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Distance Metric Between 3D Models
and 2D Images for
Recognition and Classification

Ronen Basri and Daphna Weinshall

Abstract—Similarity measurements between 3D objects and 2D
images are useful for the tasks of object recognition and classification.
We distinguish between two types of similarity metrics: metrics
computed in image-space (image metrics) and metrics computed in
transformation-space (transformation metrics). Existing methods
typically use image metrics; namely, metrics that measure the
difference in the image between the observed image and the nearest
view of the object. Example for such a measure is the Euclidean
distance between feature points in the image and their corresponding
points in the nearest view. (This measure can be computed by solving
the exterior orientation calibration problem.) In this paper we introduce
a different type of metrics: fransformation metrics. These metrics
penalize for the deformations applied to the object to produce the
observed image.

In particular, we define a transformation metric that optimally
penalizes for “affine deformations” under weak-perspective. A closed-
form solution, together with the nearest view according to this metric,
are derived. The metric is shown to be equivalent to the Euclidean
image metric, in the sense that they bound each other from both above
and below. It therefore provides an easy-to-use closed-form
approximation for the commonly-used least-squares distance between
models and images. We demonstrate an image understanding
application, where the true dimensions of a photographed battery
charger are estimated by minimizing the transformation metric.

Index Terms—Affine deformations, 3D-to-2D metric, object
recognition, exterior orientation calibration.

+

1 INTRODUCTION

OBJECT recognition is a process of selecting the object model that
best matches the observed image. A common approach to recog-
nition uses features (such as points or edges) to represent objects.
An object is recognized in this approach if there exists a viewpoint
from which the model features coincide with the corresponding
image features, e.g., [4], [7], [9]. Since images often are noisy and
models occasionally are imperfect, it is rarely the case that a model
aligns perfectly with the image. Moreover, in problems such as
classification and recognition of non-rigid objects, the agreement
between model and image is even less predictable. Systems there-
fore look for a model that “reasonably” aligns with the image.
Consequently the general problem of recognition requires meas-
ures that provide a robust assessment of the similarity between
objects and images. In this paper we describe two such measures,
and develop a rigorous solution to the minimization problem that
each measure entails.

A common measure for comparing 3D objects to 2D images is
the Euclidean distance between feature points in the actual image
and their corresponding points in the nearest view of the object.
The assumption underlying this measure is that images are signifi-
cantly less reliable than models, and so perturbations should be
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measured in the image plane. This assumption often suits recog-
nition tasks. Other measures may better suit different assump-
tions. For example, when classifying objects, there is an inherent
uncertainty in the structure of the classified object. One may there-
fore attempt to minimize the amount of deformations applied to
the object to account for this uncertainty. Such a distance is meas-
ured in transformation space rather than in image space. A defini-
tion of these two types of measures is given in Section 3.

Measures to compare 3D models and 2D images generally are
desired to have metrical properties; that is, they should monotoni-
cally increase with the difference between the measured entities.
The Euclidean distance between the image and the nearest view
defines a metric. (We refer to this measure as the image metric.) The
difficulty with employing this measure is that a closed-form solu-
tion to the problem has not yet been found, and therefore cur-
rently numerical methods must be employed to compute the
measure. A common method to achieve a closed-form metric is to
extend the set of transformations that objects are allowed to un-
dergo from the rigid to the affine one. The problem with this
measure is that it bounds the rigid measure from below, but not
from above. Other methods either achieve only suboptimal dis-
tances, or they do not define a metric. The existing approaches are
reviewed in Section 2.

This paper presents a closed-form distance metric to compare
3D models and 2D images. The metric penalizes for the non-
rigidity induced by the optimal affine transformation that aligns
the model to the image under weak-perspective projection. Spe-
cifically, if A is the affine transformation that best aligns the model
with the image, and Rig represents the set of all rigid transformations,
then the metric is defined as

N, = minf4 - K[ %
ReRig

where the norm taken is the sum of squared elements. This metric
is shown to bound the least-square distance between the model
and the image both from above and below. We foresee three ways
to use the metric developed in this paper:

1) Obtain a direct assessment of the similarity between 3D
models and 2D images.

2) Obtain lower and upper bounds on the image metric. In
many cases such bounds may suffice to unequivocally de-
termine the identity of the observed object.

3) Provide an initial guess to be then used by a numerical pro-
cedure to solve the image distance.

The rest of this paper is organized as follows: In Section 2, we re-
view related work. In Section 3, we define the concepts used in this
paper. In Section 4, we provide the main results of this paper. Finally,
in Section 5, we illustrate the outcome of using the new transformation
metric on real images. In addition, we demonstrate an application, in
which the true dimensions of a photographed battery charger are
estimated by minimizing the transformation metric.

2 PREVIOUS APPROACHES

Previous approaches to the problem of model and image compari-
son using point features are divided into two major categories:
least-square minimization in image space, and suboptimal methods
using correspondence subsets.

The traditional photometric approach to the problem of model
and image comparison involves retrieving the view of the object
that minimizes the least-square distance to the image. This prob-
lem is referred to as the exterior orientation calibration problem and is
defined as follows. Given a set of n 3D points (model points) and a
corresponding set of n 2D points (image points), find the rigid
transformation that minimizes the distance in the image plane
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between the transformed model points and the image points. An
analytic solution to this problem has not yet been found. Conse-
quently, numerical methods are employed [11], [8]. Such solutions
often suffer from stability problems, they are computationally
intensive, and they require a good initial guess.

To avoid using numerical methods, frequently the object is al-
lowed to undergo affine transformations instead of just rigid ones.
Affine transformations are composed of general linear transforma-
tions (rather than rotations) and translations, and they include in
addition to the rigid transformations also reflection, stretch, and
shear. The solution in the affine case is simpler than that of the rigid
case because the quadratic constraints imposed in the rigid case are
not taken into account, enabling the construction of a closed-form
solution. At least six points are required to find an affine solution
under perspective projection [4], and four are required under ortho-
graphic projection [9]. The affine measure bounds the rigid measure
from below. The rigid measure, however, is not bounded from
above, and so the actual rigid measure may sometimes be signifi-
cantly larger than the computed affine measure.

A second approach to comparing models to images, often called

alignment, involves the selection of a small subset of correspondences
(alignment key), solving for the transformation using this subset, and
then transforming the other points and measuring their distance
from the corresponding image points. The obtained distances are
clearly suboptimal. However, by relying on small subsets of corre-
spondences alignment can overcome occlusion and clutter. Three [4]
or four [6] corresponding points are required under perspective
projection, and three points under weak perspective [7].

3 DEFINITIONS AND NOTATION

In the following discussion, we assume weak-perspective projec-
tion. Namely, the object undergoes a 3D transformation that in-
cludes rotation, translation, and scaling, and is then orthographi-
cally projected onto the image. Perspective distortions are not ac-
counted for and treated as noise. The weak-perspective projection
model is particularly useful when objects are observed from a
relatively long distance.

In order to define a similarity measure for comparing 3D ob-
jects to 2D images, as discussed in Section 1, we first define the
best-view of a 3D object given a 2D image:

DEEINITION 1 [best-view]. Let d denote a difference measure between
two 2D images of n features. Given a 2D image of an object com-
posed of n features, the best-view of a 3D object (model) com-
posed of n corresponding features, is the view for which the small-
est value of 9 is obtained. The minimization is performed over all
the possible views of the model; the views are obtained by applying
a transformation T, taken from the set of permitted transforma-
tions A, and followed by a projection, T1.

We compute 9, the difference between two 2D images of n fea-
tures, in two ways:

Image metric: We measure position differences in the image,
namely, it is the Euclidean distance between corresponding
points in the two images, summed over all points.

Transformation metric: The images are considered to be instances
of a single 3D object. The metric measures the difference
between the two transformations that align the object with
the two images. This difference can be measured, for in-
stance, by computing the Euclidean distance between the
matrices that represent the two transformations (when the
two transformations are linear).

As is mentioned above, the measure 0 is applied to the given
image and to the views of the given model. These views are gener-

ated by applying a transformation from a set A of permitted trans-
formations. The view that minimizes the distance 0 to the image is
considered as the best view, and the distance between the best
view and the actual image is considered as the distance between
the object and the image. )

We consider in this paper two families of transformations: rigid
transformations' and affine transformations, and we discuss the
following metrics:

N,,: a metric that measures the image distance between the given
image and the best rigid view of the object. .

N, a metric that measures the image distance between the given
image and the best affine view of the object.

N, a transformation metric. We assume that the image is an affine
view of the object. (When it is not, we substitute the image
by the best affine view.) We look for the rigid view of the
object so as to minimize the difference between the two
transformations: the affine transformation (betiveen the ob-
ject and the image) and the rigid transformation (between
the object and its possible rigid view). In other words, we
look for a view so as to minimize the amount of “affine de-
formations” applied to the object. k

To illustrate the difference between image metrics and transforma-
tion metrics, Fig. 1 shows an example of three 2D images, whose
similarity relations reverse, depending on which kind of metric is
used. Consider the planar object in Fig. 1b as a reference object, and
assume A contains the set of rigid transformations in 2D. The images
in Fig. 1a and Fig. 1c are obtained by stretching the object horizon-
tally (by 9/7) and vertically (by 3/2) respectively. (The image in Fig.
1b is obtained by applying a unit matrix to the object.)

o The image metric between the images in (b) ‘and (a) is 4, two
pixel at each of the left corners of the rectangle. The image
metric between the images in-(b) and (c) is 2, one pixel at
each of the upper corners of the rectangle.

o Therefore, according to the image metric, Fig. 1c is closer to
Fig. 1b than Fig. la is. '

¢ To compute the transformation metric consider the planar
object illustrated in (b). We compute the difference between
the matrices that represent the affine transformation from
(b) to both (a) and (c) and the matrix that represent the best
rigid transformation (in this case it is the unit matrix): (a) is
obtained from (b) by a horizontal stretch of 9/7. The trans-
formation metric between (a) and (b) is therefore2/7 =9/7 — 1.
(©) _is' obtained from (b) by a vertical stretch of 3/2. The
transformation metric in this caseis 1/2=3/2-1.

e Therefore, according to the transformation metric, Fig. 1a is
closer to Fig. 1b than Fig. 1cis.

closer in closer in
transformation— image—
space space

— ALI::IW-
(a) o (b) «©)

Fig. 1. The 2D image-shown in (b) is closer to ‘the image in (a) when
the difference is computed in transformation space, and closer to the
image in (c) when the difference is the Euclidean difference between
the two images.

1. Note that a rigid transformation under weak perspective is’
equivalent to a similarity transformation followed by an orthographic
projection. ‘
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3.1 Derivation of N, and N,
We now define the rigid and the affine image metrics precisely.
Under weak-perspective projection, the position in the image,
g, = (x;,y;), of a model point p, =(X,,Y,,Z,) following a rigid
transformation is given by

g, = TI(RP, + ) 2
where R is a scaled, 3 x 3 rotation matrix, f is a translation vector,
and I1 represents the orthographic projection operator. More ex-
plicitly, denote by ﬁr and 7; the top two row vectors of R, and
denote f = (t_,¢ ,t.); we have that

X7yt vz

_ 7T =
X=h Pt

yi =75 B+, 3)
where
?1T =0
AR =7 g @

The rigid metric, N,,, minimizes (over all R and I ) the difference
between the two sides of (3) subject to the constraints (4).

When the object is allowed to undergo affine transformations,
the rotation matrix R is replaced by a general 3 x 3 linear matrix
(denoted by A) and the constraints (4) are ignored. That is

g, = TAp, + 1) 5
Denote by 4, and 4, the top two row vectors of A, we obtain

-T —
X;p=dy pt+t
yizﬁzT‘ﬁi+ty (©)
The affine metric, N,, minimizes (over all A and f ) the difference
between the two sides of (6).

To define the rigid and the affine metrics, we first note that the
translation component of both the best rigid and affine transfor-
mations can be ignored if the centroid of both model and image
points are moved to the origin. In other words, we begin by trans-
lating the model and image points so that

Y5 =30 | 2
i=1 =1

We claim that now f = 0 obtains the minimum (a proof is given in

(2.
Denote
Xl Yl Zl
pP= : )
Xﬂ YVK ZVI
a matrix of model point coordinates, and denote
BN o I
X=|: y=1|: 9
Xn yﬂ

the location vectors of the corresponding image points. A rigid
metric that reflects the desired minimization is given by

N, = min [~ P|" +[7-PAf" st i K =07 7 =7 7 10)
7, eR

The corresponding affine metric is given by

N, = min | - Pa +[7 - P4’ (11)

o g a,eR?
In the affine case the solution is simple. We assume that the
rank of P is 3 (the case for general, not coplanar, 3D objects). De-

note P* = (P'P)"'P’, the pseudo-inverse of P; we obtain that

i = P'%
i, =Py (12)
And the affine distance is given by
2 2
N, =|a-ppoa| +|a-pry (13)

Since the solution in the rigid case is significantly more difficult
than the solution in the affine case, often the affine solution is consid-
ered, and the rigidity constraints are used only for verification [9].

The constraints (4) (substituting 4; for 7;, and using (12)) can
be rewritten as

PPy =0

P PR =5 (PO P (14)
Denote
B=(PH'p* (15)
we obtain that
8 #'Bj=0
X'B% = "By (16)

where B is an # X nn symmetric, positive-semidefinite matrix of rank
3. (The rank would be smaller if the object points are coplanar.)

We call B the characteristic matrix of the object. B is a natural
extension to the 3 x 3 model-based invariant Gramian matrix de- .
fined in [10].

3.2 Derivation of N,,

We now define the transformation metric. Consider the affine solu-
tion. The nearest “affine view” of the object is obtained by apply-
ing the model matrix, P, to a pair of vectors, 4, and 4,, defined in
(12). In general, this solution is not rigid, and so the rigid con-
straints (4) do not hold for these vectors. The metric described here
is based on the following rule. We are looking for another pair of
vectors, 7; and 7,, which satisfy the rigid constraints, and mini-
mize the Euclidean distance to the affine vectors 4,  and 4,. P7,
and P7, define the best rigid view of the object under the defined

metric. The metric, N,, is defined by

N

P | A e ST = 2T = 2T =
o __r§11n3|’a]— l“ +”a2—r2” s.t. K=0% #=7 7 17)
Ay eR

where 4, and 4, constitute the optimal affine solution, therefore

N, = min [pe=if efpg-af su AR =07 A =7 08)
4 RESULTS

We derive the following results (the proof is given in [2]):

4.1 Transformation Space:
The transformation metric defined in (18) has the following solution

1 2 )
N, = j[azTBz +7Bij - 2\/32TB§ "By - (x"Bj) J 19)
where B is defined in (15), and ¥, 7 in (9). The best view according
to this metric is given by
% = PP (B + By)
¥ = PPY(r, 3 + 7,5 (20)

where
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Fig. 2. Top and middle rows: Four images of a chair, with feature points marked on one of them for iliustration, for which the 3D coordinates of the
points are known (i.e., the model is given). Bottom row: For three of the images, the original feature points of the image are marked by +; for com-
parison, the feature points of the model, in the closest image according to N,, are marked by diamonds.

Fig. 3. Top row: Two images of different chairs, with feature points marked on one of them for illustration. Bottom row: The original feature points of the
image are marked by +; for comparison, the feature points of the model chair (shown in Fig. 2), the closest image according to N,, are marked.

TABLE 1 .
THE TRANSFORMATION METRIC VALUES N, THE AFFINE METRIC, AND THE VARIOUS BOUNDS COMPUTED FOR THE FOUR CHAIRS IN FIG. 2 AND IN FIG. 3.

Same chair (Fig. 2) Other chairs (Fig. 3)

Topleft | Top right | Bottom left | Bottom right Left Right

N, ' 0.060 0.048 0.053 0.040 1.080 0.410

. ‘

N 1.745 1.352 1.240 1.240 4.008 5.364

Lower bound (22) 1.971 1.682 1.510 1.450 5.587 5.876
Upper bound (22) 2.730 2.319 2.332 2.122 9.777 7.680
Tighter (26) 2.336 1.941 1.916 1.778 7.719 6.731
Tightest (25) 2.313 1.884 1.878 1.755 7.350 6.514

Except for the transformation metric, the values are normalized so they reflect the average distortion in pixels of a single feature point.
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1 i By
B==|1+ Yy by
2 *'Bx- 7' By — {x" 7\
7" By - ("By)
JG
. o X By
P=r= ~Tp= =Tp= {=Tp=\2
2,/Xx" Bx-y By~(x By)
1 x'B%
;/2:—2— 1+

\/J?TB)? "By - (¥'By)

4.2 Image Space:

Using N,, we can bound the image metric from both above and be-
low. Denote

N, =|a - PP*)J?”2 +|a- pp*)y”2 @1
we show that

N, + 4N, <N, <N, + 4N, (22)

where 4, < 4, < 4; are the eigenvalues of P'P. A suboptimal solu-
tion to N, is given by
2u
ey,
Myt iy
where \//1_1 < J#, are the principal axes of the ellipse, defined by

the intersection of the ellipsoid B with the plane span{X,y}. A
tighter upper bound is deduced from this suboptimal solution

N (23)

N,, € N+ 12, 2,)N, <N, +24,N, 24)
where h(4,, ;) = ﬁ is the Harmonic mean of 4,, 4;.
2273
To summarize, we have
24ty
Ny + AN, SN, <N, + YA N", (25)
Ny + 4N, <N, <N+ 72, AN, (26)

The suboptimal solution (23) (the upper bound in (25)) is proposed
as an initial guess for an iterative algorithm to compute N;,.

5 APPLICATIONS

In this section we show examples of applying the transformation
metric to the problems of recognition and shape reconstruction. In
the first example (Section 5.1) we compare a model of a chair to
several images. The results are then compared to the results ob-
tained when a different chair is used as a model. In the second
example (Section 5.2) we use the transformation metric to deter-
mine the dimensions of a battery charger from a single image.

5.1 Recognition

In this experiment a 3D model of a chair, including twelve of its
feature points, was given. Four images of the chair at different
orientations, as well as two more images of two different chairs,
were photographed (see Figs. 2 and 3). Twelve feature points cor-
responding to the model points were manually extracted from
these images. The model was compared to the six pictures using
the transformation metric. Figs. 2 and 3 also show the model points
in the best view according to the transformation metric, overlaid on
their corresponding points in the reference image. We can see that
albeit the model chair is compared in Fig. 3 to different chairs, the
matching obtained is relatively good. Note that in Fig. 2 the
matching between the model and the images of the same chair is
not perfect due to errors in the 3D measurements and the weak

perspective approximation.

The distances between the model of the reference chair
(condition number 5.25) and the six images of Figs. 2 and 3 are
given in Table 1. It can be seen that the transformation metric val-
ues obtained for the images of the same chair (range between 0.04
and 0.06) are significantly smaller than those of the other chairs
(range between 0.41 and 1.08). Similar results are obtained for the
affine metric and the various bounds. As is expected, the affine
metric always underestimates the image metric. The tightest upper
bound is 10%-30% larger than the lower bound, and the worst
upper bound for the same chair (2.73 for the top left image in Fig. 2)
is still much lower than the lowest upper bound for the other
chairs (5.587 for the left image in Fig. 3). Thus, the bounds suffice
to discriminate between the images of the same chair from the
images of the other chairs.

5.2 Reconstruction

In this experiment we attempt to infer the dimensions of an object
from a single view. We will use an image of a battery charger as an
input (Fig. 4). Suppose that we can identify the object either by
recognizing it as a box of some arbitrary dimensions or by identi-
fying certain surface markings on the object. Our task now is to
estimate the dimensions of the box from the image coordinates of
the seven visible corners of the charger.

To find the actual dimensions of the battery charger, we search
the parameter space u X v X w, where u is the depth of the charger
(the width of the left face), v is its height, and w is the length of the
front face. Since under the weak-perspective projection model we
can infer the dimensions of objects up to a scale factor only, we
may set one of these parameters to be constant and search the
space of the other two measurements. In our experiment we set w
to its true value, 28 cm, and searched the space of the other two
parameters, u and v.

In Fig. 5 the upper limit on N,,, given in (26), is plotted for each
pair of parameters. The first search was done on a coarse scale
(Fig. 5a). The minimum of the error bound is obtained for u = 22.6,
v = 19.1, which is the (correct) answer with certainty of 2 cm for
u, and =1 cm for v. The second search was done on a finer scale
(Fig. 5b). The minimum of the error bound is obtained for u =
22.06, v = 19.1, which is the answer with certainty of £0.28 cm in
each dimension. This final result provides a reasonably good estimate
of the dimensions of the battery charger, with an error of =~ 0.5 cm in
one dimension ().

6 CONCLUSION

We have proposed a transformation metric to measure the similarity
between 3D models and 2D images. The transformation metric
measures the amount of affine deformation applied to the object to
produce the given image. A simple, closed-form solution for this
metric has been presented. This solution is optimal in transforma-
tion space, and it is used to bound the image metric from both
above and below. The transformation metric presented in this paper
can be used to obtain a direct assessment of the similarity between
models and images or as a mean to evaluate the image metric. The
proposed metric can be used in several different ways in the rec-
ognition and classification tasks. We conclude the paper with a
brief discussion of possible applications of the metric.

The transformation metric provides a suboptimal closed-form
estimate for the image metric. A scheme which uses this measure
will prefer “symmetric” objects, objects whose convex-hull is close
to a sphere, over other objects which are significantly stretched or
contracted along one spatial dimension. This solution can also be
used as an initial guess in an iterative process that computes the
optimal value of the image metric numerically. The suboptimal
solution derived using the image metric provides a better estimate
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for the image metric than the affine solution, which has been used
for example in [3] as the initial guess for computing the perspec-
tive image metric numerically.

Fig. 4. A hicture of a battery charger, whose dimensions are: depth:
22.5 cm, length: 28 cm, and height: 19 cm.

(b)

Fig. 5. Plots of the upper bound on N, (26), when comparing the picture
in Fig. 4 to a box model whose dimensions are u x v x 28 cm. (a) Plot of
the bound, for coarse sampling in log scale of v e [13.9 — 86.1 cm] and
ve [14.5 — 41 cm]. (b) Plot of the bound, for fine sampling in linear scale
of ue [19.82 -25.42cm]and ve [16.3—-21.9 cm].

Another potential application of the metric is in evaluating
hypothesized correspondences in an alignment algorithm. Align-
ment is a method for evaluating the similarity between models
and images based on a small number of correspondences. While
the use of few correspondences is advantageous for recognizing
objects in polynomial time complexity while overcoming partial
occlusion, it may often yield errors in estimating the distance
between models and images (see, e.g., [5]). Therefore, typical algo-
rithms often try, after obtaining an initial alignment, to extend the
match with additional correspondences (e.g., [4]). The bounds

derived on the image metric may be used at this stage to evaluate
potential correspondences. Simulations [2] show that these bounds
often provide better estimates than those provided by using
alignment. ’

Finally, our transformation metric can be used in schemes that
attempt to classify objects. A scheme for classification was recently
proposed [1], in which classes contain objects that share the same
basic features in distorted positions. Our metric can be used under
such a scheme to evaluate the amount of affine distortion applied
to the object relative to a prototype object in order to determine its
class identity.
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