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This paper examines the recognition of rigid objects bounded by
smooth surfaces, using an alignment approach. The projected
image of such an object changes during rotation in a manner that
is generally difficult to predict. An approach to this problem is
suggested, using the 3D surface curvature at the points along the
silhouette. The curvature information requires a single number for
each point along the object’s sithouctte, the radial curvature at the
point. We have implemented this method and tested it on images
of complex 3D objects. Models of the viewed objects were acquired
using three images of each object. The implemented scheme was
found to give accurate predictions of the objects” appearances for
large transformations. Using this method, a small number of
(viewer-centered) models can be used to predict the new appear-

ance of an object from any given viewpoint. © 1993 Academic Press, Inc.

1. INTRODUCTION

Visual object recognition requires the identification of
objects observed from different viewpoints, In recent
years several attempts have been made to approach this
problem using an alignment approach [10, 17,9, 7, 12, 186,
22, 23]. Many of these attempts have been concentrated
on handling either planar or polyhedral objects. In this
paper we consider the recognition of rigid objects
bounded by smooth curved boundaries, using an align-
ment approach.

Alignment is a two-stage process. Given a mode! ob-
Jject and an image object, in the first stage a transforma-
tion is sought that would bring the model object to a
position and orientation in space that corresponds to the
projected image. Second, the appearance of the model
following the transformation is predicted. The result is
compared with the actual image, and the degree of match
is used to decide whether the image is in fact an instance
of the model.

The first stage of the alignment process, namely the

search for an aligning transformation, will not be dis-
cussed here. The transformation may be determined by a
small set of corresponding features, identified in both the
model and the image. For example, three non-collinear
points on the image and their corresponding points on the
model determine uniquely the transformation {10, 17, 23,
12]. Two points and a line or three lines may also serve
for this purpose [21],

1.1. The Prediction Problem

In this paper we address ourselves to the second stage
of the alignment process. We present an approach for
solving the following problem. Let # = {M;, M,, ...,
M.} be a set of object models. Let & be a set of transfor-
mations, that include rotations in 3D space, translations,
and scale changes, followed by an orthographic projec-
tion. This projection model assumes that the object is not
too close to the camera. Given a model M € M and an
aligning transformation T € &, predict the appearance of
M in the image following the application of 7.

The above definition of the set & of allowed transfor-
mation enables the prediction of the appearance of rigid
objects from any given viewpoint. The general prediction
problem extends the set J with other types of transfor-
mations, including, for example, articulated motion and
distortion. This extension is beyond the scope of this
paper.

In order to utilize edge maps in the image, we make the
following definitions. Given an object O and a viewpoint
v, the rim is the set of all the points on the object’s sur-
face, whose normal is perpendicular to the visual axis
[14]. This set is also called the contour generator [18]. A
silhouette is an image generated by the orthographic pro-
jection of the rim. In the analysis below we assume that
every point along the silhouette is generated by a singie
rim point and that at the rim point the object lies to one
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side of the line of sight (the line of sight does not
“‘pierce’” the object).

The prediction of the appearance of smooth objects is
considerably more complex than the same prediction for
objects with sharp edges. An edge map of an object usu-
ally contains the silhouette, which is generated by its rim.
A rim that is generated by a sharp edge is stable on the
object as long as the edge is visible. In contrast, a rim that
is generated by a smooth surface changes continuously
with the viewpoint.

The problem of predicting the new appearance of a
smooth object following a rotation is illustrated in Fig. 1.
The figure shows a bird’s eye view of two rotating ob-
jects, a cube (a), (b) and an ellipsoid (c), (d). For both
objects points p, g lie on the object’s rim, and therefore
their projections lie in the image on its silhouette. When
the cube rotates from position (a) to (b), p, ¢ remain on
the rim. Their new 3D position is easily determined;

)
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FIG. 1. Changes in the rim during rotation. (a) A bird’s eye view of
a cube. (b) The cube after rotation. In both (a) and (b} points p, g lie on
the rim. {c) A bird’s eye view of an ellipsoid. (d) The ellipsoid after
rotation. The rim points p, g in (¢) are replaced by p', ¢" in (d). {¢) An
ellipsoid in a frontal view. (f) The ellipsoid rotated (outer), superim-
posed on the appearance of the rim, as a space curve afler rotation by
the same amount (inner).
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therefore the new silhouette can be prédicted in a
straightforward manner. In contrast, when the ellipsoid
rotates from position (¢} to (d), the new 3D position of p,
q is no longer relevant since these points no longer lie on
the object’s rim. The silhouette is now generated by a
new set of points p’, g’ in (d). Figures le, f show the
ellipsoid in a frontal view before and after the rotation,
compared to its appearance if the rim, as a space curve,
had been rotated by the same amount. The conclusion is
that the prediction problem for smooth objects is in gen-
eral significantly more complicated than that of objects
with sharp edges.

1.2,  Previous Approaches

Most existing systems restrict themselves to polyhe-
dral objects and ignore objects with smooth curved sur-
faces (e.g., [17, 12, 22]). Two approaches have been sug-
gested in the past to solve this prediction problem for
objects with smooth surfaces. The first approach de-
scribes an object as a composition of either volumetric or
surface primitives that have simple geometrical struc-
tures [19, 4, 8, 20, 3, 9]. The transformation 7 is applied
to each primitive. Since the primitives have simple geo-
metrical structures, their sithouette can be predicted. The
extreme points of the collection of the primitives’ silhou-
ettes are taken to be the object’s silhouette. The second
approach approximates the object’s surface by a set of
3D wires [1]. The transformation T is applied to each
wire. The extreme wires are taken to be the object silhou-
ette.

The decomposition approach works well for simple ob-
jects, but usually not for complex ones. The wire ap-
proach is often costly from a computational standpoint
due to the large number of wires required and the need to
perform ‘‘hidden line elimination.”” Finally, these ap-
proaches usually enable the prediction of the bounding
contours only. Internal contours and surface markings,
that may have a significant role in shape-based recogni-
tion, are often not treated (e.g., [7]).

This paper presents an alternative approach for the
prediction problem. In this approach an object is repre-
sented by its silhouette, as seen from a particular view-
point. Using the 3D surface curvature of each point along
the silhouette, it is possible to make an accurate estima-
tion of the silhouette after the transformations. A few
models of this kind are sufficient for predicting the ob-
ject’s appearance from any given viewpoint.

2. THE CURVATURE METHOD

The method is based on representing surface curvature
of points along the silhouette. The basic idea is shown in
Fig. 2. Let X and Y be the main axes of the image plane,
and the Z-axis be the line of sight. Consider an object O
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FIG. 2, The curvature method. (a) A horizontal section of an ellip-
soid. p is a point on the rim, ris the radius of curvatures at p, o is the
center of the curvature ¢ircle, and a is the intersection of the ¥-axis with
this section. (b) The section rotated. p' is the new rim point, and it is
approximated by Eq. (1).

rotating by a rotation R about the vertical axis ¥. Let p be
a point on its rim. The figure shows a section of the object
through p, that is perpendicular to ¥. Let r, be the curva-
ture radius of p in this section, and let r, be a vector of
length r, parallel to the X-axis. When the object rotates
by R, point p ceases to be a rim point, and it is replaced
by a new point p’ approximated by

pr = R(P - rx) + 1y (I)

The meaning of Eq. (1) is the following. The point o =
p — Iy 1s the center of the circle of curvature of p. To
predict the new rim point we first apply R to 0. Let o' =
R(p — r,}. The new rim point is then p’ = o’ + r,. This
approximation holds as long as the circle of curvature
provides a good approximation to the section at p.

It is worth noting that *‘sharp’” boundaries, such as the
cube edges in Fig. 1, or markings on the surface itself, do
not require a special treatment. They are included in Eq.
(1) as the special case r, = 0.

So far we have considered rotations about the vertical
Y axis. We shall next consider the effect on the silhouette
of a rotation about an arbitrary axis in space. Any 3D
rotation can be decomposed into two successive rota-
tions: a rotation about some axis V in the image plane,
followed by a second rotation about the Z-axis. The ef-
fect of rotating the object about the line of sight Z is, of
course, easy to predict. The problem, therefore, is to
predict the appearance of the object following a rotation
about an axis V lying in the image plane.

In general, the vector of curvature radius r, used in Eq.
(1) would depend on the rotation axis. Let r,, r, be the
radii of curvature at p for rotations about the ¥ and X
axes, respectively. Proposition | below states that the
radius of curvature for a rotation about any axis can be
determined from r,, r, alone.

333

PROPOSITION 1. Let p be a rim point, and let V,, be an
axis bying within the image plane and forming an angle o
with the X-axis. The curvature radius at p for rotations
about V, is given by

Fa = ry COS & — Fy SID @, 2)

(A proof is given in Appendix A.)

From this proposition and Eq. (1} we can predict the
position of p’, the new rim point, for a rotation about an
arbitrary axis within the image plane, and consequently
any 3D axis as well, using the two parameters r,, r, at p.
Proposition 2 below shows that, in fact, a single parame-
ters suffices.

PropPoSITION 2.  Lefr = (r., r,) be the curvature vec-
tor at p, and let t be the tangent vector to the silhouette at
p. Thenv - t = 0; that is, v is perpendicular to t.

(A proof is given in Appendix A.)

It follows from the two propositions above that a single
number is sufficient to determine the radius of curvature
for a rotation about any axis in the image plane. This
number is the magnitude of the curvature vector, ||r| (also
called, the radial curvature at p [15, 3]). All other param-
eters can be derived from it as follows. Let 6 be the angle
between the tangent vector to the silhouette, t, and the X-
axis, then

e = |t sin 8

ry, = x| cos 6

(3)

ro = [t cos(@ + a).

Note that the curvature radii ry, #,, and r, in general
are not normal curvature radii of the surface, but rather
oblique ones. They are generated from the intersection of
the surface with planes that in general do not contain the
surface normal. The radial curvature radius, ||, how-
ever, is a normal curvature radius (this follows directly
from Proposition 2). Koenderink [15] and Brady et al. [3]
proved that the gaussian curvature of the surface is the
product of the radial curvature and the transverse curva-
ture (the curvature of the projected contour at p). Giblin
and Weiss [L1] showed that additional curvature is re-
quired to compute the mean curvature of the surface. The
curvature method requires neither the gaussian curva-
ture, the mean curvature, nor the principal curvatures of
the surface. Equation (3) above implies that the radial
curvature is sufficient to recover the oblique curvature
radii in all directions.

The scheme is therefore the following. An object
model M is a 2D (orthographic) projection of its visible
contours (including its sharp and smooth boundaries, as
well as internal markings), as observed from a particular
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viewing direction, To represent the entire object, a num-
ber of views would be required [13]. As shown in the
examples below, this number is usually small. Each point
along the sithouette has associated with it, along with its
spatial coordinates, the radial curvature [f. Given a
transformation T, translation, scaling, and rotation about
the line of sight are applied to M in a straightforward
manner. The effect of rotation about an arbitrary axis in
the image plane is computed as follows. First, for each
point on the model, the radius of curvature r with respect
to the rotation axis is determined using Eq. (3). Once ris
known, the new position of the point in the image is
determined using Eq. (1), where instead of r, a vector of
size r perpendicular to the rotation axis is plugged in.

In this approach an object is represented using a pum-
ber of viewer-centered descriptions, rather than a single
object-centered representation. Each description covers
a range of possible viewing angles, and to represent the
entire object a number of descriptions are required. This
number depends on the object shape and on the complex-
ity of its aspect graph [13]. As shown in the examples
below, this number is small for moderately complex ob-
jects. Using symmetries, the cars used in these examples
required four models to cover all common views, which
included all vertical rotations and elevation of =30°. Be-
cause of the orthographic projection approximation, if
the object is to be recognized from both large distances as
well as close-up views, additional models will be re-
quired. The computations required in this scheme during
the prediction stage are simple; for example, no hidden-
line elimination is necessary.

3. PROPERTIES OF THE CURVATURE METHOD

The appearance of objects with sharp boundaries (for
which the radius of curvature is zero) and of spherical
and cylinderal objects is predicted exactly by the curva-
ture method. The appearance of smooth objects with ar-
bitrary structures is, however, only approximated by this
method. In order to demonstrate the properties of the
curvature method, we applied this method to ellipsoids
and analyzed the errors obtained. The analysis is given in
this section. We first compute the errors obtained when a
canonical ellipsoid rotates around the vertical (¥) axis.
We then compute the errors obtained when the same
ellipsoid rotates arbitrarily in 3D space and show that the
errors obtained in the two cases are similar. The error
depends on the shape of the ellipsoid, in other words, on
the relative length of its axes, and it increases as the
ellipsoid becomes “*deep’” {elongated in the Z-direction).
We show that the errors are usually small, and that, in
general, a small number of models is required to predict
the appearance of an ellipsoid from all possible views.

We start with a brief explanation of the error function
used. Consider an ellipsoid rotating about some axis V in
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the image plane. Let p; = (x;, ¥;) be the projected loca-
tion of some rim point. Following rotation, the rim
changes, and the point p; is replaced by a new point, p»
= (x3, ¥»), such that the vector p, — p, is perpendicular
to V. Denote the approximated location of p; according
to the curvature method by g, = (£, #2). The observed
error is measured by ||p2 — pa. Clearly, if we scale the
ellipsoid the observed error would scale as well. We
therefore need instead to consider a relative value for the
error that is independent of scale.

We define the error as follows, Consider the planar
section through p; that is perpendicular to the rotation
axis V. This section forms an ellipse (or a single point in
case of a tangential section). Let py = (xq, yo) be the cen-
ter of this ellipse. The relative error is defined by

_ 82— pill,
v = pall’

E reflects the observed error relative to the projected size
of the ellipsoid. Note that £ is independent of translation
and scale of the ellipsoid.

3.1. Rotation around the Vertical Axis

Let

be the surface of a canonical ellipsoid. Let p, = (x, y1)
be a point on its silhouette. When the ellipsoid rotates
about the vertical (¥) axis by an angle 6, p; disappears
and is replaced by a new contour point p; = (x;, y2) with
an identical y-value, y;, = vi. Let B, = (%2, #,) be the ap-
proximated position of p: according to the curvature
method. The horizontal section of the ellipsoid through p,
is an ellipse centered around py = (0, yo). Note that the
points p,, pa2, P2, and pg all lie on the same horizontal
section, implying that y; = y; = 3» = yo. The relative er-
ror is therefore reduced to

(For reasons of convenience we ignore the absolute value
operation in the discussion below.)

ProrosiTioN 3. The error is given by

CZ (,'2
E(—Z,B) =cos 8@ +—(1 —cos®)
a a (4)

— Veost 6 + (¢¥a?) sin® 9.

(A proof is given in Appendix B.)
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FIG. 3.
parameters correspond the curves at increasing heights.)

The expression obtained for the error depends on two
parameters: the aspect ratio of the ellipsoid, ¢?/a?, and
the angle of rotation, 8, and it is invariant under a uniform
scaling of the ellipsoid.

3.2. Properties of the Error

The prediction error obtained by the curvature method
for a canonical ellipsoid rotating about the Y-axis van-
ishes in the following three cases:

+ # = 0 (that is, no rotation).

» ¢2fg? = 1 (that is, ¢ = g, the cross section is a cir-
cle).

* ¢/a? = 0 (that is, ¢ = 0, a planar ellipsoid).

As afunction of 8, the angle of rotation, the error func-
tion is symmetric; that is, stmilar errors are obtained both
for positive and negative angles. The absolute value of
the error increases monotonically with the absolute value
of 6. The partial derivative E; also changes monotically
with 8, so the error increases faster for larger vatues of 8.
The derivative is given by

( cos 0

CZ
b= (1-£) sino i
’ a? Veos? 6 + (¢Zad) sin 6

1) 3

and assumes the following values:

« E, 0% = 0.
o Eo(90°%) = ¢¥ag? — 1.

Figure 3 shows the error as a function of 8 for several
ellipses.

As a function of ¢2/a?, the relative size of the axes of
the ellipsoid, the error behaves differently in each of the
two ranges: (1) when ¢ = a, and (2) when ¢ > 4. In the
first case the ellipsoid’s width is larger than its depth. The
error assumes small values even for fairly large values of
. The maximal error is obtained when
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The errors of the curvature method as a function of 8, the angle of rotation. (a) c¥a* = 4, 4, §, and 4. (b) c¥a? = 2, 4, 9, and 16. (The
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and it assumes the following values:

* 0.24% at 30° (c%/a? = 0.482).
« 1.26% at 45° (c*/a® = 0.457).
« 4,14% at 60° (c¥/a® = 0.417).

Figure 4 shows the maximal error as a function of 4.

When ¢ > a, the ellipsoid is deeper than it is wide, the
error assumes larger values and is unbounded when @
increases to 90°. The partial derivative E.y,: increases
monotonically with ¢?/a? and reaches its maximum when
c*/a’ — =, where the error increases linearly in c¥/al
The derivative is given by

sin? @
Vcos? 6 + (cHa?) sin® 8

Ezp={1 — cos 8) — N

Maz. error
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FIG. 4, The maximal value of the error for canonical ellipsoids with
¢ = g as a function of 8, the angle of rotation.
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FIG. 5. The error as a function of the aspect ratio, ¢¥a?, of the
ellipsoid for 6 = 20°, 30°, 45°, and 60°. (The parameters correspond the
curves at increasing magnitude.)

and assumes the following values:

¢ Eop(0) = (1 = cos 0)¥2 cos 8.
¢ E,(1) = (1 — cos 6)/2.
¢ limgyyn Epze, = 1 — cos 0.

A model for such an ellipsoid would therefore cover only
a restricted range of rotations. Larger rotations should be
treated by additional models. Figure 5 shows the error as
a function of ¢%/a? for several values of 6.

When a complete set of models is prepared for the
appearance of an ellipsoid to be predictable from all pos-
sible views, it should be considered that following a rota-
tion of 90° about the Y-axis, a and ¢, the axes lengths of
the ellipsoid, interchange their roles. Therefore, an ellip-
soid with ¢ < a changes after a rotation of 90° to an ellip-
soid with ¢ > a. An ellipsoid with a high aspect ratio, ¢?/
a?, changes to an ellipsoid with a low aspect ratio.
Consequently, the small range of rotations covered by a
model for an ellipsoid with a high aspect ratio is compen-
sated by the large range of rotations covered by a model
for the same ellipsoid after a 90° rotation. A small number
of models is therefore required to represent the ellipsoid
from all possible views.

Table 1 shows the number of models required to cover
the entire range of rotations about the ¥-axis for several
ellipsoids. Because of symmetry considerations only ro-
tations up to 90° should be considered. We see from the
table that this number is small and does not exceed four,
even for extreme aspect ratios and an allowed error of
1%.

In preparing this table each ellipsoid was initially rep-
resented by two models, one taken at its canonical posi-
tion, the other following a 90° rotation. If the two models
did not cover the entire range of rotations, additional
models were added at intermediate positions. In this case
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the value of the error is somewhat different than the ca-
nonical case. An expression describing this value is given
in Appendix B.

3.3. Rotation in 3D Space

We now consider the case of a canonical ¢llipsoid ro-
tating arbitrarily in 3D space. A rotation in 3D space can
be decomposed into three successive rotations, about the
X-, Y-, and Z-axes. The last rotation can be ignored since
it does not deform the image and therefore does not
change the errors. Let

(xcosa + ysina) (—xsina+ ycosa) 22

Py + B2 + -Cr'i =1
be the surface of a canonical ellipsoid rotated about the
Z-axis by an angle «. We now examine this ellipsoid as it
rotates about the Y-axis by an angle 6.

ProposITION 4.  The error is given by

C?
E(E’ v} )
in Eg. (4), where
C? 2 2
= g—z cos? o + i—i sin? e, (8)

(A proof is given in Appendix B.) Note that, depending
on a, C3A? assumes any value between c%/a? and c&/H2.

The consequence of Proposition 4 is that after an arbi-
trary rotation the appearance of an ellipsoid as it is ap-
proximated by the curvature method is in general neither
better nor worse than its approximated appearance after
a rotation about any of the main axes. As a result, if &
models are required to cover all rotations around the X-
axis, and % (or less) models cover all rotations around the
Y-axis, then at most k2 models are required to cover all
possible rotations in 3D space.

TABLE 1
Number of Models as a Function of Allowed Error

= 1% 2% 3% 4% 5% 6%
2 3 3 2 2 2 2
4 3 3 3 3 2 2
9 4 3 3 3 3 2

16 4 3 3 3 3 2

49 4 3 3 3 2 2

100 4 3 3 2 2 2
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4. MODEL CONSTRUCTION

We have implemented the alignment scheme described
above and tested it on images of 3D objects. To apply the
scheme, models of the viewed objects must be acquired.
For our purpose, an object model must contain the spa-
tial coordinates and the radii of curvature of the object’s
visible contours. The required 3D information can be ob-
tained during a learning period using various 3D cues,
such as sterco information and shading.

To estimate the radii of curvature we have used three
edge pictures of each object. The radii of curvature are
estimated using the following procedure. Consider three
silhouette pictures (denoted by A, B, and C) that are
taken from three difterent viewpeints along a circle in
space perpendicular to the Y-axis (Fig. 6). Suppose « is
the rotation angle between pictures A and B, and 8 is the
rotation angle between pictures A and C. Let p,, p», and
ps be three corresponding points in A, B, and C, respec-
tively. Since the camera was rotated about the Y-axis
between successive pictures, all three points share the
same y coordinate, so that p; = (x|, ¥, 71), p2 = (x2, ¥,
Z2), and p; = (x3, ¥, 73). According to Eq. (1)

X2=(x) —rJcosa + z;sinea + r, (9)

xn=@ —r)JcosB+zsinf+r. L0)]

These are two linear equations of two unknown parame-
ters z; and r,. Hence

. x(cos a — cos B) — x3(1 — cos B) + x3(1 — cos @)
2 {1 — cos a) sin B8 — sin a(1 — cos B)

(1)

_ X sin{a — B) + X, sin 8 — x; sin «
(1 — cos @) sin 8 — sin a{l — cos B}’

(12)

s

In the range —#/2 < @, 8 < /2, & # 3, the denomina-
tor does not vanish.

Equation (3) establishes that in general r, and the tan-
gent to the contour are sufficient to estimate the curva-

A

FIG. 6. Building a model using three edge pictures, a bird’s eye
view. Points A, B, and C are the three camera locations aleng a circle in
space perpendicular to the Y-axis.
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ture radius in all other directions. Nevertheless, this
technique cannot be applied to points with a horizontal
tangent. In this case r, = 0, the curvature vector is hori-
zontal, and its magnitude cannot be estimated from this
set of images. To estimate the value of r, at these points a
similar procedure can be applied to three edge pictures
obtained by a rotation about the X-axis. For contour
points that their tangent is neither horizontal nor vertical
this estimation of r, is in principle redundant, but it can be
used to improve the estimate of the curvature. In this
manner five pictures can be used to create a model, three
for a rotation about the X-axis, and three for a rotation
about the Y-axis, with the central picture common to both
sets. The final model consists of an edge map of the cen-
tral picture, together with the depth coordinates and the
estimated magnitude of the curvature vector (r., r,) at
each point.

Note that identifying corresponding points in the pic-
tures is straightforward in this procedure. When the rota-
tion is about the Y-axis, the corresponding points must lie
on the same horizontal line. Each contour point therefore
usually has a small number of candidate corresponding
points to be considered. Details of this matching proce-
dure will not be discussed here.

By setting 8 = —e« the equations above can be simpli-
fied as
_ X117 X
4= 35 « (13

X+ x5 — 2X| COS «
2(1 — cos a}

fy =

(14)

If the angle « 1s not known, but assuming that « is small
we can define new quantities 2, #, as

X2~ X3

2

(re — xpa?=xy+ x3— 2x.

&
Il

o =

(15}

P {16)
This approximation uses sine — e and cos ¢ — 1 — o/
2. In this case the aligning transformation should provide,
instead of a rotation angle o, the ratio #/«,

2 : 2

x'zx+ze+(rx—x)g~=x+z(9) +ff(9) Y

2 o 2 \a

The ratio 8/« can be determined during the alignment
process if we take these approximations into account.
Suppose, for instance, that the alignment transformation
is determined by a three-points correspondence. In this
case a set of six equations describing rotation in 3D
space, translation, and scale must be solved [23, 12]. If
the three points lie on the object’s contour, we can substi-
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tute two of the six equations, those describing rotations
about the X and Y axes, by Eq. (17). Consequently we
obtain a new set of six equations with six unknown pa-
rameters to solve. This set will usually have a small num-
ber of solutions, but the details will not be considered
further here. The range of rotations covered by a single
model would depend on the object’s shape and on the
similarity to other models. The results shown in Section 5
also hold for this approximation.

The curvature method requires robust estimation of
the curvature radii. The estimation of these radii from
several images, however, was recently shown to be sen-
sitive to camera calibration [25, 5]. We would like to
make a few comments with respect to this point. First,
the method presented in this section requires at least
three images. Additional images can be used to improve
the estimation. Other sources of structure information
such as stereo and shading can also be used to achieve a
robust estimation of the curvature radii.

Second, the curvature method, unlike the methods de-
scribed in [25, 5] is relatively insensitive to calibration.
The curvature radii in our method are used to predict the
appearance of objects from different viewpoints. Instabil-
ities in the computation are therefore significant only as
long as they propagate into the predictions obtained.
Equation (17) above implies that calibration errors,
namely, errors in estimating the angle «, can be largely
compensated in the prediction stage by changing the an-
gle of rotation # appropriately. As can be seen from Eq.
(17}, the prediction results depend on the ratio 8/« rather
than on the exact value of «.

Finally, we tested the method described in this section
for ellipsoids. Models of ellipsoids were constructed from

O OO«

(a) (h) (c) {(d)

FIG,7. Maiching models of ellipsoids with their images. The curva-
ture values in these models were estimated from three images of the
ellipsoids obtained by rotating the ellipsoid about the vertical axis by
angles . The models were then rotated about the vertical axis by an
angle 8, and the results were overlayed with the accurate image. Upper
pictures: using the curvature method. Lower pictures: same experi-
ments but the curvature is not used: (a) c¥a? = 0.5, & = 60°, # = 30°, (b)
cHa?=0.5,a=30°0=060°(c) ca® = 2, a = 60°, 0 = 30°;, (d) c¥a® = 2,
a = 30° 8 = 60°.
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three images obtained by a rotation of =60° and +30°
about the vertical axis. These models were then tested by
rotating them by 30° and 60°, respectively, to obtain both
interpolatory and extrapolatory predictions. The results
are shown in Fig. 7. It can be seen that even when the
curvature is estimated from only three images, the curva-
ture method provides significantly better predictions of
the appearance of the ellipsoids than when the curvature
is not used.

5. IMPLEMENTATION

A prototype system for object recognition using align-
ment, that predicts the appearance of objects using the
curvature method was implemented on a Symbotics 3670
Lisp machine. Pictures comprising of 512 x 512 pixels
were taken, using a vidicon Cohu camera. Edge maps of
the pictures were created using the Canny edge detector
[6]. No smoothing operations were applied to the ob-
tained edges. Toy models of two cars, a VW and a Saab,
were assembled on a device that enables rotations about
the vertical and the horizontal axes. Rotation angles can
be controlled with this device up to moderate accuracy.
The system first constructs object models comprising of
depth values and curvature radii as described in Section
4. Models can be constructed in this system using either
three images using rotations about the Y-axis, or five im-
ages using rotations about both the ¥ and X axes. The
internal model can then be used to predict the appearance
of the object following 3D rotation, translation, and scal-
ing, using the curvature method described in Section 2.
(An alternative implementation, using the linear combi-
nations of 2D views, is described in [24].)

Two models of similar cars, a VW and a Saab, were
created (Fig. 8). For each model three pictures were
taken, with « and g8 (the angles between successive pic-
tures, see Section 4) being *£30° about the Y-axis. For
each car, the procedure resulted in a single model, com-
prising of the edge map of the central image, together
with the approximated depth and curvature along the
edges. kIt was found that a single model of this type yields
accurate predictions to the appearance of the object
within the entire 60° of rotation about the Y-axis.

Figure 9 shows four pictures, two of each car, rotated
by =15° Such rotations already create large deforma-
tions of the images (Fig. 10). Figure 11 shows the results
of aligning the models with the images. An approximation
to the transformation (rotation, translation, and scale)
can be supplied by different alignment routines, e.g., us-
ing three corresponding points [23]. It can be seen that,
by using the alignment procedure, a single model gives
accurate fits to the object seen from different viewing
positions. Figure 12 shows the result of matching the two
cars with the incorrect models. The discrepancy between
the image and the aligned model is significantly higher
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FIG. 8. The model objects: (a) a picture of the model VW car; (b) a
picture of the model Saab car; (¢} an edge map of the VW car: (d) an
edge map of the Saab car.

than in Fig. 11. A simple distance metric between the
image contours and the aligned model was therefore suffi-
cient to select the correct model. Figure 13 shows the

id)

FIG. 9. The image objects: (a) a VW car rotated by —15° with re-
spect to the model; (b) a VW car rotated by +15° with respect to the
model; (c) a Saab car rotated by —15° with respect to the model; (d) a
Saab car rotated by +15° with respect to the model.
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FIG. 10. Deformation of the images with respect to the models: (a)a
deformation of the VW car following a rotation of —15°; (b) a deforma-
tion of the VW car following a rotation of +15°; (¢) a deformation of the
Saab car following a rotation of —15°; (d) a deformation of the Saab car
following a rotation of +15°,

result of matching the two cars when the curvature infor-
mation is not used. It can be seen that, while internal
contours align perfectly, the occluding contours do not
match as they do when the curvature is used. It is worth
noting that accurate predictions were obtained despite
the fact that (1) the objects have complex 3D shapes, and
{2) we have used crude approximations to the radii of
curvature using three pictures.

FIG. 11. Correct alignment of the models with the images: (a) align-
ment of the VW model with the first VW image; (b) alignment of the
same VW model with the second VW image; {¢) alignment of the Saab
model with the first Saab image; (d) alignment of the same Saab model
with the second Saab image.
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(C) (d)

FIG. 12. Matching the images with incorrect models: (a) matching
the first VW image to the Saab model; (b) matching the second VW
image to the same Saab model; (¢) matching the first Saab image 10 the
YW model; {(d} matching the second Saab image to the same VW model.

0

(c)

(a) A picture of three tori. (b} A contour image of the tori.
prediction to the actual image.

€e

FIG. 14.
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(b)

FIG. 13. Matching the images with models that do not contain cur-
vature information: (a) matching a VW image to a VW model; (b)
matching a Saab image to a Saab model.

The curvature method described above is not restricted
to contours originating from elliptic surface patches. It
can as equally handle contours originating from hyper-
bolic patches—as long as the patches are visible. When,
however, a patch is self-occluded, a new aspect of the
object is observed, and an additional model should be
utilized. The treatment of hyperbolic patches is demon-
strated in Fig. 14. Models of three tori with different radii

g g

Vo ~ -
e bt
,,?39‘.;,»
("
7t o

/—nr///\

(c) A prediction of the appearance of the three tori. (d) Matching the
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were prepared analytically. The models were matched to
an image that contained the tori in various positions and
orientations. It can be seen that, although the points of
the inner circles of the tori come from hyperbolic
patches, their prediction is still accurate.

6. SUMMARY

In this paper we have proposed a method for predicting
the new appearance of an object with a smooth surface,
following a similarity transformation (3D rotation, trans-
lation, and scaling}. The method uses the 3D surface cur-
vature along the object contours. We have shown that a
single parameter, the magnitude of the curvature vectors
at these points, is sufficient to recover their curvature
radii for a rotation about any given axis, Three pictures
are in principle sufficient for approximating the radii of
curvature for most contour points, and five can be used
to estimate the components r,, r, independently.

The implemented scheme was found to give accurate
results for large transformations. In the scheme we have
proposed, each object is represented by a number of
models, each covering a range of potential viewpoints.
The results suggest that only a small number of such
models are required to predict the new appearance of an
object from any viewpoint.

APPENDIX A

Consider a surface defined by the implicit function
F(x, y, 2y = 0, F twice differentiable. Assuming an or-
thographic projection, where Z is the visual axis, the
rim is defined by the set of points on the surface, where
Fx,y,z) = 0. Let py = (xg, Yo, Z0) be a rim point; that is,
F(po) = F.{pg) = 0. We assume that either F.{(py) # 0 or
F,(py) + 0 and that F_{pg) # 0. By this we ignore points
with infinite radius of curvature and inflection points.
These points may change their place unexpectedly during
ratation.

LemMa 1. Let F(x, v, z) = 0 be a surface description,
and let py = (xy, Yo, 20) be a rim point, i.e., F{py) =
F,(pg) = 0. The curvature radii of py with respeci to the Y
and X axes are given by

fe = —
ry = -

Proof. Consider the space curve defined by the im-
plicit function F(x, vy, z) = 0. According to the implicit
function theorem, since F.(py) # 0and F(py} # 0, x(z) is
a well-defined function in a neighborhood of p,, and
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_(FZZFX_FUFZ)

_(szFx - Fxsz)-

And since

b o (e
—_ —_— + —_—
= FZ B
we obtain
dx _ —F F}+ F F.F, + F F.F, - F.F:
dz? F )

F.(py) = 0, therefore

d

;é (z) = 0

dix _ F
i (zo) = — F.

For a curve x(z), the radius of curvature at 7o is given by

1 (1 + (dxldz)(z0))**

"= T T @ildd )

Substituting the appropriate terms we obtain

F,
Fe = — =
FZZ
and, in a similar way,
F)’
¥y, = — /=
! FZZ

ProOPOSITION 1. Let F(x, y, z) = O be a surface de-
scription, and let py be a rim point; i.e., F(pg) = F{py) =
0. Let V., be an axis lying in the image plane and forming
an angle a with the positive X-axis. The radius of curva-
ture at py with respect to V, is given by

Fo = F, COS @ — r, Sin a.
a ¥

Proof. Let G(x',y', z} = 0 be the surface F(x, y, z) =
0 rotated about the Z-axis by the angle —a; i.e.,

Gx',v',2) =F(x'cosa — y' sing, x' sine + y' cos a, 7).
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After such a rotation V, coincides with the X-axis; there-
fore

k=G

Where £, rC are radii of curvature for the surfaces F, G,
respectively. According to Lemma 1,

G- _Gr
¥y
GZZ
Since
Gy = -F,sina + F, cos «
G, =F,=0
G, = F,
we obtain
—Fycosa + F,sina .
Fo = =r, COS & — F, Sin a.

FZZ

ProposSITION 2, Let Fix, v, z) = 0 be a surface de-
scription, and let pg be a rim point; i.e., F(py) = F{py) =
0. Let v = (1, ry) be the curvature vector at py, and let t be
the tangent vector to the silhouette at py. Thenr - t = 0;
that is, r 1 t.

Proof. The point p, satisfics the two constraints
F(py) = 0 and F,(py) = 0. According to the implicit func-
tton theorem, since Fy(pg) # 0, F(po) # 0, y(x), z(x) are
well-defined functions in a neighborhood of pg. The tan-
gent vector £ to y(x) is in the direction (1, dy/dx) in the XY
plane, and since dy/dx = —F/F,, t is the direction (- F;,
F.). According to Lemma 1, the vector of curvature radii
is given by

F, F,
r= (rxs ry) = (— F_, - _)-
oz

Therefore
F.F. F.F,
ret="22-—“>-2=9
FZZ FZZ
APPENDIX B

In this appendix we derive an expression of the error
obtained when the curvature method is applied to a ca-
nonical ellipsoid rotating about the vertical axis. We then
show that a similar error is obtained when the ellipsoid is
rotating about any axis in space. Finally, we compute the

BASRI AND ULLMAN

error resulting from applying the curvature method to a
non-canonical ellipsoid.

B.1. Rotation about the Vertical Axis
Let
X2y g2
E + E + ? =1

be the surface of a canonical ellipsoid. Let p; = (x;, ) be
a point on its silhouette. Assume the ellipsoid is rotating
about the vertical (¥) axis by an angle 6. Let pa = (x2, ¥2)
be the apparent position of p| following the rotation, and
let p, = (%, ¥-) be the approximate position of p, accord-
ing to the curvature method. The relative error for the
case of an ellipsoid that is rotating about the Y-axis is
given by

A

A & X2
X )

E=
The error is given by

PrROPOSITION 3.

2 2
E(%,9)=cost9+%(l—cos())

— Vecos? @ + (¢%a?) sin? 6.

Proof. The rim of a canonical ellipsoid contains the
surface points for which z = 0. Therefore, the silhouette
is defined by

2y

FJFF:]

After the ellipsoid is rotated by an angle ¢ about the
Y-axis, it is described by

— g 2
(xcos @ z51n8)+

¥} {xsin@+ zcos P
a’ it C B

. L.

And its silhouette is given by
x2 yZ

- +==1.
aicost @ + ¢?sin? e b?

The position of p» = (x3, y2) is therefore

x .
X E] Vatcostf + clsin? @
Y2 = Y.

Next we calculate p,. Denote the surface of the canoni-
cal ellipsoid by the form F(x, y, z2) = 1. According to
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Lemma | (Appendix A) the curvature radius with respect
to the Y-axis is given by

o
4

I
{
|

b= —

il
b
12¥)

When the ellipsoid rotates about the ¥-axis by an angle 8,
the position of p, is estimated by the curvature method to
be

ke
[o¥]
I

2
cix
= X cosB—a—zl(l —cos )
Y2 = ¥i-
Consequently, the relative error is given by

Cz fl*.tz
E(F’B> - X
|

— Vcos? 8 + (c¥dd) sin? 6.

(,‘2
=cos€+;(l - ¢cos 8)

The error is therefore a function of ¢ and c¥/a?.

B.2. Roration in 3D Space

In this section we consider the case of a canonical
ellipsoid rotating arbitrarily in 3D space. A rotation in 3D
space can he decomposed into three successive rota-
tions, about the Z-, ¥-, and Z-axes. The last rotation can
be ignored since it does not deform the image and there-
fore does not change the errors. (The first rotation cannot
be ignored since it determines the actual axis of the sec-
ond rotation.) Let

(xcosa + ysinaP (—xsina + ycosalP z°
3 + 2 + - = 1
a b c
be the surface of a canonical ellipsoid rotated about the
Z-axis by an angle o. We now examine this ellipsoid as it
rotates about the Y-axis by an angle 8.

PROPOSITION 4. The error is given by

CZ
£ (G0,
where
cr 2 L
P———Ecosza +—£Esm~a.
Proof. In order to prove this proposition we have to

show that every horizontal section of the ellipsoid de-
fined above is an ellipse with an aspect ratio C¥A? as
given in the proposition.
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Any nonempty intersection of an ellipsoid and a plane
is either a point or an ellipse. The section is nonempty
when y* = ¢? sin? @ + b? cos? a, and is a point when a
strict equality helds. Given the canonical eliipsoid fol-
lowing its rotation about the Z-axis by an angle «, we
show that the boundaries of its horizontal section can be
represented as

x —x) | 22 _ 1

A? c?

which describes a canonical ellipse displaced along the X-
axis. To establish the above relation, we show that for a
constant value of y the surface equation of the rotated
ellipsoid reduces to the equation of the displaced ellipse.
The two equations are identical if there exists a constant
k # ( such that the following equation system holds

cos’ @ sin? e
S
, : 11
kC?xq = y sInl @ cOS o (F - E)
kA = 1/c?
sin ¢ cos? @
kCHA? — xp) = | - yZ( il T)

We obtain a system of four equations in four unknowns,
A2, C?, xy, and k. We now show that when y? < a* sin?
a + b? cos? o this system has a unique solution with
positive values for A? and C2.

Denote the right side of the four equations by

_costa  sinfa
p=—g T
o 11
G = ys8in o Cos « F_?
r= 1/

sinf ¢ cos? o
s:1—y2( a? +T

The solution to the system above is given by

_ kCZXQ _4q
WTCT T
A = KO = ) + kCxf _ ps + ¢
e L
c? - kCAA? — xj3) + kCid _pst q*
kAZ pr
A
A ps + ¢
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Note that p, r > 0. This system therefore has a unique
solution with positive values for A? and C? when ps +
g* > 0. This inequality is satisfied when y2 < g2 sin? & +
b? cos? a.

Now, we can compute the value of the ratio C¥A? from
this equation system by dividing the first equation by the
third one:

c: ¢ ¢t .
E :?cosza+ Esmza.

Therefore, any horizontal section of this ellipsoid is an
ellipse with an aspect ratio of C*A?, and since translation
does not affect the results of the curvature method, the

error is given by
C2
£ (o)

where A% and C? are the parameters of the ellipse and 8 is
the rotation angle about the Y-axis.

B.3. Intermediate Models

In this section we derive an expression of the error
obtained when the curvature method is applied to an el-
lipsoid that is rotated about the Y-axis (rather than a ca-
nonical ellipsoid). This computation is required for con-
structing Table 1 in Section 3.2. Let

(xcosa —zsinal 3y (xsina + zcosa)
3 +—2+ 3 = ]
a b c

be the surface of a canonical ellipsoid rotated about the
Y-axis by an angle . Assume this ellipsoid is modeled by
the curvature method. We consider now the error pro-
duced by using this model as the ellipsoid rotates about
the Y-axis by an angle 8.

ProposiTION 5. The relative error is given by

2
E, (%2-, 9) =cos @+ z'sinf+ F(l —cos @) — x",

where
, _ _ sina cos a(l — c¥/a?)
g cos? a + {c¥a?) sin? «
oo c*la?
(cos? a + (c*a?) sin? a)?
. \/cosz(a + 8) + {c%d?) sinXa + 6)
X = cos? a + (cHa?) sin? a
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Proof. Letp, = (x;, ¥;) be a pcint on the silhouette of
the ellipsoid. Let z; be its depth value, and let ry be its
curvature value with respect to the Y-axis. Then

x = (la) Vat cos? a + ¢?sin? o

nh=y
—x sin o cos ofa? — ¢2)
iy = -
a Varcos?a + ¢?sin «
xact
T

(a? cos? a + ¢? sin? @)®?’

where p = (x, y} is the corresponding point on the silhou-
ctte of the ellipsoid in its canonical position.

Let p; = (x3, y2) be the apparent position of p; after a
rotation about the Y-axis by an angle 8, p; is given by

X = (xfa) Va? cosH(a + ) + ¢ sin® {(« + 6)
Y2 =Y.

Let p; = (£, ¥2) be the position of p; approximated by the
curvature method

i

B =xco88+ z;8n8+ (1l —cos 8

~

Y2 =y

Since y, = y; = #,, the error is defined by

A

XX
E,=——
X1
Let
z' = Z]fx1
r'=rix
X' = xalx|

and we obtain the expressions given in the proposition.
Note that

in Eq. (4).
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