to
Proposition 3(3) if we allow the parts to only scale and
stretch in three fixed directions we would not be able
to find two hammers with a common view except for a
small set of degenerate views.

A special case of this proposition is the case that the
class composed of objects of two identical parts (Q1 =
Q2). Notice that the actual shape of the parts was not
used in the proof, so even the negative results extend to
classes such that all the parts of a given object are identi-
cal. In Section 4.2 below we further explore the case of
objects such that the parts of a given object are iden-
tical, but the parts may differ across the objects in the
class.

We can conclude that a set of objects that consist of
identical set of parts cannot be identified if the objects
differ by arbitrary affine transformation or translation
of their parts. However, if the objects in the class differ
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by scaling or stretching of the parts, then they can be
identified from almost all of their images.

4.2. Repeated Structures

The next set of classes that we consider consists of
objects each of which contains two identical, non-
planar parts except that these parts are related by an
affine transformation (so one part is translated, rotated,
stretched, or reflected with respect to the other). Real
objects that contain symmetries (e.g., faces, chairs) of-
ten belong to this class. An object from the classCB,s

has the following form:

O = [ P, B P+ s1T ],

with B 3× 3 non-singular matrix ands∈ R3. In con-
trast to the classes discussed in Section 4.1 now the
shape of the parts (denoted byP) may also vary across
objects. We consider below two cases. First we con-
sider the case that the affine transformation relating the
two parts may vary across objects. Then we consider
the case that this affine transformation is the same for
all the objects in the class. A special case for this latter
class is the class of bilaterally symmetric objects, in
which the identical parts are related by a reflection.

Note that for repeated structures the two parts in
an object are identical up to an affine transformation.
However, we assume that in the image we know which
is the first part and which is the second part. In practice,
when we compute invariance for such objects we may
need to try both orderings of the parts in the image.

Invariants for objects with repeated structures un-
dergoing 3D-to-2D projective transformations were in-
troduced in (Mundy and Zisserman, 1994). In addi-
tion, invariants for bilaterally symmetric objects and
objects composed of planar repeated structure under
both affine and projective transformations were pre-
sented in (Fawcett et al., 1994; Mitsumoto et al., 1992;
Moses and Ullman, 1992; Poggio and Vetter, 1992;
Sugimoto, 1994). These studies showed that the class
of repeated structures induces invariance on the set of
images. The basic intuition is that, when an image of
an object with repeated structures is given, this image
will in general contain two copies of the same struc-
ture. Thus, under the appropriate conditions, the shape
of the repeated part can be recovered up to an affine (or
projective) transformation by simply using a stereo al-
gorithm (Faugeras, 1992; Koenderink and van Doorn,
1991). Nonetheless, these studies do not determine if

in general the identity of the objects can be determined
from single images. Two objects with repeated struc-
tures may have exactly the same parts, but these parts
may differ in their relative location or size across the
objects. These studies determine the shape of the parts,
but leave the relative position and size of the parts un-
known. Below we show that if we permit the parts to
be related by an arbitrary transformation then the class
will not be identifiable (and thus objects that have the
same parts will be confused). This implies that the rela-
tionships between the parts cannot be uniquely recov-
ered from single images, which is equivalent to saying
that the problem of calibrating an affine camera from
two images is inherently ambiguous. If however we
consider a class of objects with repeated structures in
which the transformation relating the parts is the same
across objects (such as in the case of bilaterally sym-
metric objects) then for most choices of transformation
the class is identifiable from almost all views.

It is straightforward at this point to show that the
class of objects with repeated structures whose parts
are related by an arbitrary affine transformation is not
identifiable from any view. This can be seen by apply-
ing Proposition 3(1) withQ1 = Q2, which tells us that
a subset of this class, the objects that have the same
parts, cannot be identified from all their views. Conse-
quently, no invariants can distinguish between all the
objects in this class.

Next we consider the case that the same affine trans-
formation relates the two parts in every object. We show
that for most choices of an affine transformation the
class determined by this transformation is identifiable
from almost all views. The degenerate views in this
case lie along at most three great circles on the viewing
sphere. We list these views in Proposition 4.

Proposition 4. Given a3× 3 non-singular matrix B
and a vectors∈ R3, the classCB,s is identifiable from
all viewsv̂ ∈ R3 unlessv̂ is an eigenvector of B or̂v
is located on at most three great circles on the viewing
sphere which depend on B.(The additional degenerate
views are listed in Table1.)

The proof is given in Appendix A. The additional
degenerate views listed in Table 1 depend on the ma-
trix B, and, in particular, on the number of different
eigenvectors and different eigenvalues ofB. The de-
generate views include all the eigenvectors ofB. For
convenience, we list the degenerate views according to
the Jordan form of the matrixB, B̄ = A−1B A. The
views are given in terms ofv ′, wherev ′ = A−1v. Note
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Table 1. List of degenerate views for the classCB,s, in addition to
the eigenvectors ofB, listed according to the number of different
eigenvalues and different eigenvectors ofB. The degenerate views
are given in terms ofv′, wherev′ is an eigenvector of the Jordan
form of B.

No. of No. of
Case eigenvectors eigenvalues Constraints onv ′

(a) 3 3 v′i = 0 for some 1≤ i ≤ 3.

(b) 3 2 v′1 = 0.

(c) 3 1 no identification from any view.

(d) 2 2 v′3 = 0 orv′2 = 0.

(e) 2 1 only eigenvectors.

(f) 1 1 v′3 = 0 orv′1 = v′2 = 0.

that given a vectorv ′ it is straightforward to recover
the corresponding vieŵv = Av ′. Furthermore,̂v is an
eigenvector ofB if and only if v ′ is an eigenvector of
the Jordan formB̄. Note also that in certain cases the
actual list of degenerate views is smaller than what is
specified in Table 1 since the list of vectorsv ′ includes
vectors that correspond to complex viewsv̂. Evidently,
only real view vectors are geometrically feasible.

As an example consider the class of bilaterally sym-
metric objects. In this case the matrixB representing
reflection about a plane is given by

B =

1 0 0

0 1 0

0 0 −1


ands= 0. B has three eigenvectors and two different
eigenvalues, corresponding to the second row of the ta-
ble. SinceB is already in its Jordan form thenv′ = v̂.
Accordingly, bilaterally symmetric objects are identi-
fiable from all views except for those which coincide
with the symmetry plan,̂v = α[1, 0, 0] + β[0, 1, 0],
and the direction perpendicular to the symmetry plan,
v̂ = [0, 0, 1].

The following example demonstrates that bilaterally
symmetric objects are identifiable from single images,
whereas objects with repeated structures are not iden-
tifiable when the kind of repetition is unknown (that
is, with arbitraryB ands). To show this we consider
an image of a bilaterally symmetric object (a chair).
We show that the 3D structure of the chair can be re-
covered correctly from this image if we restrict the
class to bilaterally symmetric objects, whereas if we
allow arbitrary affine repetitions the image gives rise to
ambiguous reconstruction. Figure 4 shows an image of

Figure 4. An image of a chair. The circles mark the positions of
feature points in the image.

a chair, and feature points extracted manually. Using
the assumption that the chair is bilaterally symmetric
we have recovered its affine shape. To demonstrate the
accuracy of this reconstruction we aligned the obtained
shape with two images of the same chair taken from two
different viewing positions (Fig. 5). As can be seen, the
transformed feature points of the recovered shape align
well with the corresponding image features, indicating
that our affine reconstruction is accurate.

Next, we demonstrate that there exist different rep-
etitions (that is, different choices ofB ands) that are
consistent with Fig. 4, but lead to quite different re-
constructions. This implies that unlessB and s are
determined the object is not identifiable from a sin-
gle image. To show this we have derived the shape of
the chair assuming a false repetition (by replacingB
with a rotation matrix of 60◦ about the vertical axis of
the chair and keepings = 0). This reconstruction is
consistent with Fig. 4, but is inconsistent with the ac-
tual 3D shape of the chair. To demonstrate this we have
aligned the obtained shape with the same two images
of the chair by minimizing the least-squares error in
the position of the feature points (Fig. 5). As can be
seen the transformed feature points poorly align with
the corresponding image features, indicating that the
reconstructed shape in this case is inconsistent with
the 3D shape of the chair.

4.3. Combinations of Sub-structures

Next we consider classes of objects in which one part
can be expressed as a linear combination of the other
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Figure 5. Aligning the affine shape of the chair derived assuming it is bilaterally symmetric to two other images of the same chair. The plus
signs mark the position of the transformed model points and the circles mark the position of the corresponding image points.

Figure 6. Aligning the affine shape of the chair derived assuming a false repetition to two other images of the same chair. The plus signs mark
the position of the transformed model points and the circles mark the position of the corresponding image points. The lines connecting pairs of
corresponding points illustrate the displacements obtained.

parts. Below we consider only classes of objects with
three or more sub-structures. When the number of parts
is two we obtain the case of repeated structures, which
was discussed in Section 4.2. Intuitively, objects that
belong to these classes contain one part whose shape
is the average of the rest of the parts after these parts
are aligned (that is, rotated and translated to a common
coordinate frame). While it is difficult to find such
classes in practice, we are interested in them since it
is possible to build such classes such that their objects
will have the same degrees of freedom as planar objects
do (2n, wheren is the number of points on the object).
Yet, as is shown below, unlike the class of planar objects
these classes are not identifiable from any view.

In a class that contains a combination of sub-
structures an object is divided intom ≥ 2 parts. The

location of every point on them’th parts can be ex-
pressed as a linear function of them−1 corresponding
points in the other parts, where the same linear function
is applied to all the points. An object from the class
CB1,...,Bm−1,s has the following form:

O = [ P1, P2, . . . , Pm] ,

wherePi are 3× n matrices defining the shape of the
i ’th part (1≤ i < m),

Pm = B1P1+ B2P2+ · · · + Bm−1Pm−1+ s1T ,

Bi are 3× 3 non-singular matrices, ands ∈ R3. No-
tice that the case thatPm is a linear combination of
the rest of the parts in the ordinary sense (that is,
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Pm =
∑m−1

i=1 βi Pi ) is included as a special case of this
definition obtained by settingBi = βi I ands= 0. The
results below will hold for this special case as well.

In Proposition 5 below we show that form > 2,
identification is impossible from all views even when
all the matricesBi andsare the same for all objects in
the class.

Proposition 5. Given3×3non-singular matrices Bi
where1 ≤ i ≤ m− 1,m ≥ 3, and givens ∈ R3, the
classCB1,...,Bm−1,s is not identifiable from any view.

Proof: Here we prove the proposition form > 3.
The proof form= 3 is given in Appendix B. To show
this we need to show that for every choice of objectO
and viewv̂ there exists an affine different objectO′ and
a viewû so thatO andO′ share the vieŵv andû respec-
tively. According to Proposition 2(d) it is sufficient to
show that there exists an objectO′ in the class such
that O = AO′ + t1T + v̂ηT for η 6∈ span(row(O′), 1)
and for some non-singularA andt. In particular, it will
be sufficient to show this forA = I andt = 0, so that
O = O′ + v̂ηT for η ⊥ span(row(O′), 1).

Let O = [ P1, P2, . . . , Pm], with Pm =∑m−1
i=1 Bi Pi + s1T . We setO′ = [ P′1, P′2, . . . , P′m]

such that

P′i = Pi + v̂ηT
i for (1≤ i ≤ m), (15)

whereηT = [ηT
1 , η

T
2 , . . . , η

T
m]. To belong to the class

the objectO′ must satisfy the following equation:

P′m =
m−1∑
i=1

Bi P′i + s1T . (16)

Combining (15) (the casei = m) and (16) we obtain
that

P′m = Pm + v̂ηT
m =

m−1∑
i=1

Bi P′i + s1T . (17)

Plugging in the firstm− 1 equations in (15) into (17)
and rearranging we obtain

m−1∑
i=1

Bi v̂ηT
i − v̂ηT

m = 0. (18)

It is left to show that for every vieŵv there exists
a non-trivial vectorηT = [ηT

1 , . . . , η
T
m] that solves the

above equations subject to the constraintO′η = 0 and

1Tη = 0. The last two equations and Eq. (18) con-
tain 3n+ 4 homogeneous equations inmn unknowns.
Sincem ≥ 4, mn > 3n + 4 for n > 3, and so for
any choice of̂v a non-trivial solution will exist. It fol-
lows that for everyv̂ there exists an object given by
O′ = O − v̂ηT that shares the vieŵv with O. Hence,
the class is not identifiable. 2

We next discuss the counting argument for the case
m = 3. In this case, an object has the formO =
[ P1, P2, P3] whereP3 = B P1 + C P2 + s1T , B and
C are 3× 3 non-singular matrices, ands∈ R3. Below
we assume in addition that rank( J̄(P1, P2)) = 7.1 If
we rely only on counting arguments we may be misled
to believe that the classCB,C,s is identifiable. Consider
for example the counting arguments given in (Werman
and Shashua, 1995). Given an objectO ∈ CB,C,s, sup-
poseO includesn points. An image ofO gives 2n
measurements. Together withn class constraints (the
linear relations between the first two parts and the third
part) they give rise to 3nequations. The number of vari-
ables in these equations are as follows. The shape ofO
is defined by 3n variables. The projection parameters
(the parameters of a 3D-to-2D affine transformation)
are eight. A 3D affine reference frame can be obtained
by picking the position of four points, hence such a
frame involves setting 12 parameters. Therefore, the
total number of variables is 3n + 8− 12 = 3n − 4.
According to a counting argument the number of equa-
tions obtained, 3n, is sufficiently large to determine the
values of the 3n− 4 unknowns, and so in theory using
elimination we should be able to recover the shape of
the object from the equations. However, the underlying
assumption in counting arguments is that the counted
equations are all independent and consistent. In classes
which contain combinations of sub-structures this as-
sumption is violated, and so the identity of the objects
cannot be recovered from single images, as was shown
above in Proposition 5.

4.4. Combinations of Prototypes

Finally, we consider classes of objects that can be ex-
pressed as linear combinations of some prototype ob-
jects. That is, let{O1,O2, . . . ,Ok} be a set of proto-
type objects, all with the same number of points, and
assume further that the row spaces of allOi (1≤ i ≤ k)
are linearly independent (that is, the union of the row
spaces is of rank 3k), and that1 does not belong to
these spaces. The objects in the class can be described
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by combining thek prototypes, that is,O ∈ C if and
only if it can be written as

O =
k∑

i=1

αi Oi , for αi ∈ R.

Poggio and Vetter (1992) (see also (Jones and
Poggio, 1995) already showed that this class is iden-
tifiable. Our tools provide a short and elegant proof
for this case and establish that identification is possible
from all views.

Proposition 6. The objects in the classC are identi-
fiable from all their views.

Proof: To show this we need to show that, given an
object O and a viewv̂, any objectO′ that shares the
view v̂ of O must be affine equivalent toO. Let O =∑k

i=1 αi Oi and letO′ = ∑k
i=1 βi Oi share the vieŵv

of O. It follows that,

Av̂

(
k∑

i=1

αi Oi

)
= Aû

(
k∑

i=1

βi Oi

)
+ t1T . (19)

This can be written as

k∑
i=1

(αi Av̂ − βi Aû)Oi − t1T = 0. (20)

Since the row spaces of all the prototype objects are
linearly independent, and since1 does not belong to
these spaces, we obtain that

αi Av̂ − βi Aû = 0 (21)

and thatt = 0. Thus,Av̂ andAû are related by the scale
factorci = βi /αi for all 1 ≤ i ≤ k, and obviously all
these scale factorsci (1 ≤ i ≤ k) must be identical.
(Note also that neitherαi andβi can be zero because the
rank of bothAv̂ and Aû is 2.) This implies that̂v = û
andO andO′ are affine equivalent (sinceO′ = cO).

2

The reason this class is of interest is the following.
Suppose that the set of prototype objects is composed of
a few similar objects that belong to a single perceptual
category, say, two chairs, and suppose that “reason-
able” correspondences between feature points on the
objects can be assigned (by applying form and function
considerations). Then, if we construct new objects by

taking averages of the prototype objects, these new ob-
jects would tend to look similar to the prototype objects
and assume the same perceptual category. If indeed for
this kind of classes identification is possible then one
may be able to distinguish between different exemplars
of such a category even if the specific exemplar is being
seen for the first time.

5. Summary and Discussion

A fundamental question regarding the invariance ap-
proach is whether it can be applied to a wide range of
classes. To answer this question it is essential to study
the set of classes for which invariance exists. In this
paper we investigated the invariant representations that
discriminate between all the objects of a given class.
We addressed the problem of determining, given a class
of objects, the set of images from which the objects can
be identified. Our approach is based on exploring the
set of ambiguous images. We developed a number of al-
gebraic tests to determine the ambiguous images under
affine projection, and applied these tests to a number
of classes of objects.

We now consider a number of assumptions we have
made and discuss how they should be relaxed in future
work.
Projection Model: Our tests were developed for objects
which may undergo affine projection. We intend in the
future to develop similar tests for other, more realistic
projection models. We would like to note, however,
that some of our results (e.g., Proposition 3) apply also
to rigid objects undergoing weak-perspective projec-
tion. Similarly, some of the results in Proposition 3
and 4 can be extended quite easily to the case of ob-
jects undergoing perspective projection.
Constructive Tests: Although our tests can determine
which classes are identifiable and from what views, the
tests at their present form are not constructive. That is,
the tests cannot be used to derive the invariants for the
objects. Consequently, our approach may serve only
as a first step in deriving invariance for new classes of
objects. In particular, it can be used to avoid seeking in-
variance for classes for which invariance does not exist.
In addition, for identifiable classes our method can be
used to determine the set of views from which objects
are identifiable and exclude the ambiguous views.
Dealing with Noise: In our tests we did not take into ac-
count the effect of noise on identifiable classes. Obvi-
ously, if we allow for noise, more images may become
ambiguous. One possible way to detect sensitivity to
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noise in classes of objects is by looking at the singular
values of the matrixJ̄(O1,O2), which was introduced
in Section 3.2. However, those singular values depend
on the specific representation chosen for the objectsO1

andO2, so we must somehow “normalize” the objects
first. We can do this by replacing the rows ofO1 andO2

by orthonormal bases (that are also normal to the vec-
tor 1). Denote the new representation byÕ1 and Õ2,
it can be shown that the singular values ofJ̄(Õ1, Õ2)

are related to the angles between the two row spaces of
O1 andO2. Specifically, the rank of̄J(O1,O2) is ex-
actly 7 minus the number of zero angles between these
spaces. In the presence of noise objects in the class
may be confused when these angles are small. Thus,
by verifying that the angles between the row spaces
exceed a certain threshold one can guarantee that the
objects will not be confused due to noise.
The objects: In our tests we assumed that the objects are
given as ordered point sets. In particular we regarded
two objects that contain the same set of points ordered
differently as two different objects. Several of our re-
sults are not affected by this assumption. For example,
the class of objects with identical parts and the class of
objects with repeated structures are closed under per-
mutation of the objects’ points. (One only has to find
correspondence between the different parts of the same
object.) Furthermore, classes which were shown to be
non-identifiable remain non-identifiable even if we re-
lax this requirement. We intend in the future to extend
our tests to other objects that consists of non-ordered
points. In addition, it is clearly of interest to develop
tests for contour images, and gray-level images.
Invariance: In this paper we concentrated on analyzing
whether given classes are identifiable. For classes that
are not identifiable it may still be possible to extract
invariants from single images. These invariants will
not suffice to discriminate between all the objects of
the class, but will distinguish only between subsets of
the objects. Developing tests for such classes is left for
future research.
Classifying the objects:The first step of applying class-
based invariance to images involves classifying the ob-
ject in the image. Unfortunately, it is impossible to
both classify the object and recover its specific identity
using invariance, since this will contradict the result
that there exists no view invariance that can discrim-
inate between all 3D objects. In practical systems it
may be the case that many of the objects belong to a
small number of classes, in which case one may enu-
merate all these classes, or find some properties which

distinguish these classes from one another. This prob-
lem too is beyond the scope of this paper.

Appendix A: Repeated Structures

In this appendix we prove Proposition 4.

Proof: We will show that the classCB,s is identifiable
from all viewsv̂ ∈ R3 except for the degenerate views
which are the views that are eigenvalues ofB and the
views listed in Table 1. To show this we will show that
given an objectO ∈ CB,s, and a viewv̂ there exists an
affine different objectO′ ∈ CB,s that shares the vieŵv
of O if and only if v̂ is a degenerate view.

Let O andO′ be two affine different objects inCB,s

given by

O = [ P1, P2] ∈ CB,s, (A1)

whereP2 = B P1+ s1T , and

O′ = [ P′1, P′2] ∈ CB,s, (A2)

whereP′2 = B P′1+ s1T .
Suppose thatO′ shares only the vieŵv with O. It

follows that there exist two 2×3 non-singular matrices
Av̂ andAû and a vectorst1 ∈ R2 such that

Av̂O = AûO′ + t11T . (A3)

In particular, sinceO andO′ share a view, also their
parts share the same view. That is,

Av̂ P1 = Aû P′1+ t11T (A4)

Av̂(B P1+ s1T ) = Aû(B P′1+ s1T )+ t11T .

(A5)

Note that although we assumed thatO and O′

are affine different, it might still be the case that
their parts are affine equivalent. Therefore, the rank
of J̄(P1, P′1) ≤ 5. In addition, we assumed that
both parts are non-planar, that is, both ranks of
span(row(P1), 1) and span(row(P′1), 1) are 4. This
implies that rank( J̄(P1, P′1)) ≥ 4. Below we ana-
lyze each of the two cases, rank( J̄(P1, P′1)) = 5 and
rank( J̄(P1, P′1)) = 4, separately.

Case I. Suppose that rank( J̄(P1, P′1)) = 5. Accord-
ing to Proposition 2(a), the two parts,P1 and P′1 have
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exactly one view in common,̂v. From (A4) it follows
that the projection matrixAv̂ belongs to the vieŵv, and
similarly from (A5) it follows that the projection matrix
Av̂ B belongs to the vieŵv. Therefore,Av̂v̂ = 0 and
also Av̂ Bv̂ = 0. By definition of Av̂, the only vector
w that satisfiesAv̂w = 0 is of the formw = λv̂. In
particular it follows thatBv̂ = λv̂. Consequently,O′

shares the vieŵv of O when rank( J̄(P1, P′1)) = 5 if
and only ifv̂ is an eigenvector ofB, which implies that
v̂ is a degenerate view.

Case II. Suppose that rank( J̄(P1, P′1)) = 4. Accord-
ing to Proposition 1, the partsP1 and P′1 are affine
equivalent, and so there exists a 3× 3 non-singular
matrix D and a vectort ∈ R3 such that

P1 = DP′1+ t1T . (A6)

We will use the following two claims to prove that
O′ shares a single vieŵv with the objectO only if v̂ is
an eigenvector ofB or v̂ is listed in Table 1.

Claim 1. O′ shares the vieŵv of O if and only if
there exists a vectorr ∈ R3 such thatr 6= 0, and the
commutator matrix[B, D] = B D− DB satisfies

[B, D] = v̂r T . (A7)

Claim 2. For every3× 3 non-singular matrices B
and D, if

[B, D] = v̂r T 6= 0

for somer ∈ R3 thenv̂ is an eigenvector of B or̂v is
listed in Table1.

These two claims imply thatO′ shares the vieŵv of
O when rank( J̄(P1, P′1)) = 4 only if v̂ is an eigenvector
of B or v̂ is listed in Table 1. 2

We now turn to proving these two claims.

Proof of Claim 1: If O′ shares the vieŵv of O then
(A4) and (A5) must be satisfied. Since we also assume
here that their parts are affine equivalent it follows that
(A6) must be satisfied as well. Plugging (A6) into (A4)
we obtain that

Av̂(DP′1+ t1T ) = Aû P′1+ t11T . (A8)

Rearranging, we obtain

(Av̂ D − Aû)P
′
1+ (Av̂t − t1)1T = 0. (A9)

Since we assume thatP′1 is non-planar (the rank of
span(row(P′1), 1) is 4) the coefficients ofP′1 and1 in
the last equation must vanish, namely,

Av̂ D − Aû = 0
Av̂t − t1 = 0.

(A10)

Consider now Eq. (A5). ReplacingAû by Av̂ D and
P1 by DP′1+ t1T we obtain

Av̂ B(DP′1+ t1T ) = Av̂ DB P′1+ t21T , (A11)

wheret2 = (Av̂ D − Av̂)s+ t1. Rearranging, we get

Av̂(B D− DB)P′1+ (Av̂ Bt − t2)1T = 0. (A12)

Again, sinceO′ is non-planar the coefficients must van-
ish, namely,

Av̂(B D− DB) = 0 (A13)

Av̂ Bt − t2 = 0. (A14)

It is immediate to see that there always existst
that satisfies (A14) for any viewing directionsv̂ (since
t should satisfy a system of two independent linear
equations in three unknowns). Since rank(Av̂) = 2 it
follows that there are two cases for which (A13) can
be satisfied. The first is ifB D− DB = 0. In this case
(A13) will vanish for all viewing directionŝv. In par-
ticular it follows that in this caseO andO′ will share
all their views (that is,O and O′ are affine equiva-
lent). We are therefore left with the second case where
B D− DB = v̂r T for some non zero vectorr ∈ R3.

2

Proof of Claim 2: To prove this claim we will use
the Jordan form of the matrixB. The Jordan form,̄B,
is obtained fromB by a similarity transformation, that
is, B̄ = A−1B A for some 3× 3 non singular matrix
A. If D andr satisfy (A7) for a given matrixB and a
vectorv, thenD′ = A−1D A andr ′ T = r T A satisfy
the same equation for̄B andv ′ = A−1v. Thus, rather
than showing that for every two non-singular matrices
B and D and a viewv̂ there exists a non-zero vector
r that satisfies (A7) only if̂v is degenerate, we may
instead show that for every matrix̄B in a Jordan form, a
matrixD′, and a vector̂v ′ there exists a non-zero vector
r ′ only if v̂ ′ is as specified in Table 1. Note however
that the matrices̄B and D′ and the vectorsr ′ andv ′

are defined over the complex field. Nevertheless, this
will not affect our proof, since by proving the claim for
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Table 2. The shape of the commutator [B̄, F ] as a function of the number of eigenvectors and eigenvalues ofB. B̄ is the Jordan
form of B, λi (1≤ i ≤ 3) are the eigenvalues ofB and fi j (1≤ i, j ≤ 3) are the components ofF .

No. of eigen- No. of eigen-
Case vectors values B̄ G= [ B̄, F̄ ]

(a) 3 3

 λ1 0 0
0 λ2 0
0 0 λ3

  0 (λ1 − λ2) f12 (λ1 − λ3) f13

(λ2 − λ1) f21 0 (λ2 − λ3) f23

(λ3 − λ1) f31 (λ3 − λ2) f32 0



(b) 3 2

 λ1 0 0
0 λ1 0
0 0 λ3

  0 0 (λ1 − λ3) f13

0 0 (λ1 − λ3) f23

(λ3 − λ1) f31 (λ3 − λ1) f32 0



(c) 3 1

 λ1 0 0
0 λ1 0
0 0 λ1

 0

(d) 2 2

 λ1 1 0
0 λ1 0
0 0 λ3

  f21 − f11+ f22 (λ1 − λ3) f13+ f23

0 − f21 (λ1 − λ3) f23

(λ3 − λ1) f31 − f31+ (λ3 − λ1) f32 0



(e) 2 1

 λ1 1 0
0 λ1 0
0 0 λ1

  f21 − f11+ f22 f23

0 − f21 0
0 − f31 0



(f) 1 1

 λ1 1 0
0 λ1 1
0 0 λ1

  f21 − f11+ f22 − f12+ f23

f31 − f21+ f32 − f22+ f33

0 − f31 − f32



every complex matrixD′ we prove in particular that
every real matrixD satisfies the claim.

To derive the six cases listed in Table 1, let us first
list the forms that a commutatorG = [ B̄, F ] of a Jor-
dan form matrixB̄ takes according to the number of
independent eigenvectors and eigenvalues ofB̄. These
forms are listed in Table 2. In our case,F = D′. Note
that [B̄, D′] = v′r ′ T 6= 0 if and only ifGi j = vi r j and
G 6= 0. We next show that there exists a vectorr ′ 6= 0
that satisfiesGi j = vi r j only if v′ is an eigenvector of
B̄ or v′ is listed in Table 1.

(a) B has 3 independent eigenvectors and 3 different
eigenvalues. In this casev′i r

′
i = 0, for 1≤ i ≤ 3.

SinceG 6= 0 it follows that at least one of the
matrix entry is non-zero. In particular it follows
that for somei 6= j , (λ j − λi )Di j 6= 0. That is
v′i r
′
j 6= 0. Sincev′i r

′
i = 0, it follows thatv′i = 0.

The three eigenvectors of̄B are of the form
(v′1, 0, 0)

T , (0, v′2, 0)
T , and(0, 0, v′3)

T , note that
v′i 6= 0 for all 1 ≤ i ≤ 3 if and only if v̂ cannot
be expressed as a linear combination of any two
of the eigenvectors ofB. If the eigenvectors ofB
are all real we exclude by this from the viewing
sphere exactly three great circles through all pairs

of eigenvectors. If some of the eigenvectors ofB
are not real we exclude from the viewing sphere
even less views.

(b) B has 3 independent eigenvectors and 2 different
eigenvalues. In this casev′1 = 0. We next show
that if v′1 6= 0 thenv′3 = 0 (in this case,v′ is an
eigenvector ofB̄. Assume that bothv′1 6= 0 and
v′3 6= 0. In this caser = 0 sincev′1r

′
2 = v′1r ′1 =

v′3r
′
3 = 0.

(c) B has 3 independent eigenvectors and only 1
eigenvalue. This case has been handled in Sec-
tion 4.2. In this case everyv′ is an eigenvector.

(d) B has 2 independent eigenvectors and 2 different
eigenvalues. In this casev′3 = 0 or v′2 = 0. We
next show that if bothv′2 6= 0 andv′3 6= 0 thenr ′ =
0 contradicting our assumption. Sincev′3r

′
3 = 0

thenr ′3 = 0. Further, sincev′2r
′
1 = 0 it follows that

r ′1 = 0. This implies that the entire first column
of G is zero. Therefore,v′1r

′
1 = d′21 = 0. But now

alsov′2r
′
2 = −d′21 = 0.

(e) B has 2 independent eigenvectors and only 1
eigenvalues. In this casev′2 = 0, and therefore,
v′ is an eigenvector. We next show that ifv′2 6= 0
thenr ′ = 0 contradicting our assumption. Since
v′2r
′
1 = v′2r

′
3 = 0 it follows that r ′1 = r ′3 = 0.
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As a result the entire first and third columns ofG
vanish. It follows thatd′21 = 0 and therefore also
v′2r
′
2 = −d′21 = 0. This implies thatr ′2 = 0.

(f ) B has only 1 independent eigenvectors and 1
eigenvalues. In this casev′3 = 0. We next show
that if v′3 6= 0 thenr ′ = 0 contradicting our as-
sumption. Sincev′3r

′
1 = 0 it follows thatr ′1 = 0.

The entire first column ofG therefore vanishes,
and sov′2r

′
1 = d′31 = 0. This implies also that

v′3r
′
2 = −d′31 = 0, and sincev′3 6= 0 we obtain

thatr ′2 = 0. Thus, also the entire second column
of G vanishes, implying in particular thatv′2r

′
2 =

−d′21+ d′32 = 0. Sincev′1r
′
1 = d′21 = 0, we can

conclude also thatd′32 = 0. Butv′3r
′
3 = −d′32 = 0,

and again, sincev′3 6= 0, r ′3 = 0. 2

Appendix B: Combinations of Sub-structures

Proposition 7. Given 3 × 3 non-singular matrices
B and C, and givens ∈ R3, the classCB,C,s is not
identifiable from any view.

Proof: We can prove this by showing that for every
objectO ∈ CB,C,s and every vieŵv ∈ R3, there exists
an objectO′ ∈ CB,C,s that shares the vieŵv with O
(and no other view).

According to Proposition 2(d), ifO′ shares a single
view v̂ with O then there exist a 3× 3 non singular
matrix D, a vectort ∈ R3, and a vectorη ∈ R3n such
that

O = DO′ + v̂ηT + t1T (B1)

and

η 6∈ span(row(O′), 1). (B2)

SinceO andO′ are objects in the classCB,C,s, they take
the following form:

O = [ P1, P2, P3], O′ = [ P′1, P′2, P′3], (B3)

whereP3 = B P1+C P2+s1T , andP′3 = B P′1+C P′2+
s1T .

It is therefore sufficient to show that for every object
O and a viewv̂ there exist a matrixD and vectors
t ∈ R3 andη ∈ R3n that satisfy Eqs. (B1)–(B3).

Plugging in the constraints specified in (B3) into
(B1) results in a set of equations that is specified in
the following claim: 2

Claim 3. For everyv̂, there exist a matrix D and vec-
torst ∈ R3 andη ∈ R3n that satisfy Eqs.(B1)and(B3)
if and only if they satisfy the following equation:

Bv̂ηT
1 + Cv̂ηT

2 − v̂ηT
3 = [D, B] P′1+ [D,C] P′2+ t ′1T

(B4)

where[D, B] = DB−B D, [D,C] = DC−C D and,
t ′ = (I − B− C)t + (D − I )s.

It follows that to show that there exists an objectO′

that shares the vieŵv with O it suffices to show that
there exist a non-singular matrixD and vectorst ∈ R2

andη ∈ R3n that satisfy (B4) subject to the constraint
thatη /∈ span(row(O′), 1).

Proof of Claim 3: (B1) together with (B3) imply that

P1 = DP′1+ v̂ηT
1 + t1T

P2 = DP′2+ v̂ηT
2 + t1T

P3 = DP′3+ v̂ηT
3 + t1T ,

(B5)

whereηT = [η1, η2, η3]T . Using (B3), the third of
these equations can be written in terms of the first two
parts of the objects as follows:

B P1+ C P2+ s1T

= D(B P′1+ C P′2+ s1T )+ v̂ηT
3 + t1T . (B6)

ReplacingP1 andP2 by the right hand side of the first
two equations in (B5) we obtain

B
(
DP′1+ v̂ηT

1 + t1T
)+ C

(
DP′2+ v̂ηT

2 + t1T
)

+ s1T = D(B P′1+ C P′2+ s1T )+ v̂ηT
3 + t1T .

(B7)

Denotet ′ = (I − B−C)t+ (D− I )s, by rearranging
we get

Bv̂ηT
1 + Cv̂ηT

2 − v̂ηT
3

= (DB− B D)P′1+ (DC − C D)P′2+ t ′1T

(B8)

which is identical to (B4).
Note that for a fixed matrixD and a vectort Eq. (B4)

contains 3n linear equations in 3n unknowns, the 3n
components ofη. In the rest of the proof we will show
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how given an objectO and a vector̂v it is possible to
selectD andt so that a solution to (B4) that satisfies
η /∈ span(row(O′), 1) will exist. 2

We will consider two cases according to the rank of
the linear system in (B4). To do so, we first show that
the rank of the linear equations in (B4) is either equal
to 3n, or it is smaller or equal to 2n.

Claim 4. Let

W = [Bv̂, Cv̂, −v̂] .

Given D and a vectort, the rank of Eq.(B4) is kn,
where k is the rank of W.

Proof of Claim 4: Let η1i , η2i andη3i be thei ’th
components of the three vectorsη1, η2 andη3, respec-
tively, and letp ′1i andp ′2i be thei ’th points of P′1 and
P′2, respectively. (B4) can be written asn sets of the
following equations (1≤ i ≤ n):

[Bv̂, Cv̂, −v̂]

η1i

η2i

η3i


= (DB− B D)p ′1i + (DC − C D)p ′2i + t ′.

(B9)

It can be readily verified that the rank of the system
given in (B4) iskn, wherek is the rank ofW.

Below we consider two cases according to the rank
of W (or the rank of (B4)).

Case I. Suppose thatW is singular, that is,
rank(W) ≤ 2. In this case the rank of (B4) is at most
2n. We selectD = I and t = 0. This implies that
[D, B] = [D,C] = 0, andt ′ = 0. (B4) now simpli-
fies to a set of homogeneous linear equations:

Bv̂ηT
1 + Cv̂ηT

2 − v̂ηT
3 = 0. (B10)

To satisfy (B2) we will chooseη that is perpendicu-
lar to the union of the row space ofO′ and {1} (and
so, in particular, it will not belong to this space). This
requirement results in four more homogeneous equa-
tions. Thus, we obtain 3n+4 homogeneous equations
of rank 2n+ 4 or less in 3n unknowns. Consequently,
there will always exist a non-trivial solution forη that
will satisfy both Eqs. (B4) and (B2). It follows that

reconstruction is impossible from any directionv̂ for
which rank(W) < 3.

Case II. Suppose that rank(W) = 3. In this case for
every choice ofD andt (B4) is a system of 3n linear
equations of rank 3n with 3n unknowns, the compo-
nents ofη. This system has a non-trivial solution if and
only if it is non-homogeneous. Furthermore, in this
case the solution is unique. We therefore need to find
in this caseD andt for which (B4) is non-homogeneous
and such that the solution to this equation will also sat-
isfy η /∈ span(row(O′), 1). We show this by using the
following two claims:

Claim 5. Let rank(W) = 3 and denote E= D +
v̂r T . If there exists a non-singular matrix D such that
for every vectorr the commutator[B, E] 6= 0 then

1. (B4) is non-homogeneous.
2. The solution, η, to (B4) satisfies(B2).

Claim 6. For any viewv̂ for which rank(W) = 3
there exists a matrix D that satisfies the conditions of
claim5.

The same arguments can be made for the matrixC.
2

Proof of Claim 5:

1. We first show that when [B, E] 6= 0 for every vector
r then (B4) is necessarily non-homogeneous. (B4)
is non-homogeneous when

[D, B] P′1+ [D,C] P′2+ t ′1T 6= 0. (B11)

Since rank( J̄(P′1, P′2)) = 7 this is true if (and only
if) either one of the following conditions holds:

[D, B] 6= 0, [D,C] 6= 0, or t ′ 6= 0.

Now [D, B] 6= 0, since for r = 0 [B, D] =
[B, E] 6= 0.

2. Given D such that for everyr , [B, E] 6= 0, we
will show that anyη ∈ span(row(O′), 1) will vio-
late (B4). Consequently, any solution to (B4) will
satisfy the constraint thatη /∈ span(row(O′), 1).

Assume, by way of contradiction, thatη ∈
span(row(O′), 1). In this caseη can be expressed
as a linear combination of the rows ofO′ and of1,
namely

ηT = r T O′ + α1T , (B12)
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for somer ∈ R3 andα ∈ R. Considering each part
of the object separately we obtain

ηT
1 = r T P′1+ α1T

ηT
2 = r T P′2+ α1T

ηT
3 = r T (B P′1+ C P′2+ s1T )+ α1T . (B13)

Replacing this in (B4) we obtain

Bv̂(r T P′1+ α1T )+ Cv̂(r T P′2+ α1T )

−v̂(r T (B P′1+ C P′2+ s1T )+ α1T )

= [D, B] P′1+ [D,C] P′2+ t ′1T . (B14)

Denotet′′ = α(B+C− I )v̂+ v̂r Ts+ t′. Rearrang-
ing, we get

(B (D + v̂r T )− (D + v̂r T ) B) P′1

+ (C (D + v̂r T )− (D + v̂r T )C) P′2

+ t ′′1T = 0. (B15)

SubstitutingE = D + v̂r T we obtain

[B, E] P′1+ [C, E] P′2+ t′′1T = 0. (B16)

Since rank( J̄(P′1, P′2)) = 7 it follows that the above
equation holds only if all the three following equa-
tions hold:

[B, E] = 0, [C, E] = 0, and t′′ = 0.

(B17)

However, by our assumption [B, E] 6= 0 for all r . It
follows that (B17) does not hold, contradicting our
assumption thatη ∈ span(row(O′), 1).

2

Proof of Claim 6: As in Section 4.2, we show this
by first bringingB to a Jordan form. Let̄B = A−1B A
and letE′ = A−1E A then [B, E] = 0 if and only if
[ B̄, E′] = 0. SinceE = D + v̂r T we denote also
D′ = A−1D A, v ′ = A−1v̂ and r ′ T = r T A (so that
E′ = D′ + v ′r ′ T ). Note thatB̄, D′, v ′ andr ′ may be
complex.

We begin by showing that ifD′ causes [̄B, E′] 6=
0 for all complex vectorsr ′ then there exists a real
matrix D such that for every real vectorr , [B, E] 6= 0.
Consequently, it will suffice to show that for everyv ′

there exists a complex matrixD′ such that for every
complex r , [ B̄, D′ + v ′r ′] 6= 0. ConsiderD′ that
satisfies this requirement. DenoteAD′A−1 = D1 +
i D2, whereD1 and D2 are some 3× 3 real matrices,
and denoteA−T r ′ = r1 + i r2, wherer1, r2 ∈ R3 and
A−T denotes the inverse ofAT . If either D1 = 0 or
D2 = 0 then we are done. Suppose that [B, D1+i D2+
v̂(r1 + i r2)] 6= 0 for everyr1 + i r2. It follows that
either

[B, D1+ v̂r1] 6= 0 (B18)

or

[B, D2+ v̂r2] 6= 0. (B19)

If (B18) is satisfied for everyr ∈ R, then D1 is the
sought real matrix. Similarly, if (B19) is satisfied for
everyr , thenD2 is the sought real matrix. One of these
cases must hold since otherwise, assume that (B18) is
not satisfied for some vectorr1 and that (B19) is not
satisfied for some vectorr2, then consider the complex
vectorr = r1+ i r2, this commutator [B, E] will vanish
for r contradicting the assumption that [B, D1+ i D2+
v(r1 + i r2)] 6= 0 for everyr1 + i r2. Consequently,
it is sufficient to show that for everyv ′ there exists a
complex matrixD′ such that for every complex vector
r ′, [ B̄, D′ + v′r ′ T ] 6= 0.

We now turn to showing that for every vectorv ′ for
which rank(W) = 3 there exists a non-singular matrix
D′ such that for everyr ′, G = [ B̄, E′] 6= 0. We show
this by looking at the shape ofG = [ B̄, E′] for every
possible form ofB̄ and deriving constraints onD′ that
guarantee thatG = [ B̄, E′] 6= 0 for any choice ofr ′.
Notice that by requiring that rank(W) = 3 we exclude
those viewŝv which are eigenvectors ofB. Below we
consider six cases according to the number of linearly
independent eigenvectors and different eigenvalues of
B (see Table 2). Notice thatfi j in this table corresponds
here to the components ofE′ (denoted ase′i j ), and
sinceE′ = D′ + v ′r ′ T these components are given by
e′i j = d′i j + v′i r ′j .

(a) As can be seen in Table 2, whenB has three dif-
ferent eigenvaluesG = 0 if and only if all the
six non-diagonal elements ofE′ are non-zero. In
particular, consider the second row ofG, e′12 =
e′32 = 0 implies thatd′12 = −v′1r ′2 andd′32 = −v′3r ′2.
Therefore, given a vieŵv if v′1 = 0 we can choose
any non-singular matrixD such thatd′12 = 1, and
if v′1 6= 0 we can choose anyD such thatd′12 = 0
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andd′32 = 1. Note thatv′1 andv′2 cannot vanish
simultaneously since that would imply thatv̂ is an
eigenvector ofB.

(b) In this caseG = 0 implies in particular thatd′13 =
−v′1r ′3 andd′23 = −v′2r ′3. If v′1 = 0 we can choose
D such thatd′13 = 1, and ifv′1 6= 0 we can choose
D such thatd′13 = 0 andd′23 = 1.

(c) In this case all vectors are eigenvectors ofB, and
soW is necessarily singular.

(d)–(f) In these three cases,G = 0 implies in particular
thatd′21 = −v′2r ′1 andd′31 = −v′3r ′1. If v′2 = 0 we
can chooseD such thatd′21= 1, and ifv′2 6= 0 we
can chooseD such thatd′21 = 0 andd′31 = 1. 2
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Note

1. Note that dropping the assumption that rank( J̄(P1, P2)) = 7 will
not change our final result thatCB,C,s is not identifiable since
extending the class with more objects cannot reduce the set of
ambiguous views.
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