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Abstract. Consider situations where the depth at each point in the scene is multi-valued, due to the presence of
a virtual image semi-reflected by a transparent surface. The semi-reflected image is linearly superimposed on the
image of an object that is behind the transparent surface. A novel approach is proposed for the separation of the
superimposed layers. Focusing on either of the layers yields initial separation, but crosstalk remains. The separation
is enhanced by mutual blurring of the perturbing components in the images. However, this blurring requires the
estimation of the defocus blur kernels. We thus propose a method for self calibration of the blur kernels, given the
raw images. The kernels are sought to minimize the mutual information of the recovered layers. Autofocusing and
depth estimation in the presence of semi-reflections are also considered. Experimental results are presented.

Keywords: semireflections, depth from focus, blind deconvolution, blur estimation, enhancement, image recon-
struction and recovery, inverse problems, optical sectioning, signal separation, decorrelation

1. Introduction

The situation in which several (typically two) lin-
early superimposed contributions exist is often en-
countered in real-world scenes. For example (Darrell
and Simoncelli, 1993a; Fujikake et al., 1998), looking
out of a car (or room) window, we see both the out-
side world (termedreal object(Ohnishi et al., 1996;
Oren and Nayar, 1995; Schechner et al., 1999a, 1999b,
1999c, 2000b)), and a semi-reflection of the objects
inside, termedvirtual objects. The treatment of such
cases is important, since the combination of several un-
related images is likely to degrade the ability to analyze
and understand them. The detection of the phenomenon

is of importance itself, since it indicates the presence
of a clear, transparent surface in front of the camera,
at a distance closer than the imaged objects (Ohnishi
et al., 1996; Schechner et al., 1999b, 2000b).

The termtransparent layershas been used to de-
scribe situations in which a scene is semi-reflected from
a transparent surface (Bergen et al., 1992; Darrell and
Simoncelli, 1993a; Wang and Adelson, 1993). It means
that the image is decomposed into depth ordered lay-
ers, each with an associated map describing its inten-
sity (and, if applicable, its motion (Wang and Adelson,
1993)). We adopt this terminology, but stress the fact
that this workdoes notdeal with imaging through an
object with variable opacity. Approaches to recovering
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each of the layers by nulling the others relied mainly on
triangulation methods like motion (Bergen et al., 1992;
Darrell and Simoncelli, 1993a, 1993b; Irani et al., 1994;
Oren and Nayar, 1995; Shizawa and Mase, 1990), and
stereo (Borga and Knutsson, 1999; Shizawa, 1993). Al-
gorithms were developed to cope with multiple super-
imposed motion fields (Bergen et al., 1992; Shizawa
and Mase, 1990) and ambiguities in the solutions were
discovered (Shizawa, 1992; Weinshall, 1989). Another
approach to the problem has been based on polarization
cues (Farid and Adelson, 1999; Fujikake et al., 1998;
Ohnishi et al., 1996; Schechner et al., 1999a, 1999b,
1999c, 2000b)). However, that approach needs a po-
larizing filter to be operated with the camera, may be
unstable when the angle of incidence is very low, and
is difficult to generalize to cases in which more than
two layers exist.

In recent years, range imaging relying on the limited
depth of field (DOF) of lenses has been gaining popu-
larity. An approach for depth estimation using a monoc-
ular system based on focus sensing (Darrel and Wohn,
1988; Engelhardt and Hausler, 1988; Jarvis, 1983; Nair
and Stewart, 1992; Nayar, 1992; Nayar et al., 1995;
Noguchi and Nayar, 1994; Subbarao and Tyan, 1995;
Sugimoto and Ichioka, 1985; Xiong and Shafer, 1993)
is termedDepth from Focus(DFF) in the computer-
vision literature. In that approach, the scene is imaged
with different focus settings (e.g., by axially moving
the sensor, the object or the lens), thus obtaining im-
ageslicesof the scene. In each slice, a limited range of
depth is in focus. Depth is extracted by a search for the
slice that maximizes some focus criterion (Hausler and
Korner, 1984; Jarvis, 1983; Nair and Stewart, 1992;
Nayar, 1992; Noguchi and Nayar, 1994; Subbarao and
Tyan, 1995; Torroba et al., 1994; Yeo et al., 1993) (usu-
ally related to the two dimensional intensity variations
in the region), and corresponds to the plane of best fo-
cus. DFF and image-based rendering based on focused
slices has usually been performed on opaque (and oc-
cluding) layers. In particular, just recently a method
has been presented for generating arbitrarily focused
images and other special effects performed separately
on each occluding layer (Aizawa et al., 2000).

Physical modeling of DOF as applied to process-
ing images of transparent objects has long been con-
sidered in the field of microscopy (Agard and Sedat,
1983; Agard, 1984; Castleman, 1979; Conchello and
Hansen, 1990; Diaspro et al., 1990; Erhardt et al., 1985;
Fay et al.,1983; Itoh et al., 1989; Marcias-Garza et al.,
1988; McNally et al., 1994; Preza et al., 1992; Streibl,
1984), where the defocus effect is most pronounced.

An algorithm for DFF was demonstrated (Itoh et al.,
1989) on a layered microscopic object, but due to the
very small depth of field used, the interfering layer
was very blurred so no reconstruction process was nec-
essary. Note that microscopic specimens usually con-
tain detail in a continuum of depth, and there is cor-
relation between adjacent layers, so their crosstalk is
not as disturbing as in semi-reflections. Fundamen-
tal consequences of the imaging operation (e.g. the
loss of biconic regions in the three dimensional fre-
quency domain) that pose limits on the reconstruction
ability, and the relation to tomography, were discov-
ered (Chiu et al., 1979; Marcias-Garza et al., 1988;
Streibl, 1984, 1985; Sundaram and Nayar, 1997). Some
of the three dimensional reconstruction methods used
in microscopy (Agard and Sedat, 1983; Agard, 1984;
Conchello and Hansen, 1990) may be applicable to the
case of discrete layers as well.

We study the possibility of exploiting the limited
depth of field to detect, separate and recover the in-
tensity distribution of transparent, multi-valued layers.
Focusing yields an initial separation, but crosstalk re-
mains. The layers are separated based on the focused
images, or by changing the lens aperture. The crosstalk
is attenuated by mutual blurring of the disturbing com-
ponents in the images (Section 2). Proper blurring re-
quires the point spread functions (PSF) in the images
to be well estimated. A wrong PSF will leave each re-
covered layer contaminated by its complementary. We
therefore study the effect of error in the PSFs. Then, we
propose a method for estimating the PSFs from the raw
images (Section 3). It is based on seeking the minimum
of the mutual information between the recovered lay-
ers. Recovery experiments are described in Section 4.
We also discuss the implication of semi-reflections on
the focusing process and the depth extracted from it
(Section 5). Preliminary and partial results were pre-
sented in Schechner et al. (1998, 2000a).

2. Recovery from Focused Slices

2.1. Using Two Focused Slices

Consider a two-layered scene. Suppose that either man-
ually or by some automatic procedure (see Section 5),
we acquire two images, such that in each image one
of the layers is in focus. Assume for the moment that
we also have an estimate of the blur kernel operating
on each layer, when the camera is focused on the other
one. This assumption may be satisfied if the imaging
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Figure 1. A telecentric imaging system (Watanabe and Nayar,
1996). An apertureD is situated at distanceF (the focal length)
in front of the lens. An object point at distanceu is at best focus if
the sensor is atv. If the sensor is at̃v, the image of the point is a
blurred spot parameterized by its effective diameterd.

system is of our design, or by calibration. Due to the
change of focus settings, the images may undergo a
scale change. If a telecentric imaging system (Fig. 1)
is used, this problem is avoided (Nayar et al., 1995;
Watanabe and Nayar, 1996). Otherwise, we assume that
the scale change1 is corrected during preprocessing
(Kubota et al., 1999).

Let layer f1 be superimposed2 on layer f2. We con-
sider only the slicesga andgb, in which either layer
f1 or layer f2, respectively, is in focus. The other layer
is blurred. Modeling the blur as convolution with blur
kernels,

ga = f1+ f2 ∗ h2a gb = f2+ f1 ∗ h1b (1)

(The assumption of a space-invariant response to con-
stant depth objects is very common in analysis of de-
focused images, and is approximately true for paraxial
systems or in systems corrected for aberrations). If a
telecentric system is used,h1b = h2a = h.

In the frequency domain Eq. (1) take the form

Ga = F1+ H2aF2 Gb = F2+ H1bF1. (2)

Assuming that the kernels are symmetric, ImH2a = 0
and ImH1b = 0, so the real components ofGa andGb

are respectively

ReGa = ReF1+ H2a · ReF2

ReGb = ReF2+ H1b · ReF1,
(3)

with similar expressions for the imaginary components
of the images. These equations can be visualized as two
pairs of straight lines (see Fig. 2). The solution, which
corresponds to the line intersection, uniquely exists for

Figure 2. Visualization of the constraints on reconstruction from
focused slices and the convergence of a suggested algorithm. For
each frequency, the relations (3) between the real components of
Ga,Gb, F1 and F2 take the form of two straight lines. The visual-
ization of the imaginary parts is similar.

H2a H1b 6= 1. Since the imaging system cannot amplify
any component (H1b, H2a ≤ 1), a unique intersection
exists unlessH2a = H1b = 1.

To gain insight, consider a telecentric system (the
generalization is straightforward). In this case,H2a =
H1b = H , and the slopes of the lines in Fig. 2 (rep-
resenting the constraints) are reciprocal to each other.
As H → 1 the slopes of the two lines become simi-
lar, hence the solution is more sensitive to noise inGa

andGb. As the frequency decreases,H→ 1, hence at
low frequencies the recovery is ill conditioned. Due
to energy conservation, the average gray level (DC) is
not affected by defocusing. Thus, at DC,H = 1. In the
noiseless case the constraints on the DC component
coincide into a single line, implying an infinite number
of solutions. In the presence of noise the lines become
parallel and there is no solution. The recovery of the
DC component is thus ill posed. This phenomenon is
also seen in the three dimensional frequency domain.
The image space is band limited by amissing cone of
frequencies(Chiu et al., 1979; Marcias-Garza et al.,
1988), whose axis is in the axial frequency directionνv
and its apex is at the origin. Recovery of the average in-
tensity in each individual layer is impossible since the
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information about inter-layer variations of the average
transversal intensity is in the missing cone (Sheppard
and Gu, 1991). A similar conclusion may be derived
from observing the three dimensional frequency do-
main support that relies on diffraction limited optics
(Sundaram and Nayar, 1997).

In order to obtain another point of view on these diffi-
culties, consider the naive inverse filtering approach to
the problem given by Eq. (2). In the transversal spatial
frequency domain, the reconstruction is

F̂1 = B(Ga − GbH2a) F̂2 = B(Gb − Ga H1b) (4)

where

B = (1− H1bH2a)
−1 . (5)

As H → 1, B → ∞ hence the solution is instable.
Note, however, thatthe problem is well posed and sta-
ble at the high frequencies. Since H is a LPF, then
B → 1 at high frequencies. As seen in Eqs. (4), the
high frequency contents of the slice in which a layer
is in focus are retained, while those of the other slice
are diminished. Even if high frequency noise is added
during image acquisition, it is amplified only slightly
in the reconstruction. This behavior is quite opposite
to typical reconstruction problems, in which instability
and noise amplification appear in the high frequencies.

Iterative solutions have been suggested to similar
inversion problems in microscopy (Agard and Sedat,
1983; Agard, 1984; Diaspro et al., 1990) and in other
fields. A similar approach was used in Aizawa et al.
(2000) to generate special effects on occluding layers,
when the inverse filtering needed special care in the
low frequency components. The method that we con-
sider can be visualized as progression along vectors in
alternating directions parallel to the axes in Fig. 2. It
converges to the solution from any initial hypothesis
for |H | < 1. As |H | decreases (roughly speaking, as
the frequency increases), the constraint lines approach
orthogonality, thus convergence is faster. A single it-
eration is described in Fig. 3. This is a version of the
Van-Cittert restoration algorithm (Jansson et al., 1970).
With slicesga andgb as the initial hypotheses for̂f1

and f̂2 respectively, at thel ’th iteration

F̂1(m) = B̂(m) [Ga − GbH2a]

F̂2(m) = B̂(m) [Gb − Ga H1b]
(6)

Figure 3. A step in the iterative process. Initial hypotheses for the
layers serve as input images for a processing step, based on Eq. (1).
The new estimates are fed back as input for the next iteration.

for oddl , wherem= (l + 1)/2 and

B̂(m) =
m∑

k=1

(H1bH2a)
k−1 . (7)

B̂(m) has a major effect on the amplification of noise
added to the raw imagesga andgb (with the noise of the
unfocused slice attenuated byH ). Again, we see that
at high frequencies the amplification of additive noise
approaches 1. As the frequency decreases, noise am-
plification increases. The additive DC error increases
linearly withm.

Let us define thebasic solutionas the result of using
m = 1. Eq. (6) indicates that we can do the recovery
directly, without iterations, by calculating the kernel
(filter) beforehand.m is a parameter that controls how
close the filterB̂(m) is to the inverse filter, and is anal-
ogous to regularization parameters in typical inversion
methods.

In the spatial domain, Eq. (7) turns into a convolution
kernel

b̂m(x, y)= δ(x, y)+ h1b ∗ h2a︸ ︷︷ ︸
once

+ h1b ∗ h2a︸ ︷︷ ︸ ∗ h1b ∗ h2a︸ ︷︷ ︸︸ ︷︷ ︸
twice

+ · · ·

+ h1b∗ h2a︸ ︷︷ ︸ ∗ h1b ∗· · ·∗ h2a∗ h1b∗h2a︸ ︷︷ ︸︸ ︷︷ ︸
m−1 times

.

(8)

The spatial support of̂bm is approximately 2dmpixels
wide, whered is the blur diameter (assuming for a mo-
ment that both kernels have a similar support). Here, the
finite support of the image has to be taken into account.
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The largerm is, the larger the disturbing effect of the
image boundaries. The unknown surroundings affect
larger portions of the image. It is therefore preferable
to limit m even in the absence of noise.

This difficulty seems to indicate at a basic limit to
the ability to recover the layers. If the blur diameterd
is very large, only a smallm can be used, and the initial
layer estimation achieved only by focusing cannot be
improved much. In this case the initial slices already
show a good separation of the individual layers, since
in each of the two slices, one layer is very blurred and
thus hardly disturbs the other one. On the other hand,
if d is small, then in each slice one layer is focused,
while the other is nearly focused—creating confusing
images. But then, we are able to enhance the recovery
using a largerm with only a small effect of the image
boundaries. Using a largerm leads, however, to noise
amplification and to greater sensitivity to errors in the
assumed PSF (see Subsection 2.4).

Example.A simulated scene consists of the image of
Lena, as the close object, seen reflected through a win-
dow out of which Mt. Shuksan3 is seen. The original
layers appear in the top of Fig. 4. While any of the lay-
ers is focused, the other is blurred by a Gaussian kernel
with standard deviation (STD) of 2.5 pixels. The slices
in which each of the layers is focused are shown in the
second row of Fig. 4 (all the images in this work are
presented contrast-stretched).

During reconstruction, “mirror” (Aghdasi and Ward,
1996) extrapolation was used for the surroundings of
the image in order to reduce the effect of the bound-
aries. The basic solution (m= 1) removes the crosstalk
between the images, but it lacks contrast due to the at-
tenuation of the low frequencies. Usingm= 6, which
is equivalent to 13 iterations, improves the balance be-
tween the low frequency components to the high ones.
With largerm’s the results are similar.

2.2. Similarity to Motion-Based Separation

In separating transparent layers, the fact that the high
frequencies can be easily recovered, while the low ones
are noisy or lost, is not unique to this approach. It also
appears in results obtained using motion. Note that, like
focus changes, motion leaves the DC component unvar-
ied. In Bergen et al. (1992), the results of motion-based
recovery of semi-reflected scenes are clearly highpass
filtered versions of the superimposing components. An
algorithm presented in Irani et al. (1994) was demon-

Figure 4. Simulation results. In the focused slices one of the orig-
inal layers is focused while the other is defocus blurred. The basic
solution with the correct kernel removes the crosstalk, but the low fre-
quency content of the images is too low. Approximating the inverse
filter with 6 terms (m= 6) amplifies the low frequency components.

strated in a setup similar to Bergen et al. (1992). In Irani
et al. (1994), one of the objects is “dominant”. It can
easily be seen there that even as the dominant object is
faded out in the recovery, considerable low-frequency
contamination remains.

Shizawa and Mase (1990) have shown that, in re-
gions of translational motion, the spatiotemporal en-
ergy of each layer resides in a plane, which passes
through the origin in the spatiotemporal frequency
domain. This idea was used (Darrel and Simoncelli,
1993a, 1993b) to generate “nulling” filters to eliminate
the contribution of layers, thus isolating a single one.
However, any two of these frequency planes have a
common frequency “line” passing through the origin
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(the DC), whose components are thus generally insep-
arable.

These similarities are examples of the unification
of triangulation and DOF approaches discussed in
Schechner and Kiryati (1998). In general, Schechner
and Kiryati (1990) showed that the depth from focus or
defocus approaches are manifestations of the geomet-
ric triangulation principle. For example, it was shown
that for the same system dimensions, the depth sensi-
tivity of stereo, motion blur and defocus blur systems
are basically the same. Along these lines, the similar-
ity of the inherent instabilities of separation based on
motion and focus is not surprising.

2.3. Using a Focused Slice and a Pinhole Image

Another approach to layer separation is based on us-
ing as input a pinhole image and a focused slice, rather
than two focused slices. Acquiring one image via a very
small aperture (“pinhole camera”) leads to a simpler al-
gorithm, since just a single slice with one of the layers
in focus is needed. The advantage is that the two im-
ages are taken without changing the axial positions of
the system components, hence no geometric distortions
arise. Acquisition of such images is practically impos-
sible in microscopy (due to the significant diffraction
effects associated with small objects) but is possible in
systems inspecting macroscopic objects.

The “pinhole” image is described by

g0 = ( f1+ f2)

a
, (9)

where 1/a is the attenuation of the intensity due to
contraction of the aperture. This image is used in con-
junction with one of the focused slices of Eq. (1), for
examplega. The inverse filtering solution is

F̂1 = S(Ga − aG0H2a) F̂2 = S(aG0− Ga)

(10)

where

S= (1− H2a)
−1 . (11)

As in Subsection 2.1,Scan be approximated by

Ŝ(m) =
m∑

k=1

Hk−1
2a . (12)

2.4. Effect of Error in the PSF

The algorithm suggested in Subsection 2.1 computes
F̂1(m) = B̂(m)[Ga − GbH2a]. We normally assume
(Eq. (2)) thatGa = F1+H2aF2 andGb = F2+H1bF1.
If the assumption holds,

F̂1(m) = F1(1− H1bH2a) B̂(m). (13)

Note that, regardless of the precise form of the PSFs,
had the imaging PSFs and the PSFs used in the recovery
been equal, the reconstruction would have converged
to F1 asm→ ∞ when|H1b|, |H2a| < 1. In practice,
the imaging PSFs are slightly different, i.e.,Ga = F1+
H̃2aF2 andGb = F2+ H̃1bF1 where

H̃1b = H1b − E1b, H̃2a = H2a − E2a, (14)

and E1b, E2a are some functions of the spatial fre-
quency. This difference may be due to inaccurate prior
modeling of the imaging PSFs or due to errors in depth
estimation. The reconstruction process leads to

F̃1 = [F1 (1− H1bH2a)+ E1bH2aF1− E2aF2] B̂(m)

= F̂1(m)+ B̂(m) (E1bH2aF1− E2aF2) . (15)

A similar relation is obtained for the other layer.
An error in the PSF leads to contamination of the re-

covered layer by its complementary. The largerB̂ is, the
stronger is the amplification of this disturbance. Note
that B̂(m) monotonically increases withm, within the
support of the blur transfer function ifH1bH2a > 0,
as is the case when the recovery PSF’s are Gaussians.
Note that usually in the low frequencies (which is the
regime of the crosstalk)H1b, H2a > 0. Thus, we may
expect that the best sense of separation will be achieved
using a smallm, actually, one iteration should provide
the least contamination. This is so although the uncon-
taminated solution obeyŝF → F asm increases. In
other words, decreasing the reconstruction error does
not necessarily lead to less crosstalk.

Both H andH̃ (of any layer) are low-pass filters that
conserve the average value of the images. Hence,E≈ 0
at the very low and at the very high frequencies, i.e.,E
is a bandpass filter. However,B̂(m) amplifies the low
frequencies. At the low frequencies, their combined
effect may have a finite or infinite limit asm→∞,
depending on the PSF models used.

Continuing with the example shown in Fig. 4, where
the imaging PSF had an STD ofr = 2.5 pixels, the
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Figure 5. Simulated images when using the wrong PSF in the re-
construction. The original blur kernel had a STD ofr = 2.5 pixels.
Crosstalk between the recovered layers is seen clearly if the STD
of the kernels used is 1.5 or 5 pixels. The contamination increases
with m.

effects of using a wrong PSF in the reconstruction are
demonstrated in Fig. 5. When the PSF used in the re-
construction has STD of 1.25 pixels, negative traces re-
main (i.e., brighter areas in one image appear as darker
areas in the other). When the PSF used in the recon-
struction has STD of 5 pixels, positive traces remain
(i.e., brighter areas in one image appear brighter in the
other). The contamination is slight in the basic solution
(m = 1), but is more noticeable with largerm’s, that
is, whenB̂→ B. So, the separation seems worse, even
though each of the images has a better balance (due to
the enhancement of the low frequencies).

We can perform the same analysis for the method
described in subsection 2.3. Now there is only one fil-

ter involved,H2a, since the layerf1 is focused. Sup-
pose that, in addition to usingH2a in the reconstruction
rather than the true imaging transfer functionH̃2a, we
inaccurately use the scalara rather than the true value
ã used in the imaging process. Letedenote the relative
error in this parameter,e= (a− ã)/ã. We obtain that

F̃1 = F̂1(m)− eH2aŜ(m)F1− (E2a + eH2a)Ŝ(m)F2,

(16)

F̃2 = F̂2(m)+ (E2a + e)Ŝ(m)F2+ eŜ(m)F1, (17)

where hereF̂1(m) and F̂2(m) are the results had the
imaging defocus kernel been the same as the one used in
the reconstruction and hada = ã. Note the importance
of the estimation ofa: if e= 0 thenF̃2 (the defocused
layer) is recovered uncontaminated byF1. However,
even in this caseF̃1 (the focused layer) will have a
contamination ofF2, amplified byŜ(m) andE2a.

3. Seeking the Blur Kernels

The recovery methods outlined in Section 2 are based
on the use of known, or estimated blur kernels. If the
imaging system is of our design, or if it is calibrated,
and in addition we have depth estimates of the lay-
ers obtained during the focusing process (e.g., as will
be described in Section 5), we may know the kernels
a-priori. Generally, however, the kernels are unknown.
Even a-priori knowledge is sometimes inaccurate. We
thus wish to achieve self-calibration, i.e., to estimate
the kernels out of the images themselves. This will en-
able blind separation and restoration of the layers.

To do that, we need a criterion for layer separation.
Note that the method for estimating the blur kernels
based on minimizing the fitting error in different lay-
ers as in Aizawa et al. (2000) may fail in this case as
the layers are transparent and there is no unique blur
kernel at each point. Moreover, the fitting error is not
a criterion for separation. Assume that the statistical
dependence of the real and virtual layers is small (even
zero). This is reasonable since they usually originate
from unrelated scenes. The Kullback-Leibler distance
measures how far the images are from statistical inde-
pendence, indicating their mutual information (Cover
and Thomas, 1991). Let the probabilities for certain
values f̌1 and f̌2 be P( f̌1) andP( f̌2), respectively. In
practice these probabilities are estimated by the his-
tograms of the recovered images. The joint probability
is P( f̌1, f̌2), which is in practice estimated by the joint
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histogram of the images, that is, the relative number of
pixels in which f̃1 has a certain valuěf1 and f̃2 has
a certain valuef̌2 at corresponding pixels. The mutual
information is then

I( f̃1, f̃2) =
∑
f̌1, f̌2

P( f̌1, f̌2) log
P( f̌1, f̌2)

P( f̌1) P( f̌2)
. (18)

In this approach we assume that if the layers are cor-
rectly separated, each of their estimates containsmini-
mum informationabout the other. Mutual information
was suggested and used as a criterion for alignment
in Thevenaz and Unser (1998), and Viola and Wells
(1997), where its maximum was sought. We use this
measure to look for the highest discrepancy between
images, thus minimizing it. The distance (Eq. (18)) de-
pends on the quantization of̃f1 and f̃2, and on their dy-
namic range, which in turn depends on the brightness
of the individual layersf1 and f2. To decrease the de-
pendence on these parameters, we performed two nor-
malizations. First, each estimated layer was contrast-
stretched to a standard dynamic range. Then,I was
normalized by the mean entropy of the estimated lay-
ers, when treated as individual images. The self infor-
mation (Cover and Thomas, 1991) (entropy) off̃1 is

H( f̃1) = −
∑

f̌1

P( f̌1) log P( f̌1), (19)

and the expression for̃f2 is similar. The measure we
used is

In( f̃1, f̃2) = I( f̃1, f̃2)

[H( f̃1)+H( f̃2)]/2
, (20)

indicating the ratio of mutual information to the self
information of a layer.

The recovered layers depend on the kernels used.
Therefore, the problem of seeking the kernels can be
stated as a minimization problem:

[ĥ1b, ĥ2a] = arg min
h1b,h2a

In( f̃1, f̃2). (21)

According to Subsection 2.4, errors in the kernels lead
to crosstalk (contamination) of the estimated layers,
which is expected to increase their mutual information.

There are generally many degrees of freedom in the
form of the kernels. On the other hand, the kernels are
constrained: they are non-negative, they conserve en-
ergy etc. To simplify the problem, the kernels can be

assumed to be Gaussians. Then, the kernels are param-
eterized only by their standard deviations (proportional
to the blur radii). This limitation may lead to a solution
that is suboptimal but easier to obtain.

Another possible criterion for separation is decor-
relation. Decorrelation was a necessary condition for
the recovery of semi-reflected layers by independent
components analysis in Farid and Adelson (1999), and
by polarization analysis in Schechner et al. (1999b,
1999c). Note that requiring decorrelation between the
estimated layers is based on the assumption that the
original layers are decorrelated: that assumption is usu-
ally only an approximation.

To illustrate the use of these criteria, we search for
the optimal blur kernels to separate the images shown
in the second row of Fig. 4. Here we simplified the
calculations by restricting both kernels to be isotropic
Gaussians of the same STD, as these were indeed the
kernels used in the synthesis. Hence, the correlation and
mutual information are functions of a single variable.4

As seen in Fig. 6, using the correct kernel (with STD of
2.5 pixels) yields decorrelated basic solutions (m= 1),
with minimal mutual information (In is plotted). The
positive correlation for larger values of assumed STD,
and the negative correlation for smaller values, is con-
sistent with the visual appearance of positive and nega-
tive traces in Fig. 5. Observe that, as expected from the
theory, in Fig. 5 the crosstalk was stronger for largerm.
Indeed, in Fig. 6 the absolute correlation and mutual
information are greater form= 6 than form= 1 when
the wrong kernel is used.

In a different simulation, the focused slices corre-
sponding to the original layers shown in the top of
Fig. 4 were created using an exponential imaging ker-
nel rather than a Gaussian, but the STD was still 2.5.
The recovery was done with Gaussian kernels. The cor-
relation and mutual information curves (as a function of
the assumed STD) were similar to those seen in Fig. 6.
The minimal mutual information was however at STD
of r = 2.2 pixels. There was no visible crosstalk in the
resulting images.

The blurring along the sensor raster rows may be
different than the blurring along the columns. This is
because blurring is caused not only by the optical pro-
cesses, but also from interpixel crosstalk in the sensors,
and the raster reading process in the CCD. Moreover,
the inter-pixel spacing along the sensor rows is gener-
ally different than along the columns, thus even the op-
tical blur may affect them differently. We assigned a dif-
ferent blur “radius” to each axis:r row andr column. When
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Figure 6. [Solid] At the assumed kernel STD ofr = 2.5 pixels the
basic solutions are decorrelated and have minimal mutual informa-
tion (shown normalized), in consistency with the true STD. [Dashed]
The absolute correlation and the mutual information are larger for a
large value ofm.

two slices are used, as in Subsection 2.1, there are two
kernels, with a total of four parameters. Defining the
parameter vectorp ≡ (r row

1b , r
column
1b , r row

2a , r
column
2a ), the

estimated vector̂p is

p̂ = arg min
p
In[ f̃1(p), f̃2(p)]. (22)

When a single focused slice is used in conjunction
with a “pinhole” image, as described in Subsection 2.3,
the problem is much simpler. There are three parame-
ters to determine:r row

2a , r
column
2a anda. The parametera

is easier to obtain as it indicates the ratio of the light
energy in the wide-aperture image relative to the pin-

hole image. Ideally, it is the square of the reciprocal
of the ratio of thef-numbersof the camera, in the two
states. If, however, the optical system is not calibrated,
or if there is automatic gain control in the sensor, this
ratio is not an adequate estimator ofa. a can then be
estimated by the ratio of the average values of the im-
ages, for example. Such an approximation may serve
as a starting point for better estimates.

When using the decorrelation criterion in the multi-
parameter case, there may be numerous parameter
combinations that lead to decorrelation, but will not all
lead to the minimum mutual information, or to good
separation. Ifp is N-dimensional, the zero-correlation
constraint defines aN−1 dimensional hypersurface in
the parameter space. It is possible to use this criterion
to obtain initial estimates ofp, and search for minimal
mutual information within a lower dimensional man-
ifold. For example, for each combination ofr row and
r column, a that leads to decorrelation can be found (near
the rough estimate based on intensity ratios). Then the
search for minimum mutual information can be limited
to a subspace of only two parameters.

4. Recovery Experiments

4.1. Recovery from Two Focused Slices

A print of the “Portrait of Doctor Gachet” (by van-
Gogh) was positioned closely behind a glass window.
The window partly reflected a more distant picture,
a part of a print of the “Parasol” (by Goya). Thef #
was 5.6. The two focused slices5 are shown at the
top of Fig. 7. The cross correlation between the raw
(focused) images is 0.98. The normalized mutual in-
formation isIn ≈ 0.5 indicating that significant sep-
aration is achieved by the focusing process, but that
substantial crosstalk remains.

The optimal parameter vectorp̂ in the sense of min-
imum mutual information is [1.9, 1.5, 1.5, 1.9] pixels,
wherer1b corresponds to the blur of the close layer,
andr2a corresponds to the blur of the far layer. With
these parameters, the basic solution (m= 1) shown at
the middle row of Fig. 7 hasIn ≈ 0.006 (two or-
ders of magnitude better than the raw images). Using
m= 5 yields better balance between the low and high
frequency components, butIn increased to about 0.02.
We believe that this is due to the error in the PSF model,
as discussed above.

In another example, a print of the “Portrait of Ar-
mand Roulin” (by van-Gogh) was positioned closely
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Figure 7. [Top] The slices in which either of the transparent layers
is focused. [Middle row] The basic solution (m= 1). [Bottom row]:
Recovery withm= 5.

behind a glass window. The window partly reflected a
more distant picture, a print of a part of the “Miracle of
San Antonio” (by Goya). As seen in Fig. 8, the “Por-
trait” is hardly visible in the raw images. The cross cor-
relation between the raw (focused) images is 0.99, and
the normalized mutual information isIn ≈ 0.6. The
optimal parameter vector̂p here is [1.7, 2.4, 1.9, 2.1]
pixels. With these parametersIn ≈ 0.004 at the basic
solution, rising to about 0.02 form= 5.

In a third example, the scene consisted of a dis-
tant “vase” picture that was partly-reflected from the
glass-cover of a closer “crab” picture. The imaging
system was telecentric (Nayar et al., 1995; Watanabe
and Nayar, 1996), so no magnification corrections were
needed. The focused slices and the recovered layers are
shown in Fig. 9. For the focused slicesIn ≈ 0.4, and

Figure 8. [Top] The slices in which either of the transparent layers
is focused. [Middle row] The basic solution. [Bottom row]: Recovery
with m= 5.

Figure 9. [Top] The slices in which either of the transparent layers
is focused. [Bottom] The basic solution for the recovery of the “crab”
(left) and “vase” (right) layers.
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the cross correlation is 0.95. The optimal parameter
vectorp̂ in the sense of minimum mutual information
is [4,4,11,1] pixels. The basic recovery, usingB̂(1),
are shown in the bottom of Fig. 9. The crosstalk is
significantly reduced. The mutual informationIn and
correlation decreased dramatically to 0.009 and 0.01,
respectively.

4.2. Recovery from a Focused Slice and
a Pinhole Image

The scene consisted of a print of the “Portrait of Ar-
mand Roulin” as the close layer and a print of a part
of the “Miracle of San Antonio” as the far layer. The
imaging system was not telecentric, leading to magnifi-
cation changes during focusing. Thus, in such a system
it may be preferable to use a fixed focus setting, and
change the aperture between image acquisitions. The
“pinhole” image was acquired using the state corre-
sponding to thef # = 11 mark on the lens, while the
wide aperture image was acquired using the state cor-
responding to thef #= 4 mark. We stress that we have
not calibrated the lens, so these marks do not neces-
sarily correspond to the true values. The slice in which
the far layer is focused (using the wide aperture) is
shown in the top left of Fig. 10. In the “pinhole” image

Figure 10. [Top left] The slice in which the far layer is focused,
when viewed with the wide aperture. [Top right] The “pinhole” im-
age. [Middle row]: The basic recovery. [Bottom row]: Recovery with
m= 5.

(top right), the presence of the “Portrait” layer is more
noticeable.

According to the ratio of thef #’s, the wide aperture
image should have been brighter than the “pinhole” im-
age by(11/4)2 ≈ 7.6. However, the ratio between the
mean intensity of the wide aperture image to that of the
pinhole image was 4.17, not 7.6. This could be due to
poor calibration of the lens by its manufacturer, or be-
cause of some automatic gain control in the sensor. We
addeda to the set of parameters to be searched in the
optimization process. In order to get additional cues for
a, we calculated ratios of other statistical measures: the
ratios of the STD, median, and mean absolute deviation
were 4.07, 4.35 and 4.22, respectively. We thus leta
assume values between 4.07 and 4.95. In this example
we demonstrate the possibility of using decorrelation
to limit the minimum mutual information search. First,
for each hypothesized pair of blur diameters, the pa-
rametera that led to decorrelation of the basic solution
was sought. Then, the mutual information was calcu-
lated over the parameters that cause decorrelation. The
blur diameters that led to minimal mutual information
atm= 1 werer row = r column= 11 pixels, with the best
parametera being 4.28. The reconstruction results are
shown in the middle row of Fig. 10. Their mutual in-
formation (normalized) is 0.004.

Using a largerm with these parameters increased
the mutual information, so we looked for a better es-
timate, minimizing the mutual information after the
application ofB̂(m). For m = 5 the resulting param-
eters were different:r row = r column= 17 pixels, with
a = 4.24. The recovered layers are shown in the bottom
row of Fig. 10. Their mutual information (normalized)
is 0.04. As discussed before, the increase is probably
due to inaccurate modeling of the blur kernel.

5. Obtaining the Focused Slices

5.1. Using a Standard Focusing Technique

We have so far assumed that the focused slices are
known. We now consider their acquisition using focus-
ing as in Depth from Focus (DFF) algorithms. Depth is
sampled by changing the focus settings, particularly the
sensor plane. According to Abbott and Ahuja (1993),
Krishnan and Ahuja (1996) and Schechner and Kiryati
(1998, 1999), the sampling should be at depth of field
intervals, for whichd ≈ 1x, where1x is the inter-
pixel period (similar to stereo (Schechner and Kiryati,
1998)). An imaging system telecentric on the image
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side (Nayar et al., 1995; Watanabe and Nayar, 1996)
is a preferred configuration, since it ensures constant
magnification as the sensor is put out of focus. For
such a system it is easy to show that the geometrical-
optics blur-kernel diameter isd = D1v/F , whereD
is the aperture width,F is the focal length (see Fig. 1),
and1v is the distance of the sensor plane from the
plane of best focus. The axial sampling period is there-
fore1v ≈ F1x/D. The sampling period requirement
can also be analyzed in the frequency domain, as in
Sundaram and Nayar (1997).

Focus calculations are applied to the image slices ac-
quired. The basic requirement from the focus criterion
is that it will reach a maximum when the slice is in fo-
cus. Most criteria suggested in the literature (Itoh et al.,
1989; Jarvis, 1983; Nayar, 1992; Noguchi and Nayar,
1994; Subbarao and Tyan, 1995; Torroba et al., 1994;
Yeo et al., 1993) are sensitive to two dimensional vari-
ations in the slice.6 Local focus operators yield “slices
of local focus-measure”,FOCUS(x, y, ṽ), whereṽ is
the axial position of the sensor (see Fig. 1). If we want
to find the depth at a certain region (patch) (Nair and
Stewart, 1992), and the scene is composed of a single
layer, we can averageFOCUS(x, y, ṽ) over the region,
to obtainFOCUS(ṽ) from which a single valued depth
can be estimated. This approach is inadequate in the
presence of multiple layers. Ideally, each of them alone
would lead to a main peak7 in FOCUS(ṽ). But, due
to mutual interference, the peaks can move from their
original positions, or even merge into a single peak in
some “average” position, thus spoiling focus detection.

This phenomenon can be observed in experimen-
tal results. The scene, the focused slices of which are
shown in Fig. 9, had the “crab”and the “vase” objects
at distances of 2.8 m and 5.3 m from the lens, respec-
tively. The details of the experimental imaging system
are described in Schechner et al. (1998). Depth varia-
tions within these objects were negligible with respect
to the depth of field. Extension of the STD of the PSF
by about 0.5 pixels was accomplished by moving the
sensor array 0.338 mm from the plane of best focus.8

This extended the effective width of the kernel by about
1 pixel (1d ≈ 1 pixel), and was also consistent with
our subjective sensation of DOF. The results of the fo-
cus search, shown by the dashed-dotted line in Fig. 11,
indicate that the focus measure failed to detect the lay-
ers, as it yielded a single (merged) peak, somewhere
between the focused states of the individual layers. This
demonstrates the confusion of conventional autofocus-
ing devices when applied to transparent scenes.

Figure 11. Experimental results. [Dashed-dotted line]: The conven-
tional focus measure as a function of the slice index. It mistakenly
detects a single focused state at the 6th slice. [Solid line]: The loca-
tions histogram of detected local maxima of the focus measure (the
same scene). The highest numbers of votes (positions of local max-
ima) are correctly accumulated at the 4th and 7th slices—the true
focused slices.

5.2. A Voting Scheme

Towards solving the merging problem, observe that the
layers are generally unrelated and that edges are usu-
ally sparse. Thus, the positions of brightness edges in
the two layers will only sporadically coincide. Since
edges (and other feature-dense regions) are dominant
contributors to the focus criterion, it would be wise not
to mix them by brute averaging of the local focus mea-
surements over the entire region. If point(x, y) is on
an edge in one layer, but on a smooth region in the
other layer, then the peak inFOCUS(x, y, ṽ) corre-
sponding to the edge will not be greatly affected by the
contribution of the other layer.

The following approach is proposed. For each pixel
(x, y) in the slices, the focus measureFOCUS(x, y, ṽ)
is analyzed as a function of̃v, to find its local max-
ima. The result is expressed as a binary vector of local
maxima positions. Then, a vote table analogous to a his-
togram of maxima locations over all pixels is formed by
summing all the “hits” in each slice-index. Each vote is
given a weight that depends on the corresponding value
ofFOCUS(x, y, ṽ), to enhance the contribution of high
focus-measure values, such as those arising from edges,
while reducing the random contribution of featureless
areas. The results of the voting method are shown as
a solid line in Fig. 11, and demonstrate its success in
creating significant, separate peaks corresponding to
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the focused layers. Additional details can be found in
Schechner et al. (1998). The estimated depths were
correct, within the uncertainty imposed by the depth of
field of the system. Optimal design and rigorous per-
formance evaluation of DFF methods in the presence
of transparencies remains an open research problem.

6. Conclusions

This paper presents an approach based on focusing to
separate transparent layers, as appear in semi-reflected
scenes. This approach is more stable with respect to
perturbations (Schechner and Kiryati, 1998) and oc-
clusions than separation methods that rely on stereo or
motion. We also presented a method for self calibra-
tion of the defocus blur kernels given the raw images.
It is based on minimizing the mutual information of the
recovered layers. Note that defocus blur, motion blur,
and stereo disparity have similar origins (Schechner
and Kiryati, 1998) and differ mainly in the scale and
shape of the kernels. Therefore, the method described
here could possibly be adapted to finding the motion
PSFs or stereo disparities in transparent scenes.

In some cases the methods presented here are also
applicable to multiplicative layers (Shizawa and Mase,
1990): If the opacity variations within the close layer
are small (a “weak” object), the transparency effect may
be approximated as a linear superposition of the lay-
ers, as done in microscopy (Agard and Sedat, 1983;
Conchello and Hansen, 1990; Marcias-Garza et al.
1988; Preza et al., 1992). In microscopy and in tomog-
raphy, the suggested method for self calibration of the
PSF can improve the removal of crosstalk between ad-
jacent slices.

In the analysis and experiments, depth variations
within each layer have been neglected. This approxi-
mation holds as long as these depth variations are small
with respect to the depth of field. Extending our anal-
ysis and recovery methods to deal with space-varying
depth and blur is an interesting topic for future research.
A simplified interim approach could be based on ap-
plication of the filtering to small domains in which
the depth variations are sufficiently small. Note that
the mutual information recovery criterion can still be
applied globally, leading to a higher-dimensional opti-
mization problem. We believe that fundamental prop-
erties, such as the inability to recover the DC of each
layer, will hold in the general case. Other obvious im-
provements in the performance of the approach can be
achieved by incorporating efficient search algorithms

to solve the optimization problem (Luenberger, 1989),
with efficient ways to estimate the mutual information
(Thevenaz and Unser, 1998; Viola and Wells, 1997).

Semi-reflections can also be separated using polar-
ization cues (Farid and Adelson, 1999; Schechner et al.,
1999a, 1999b, 1999c, 2000b). It is interesting to note
that polarization based recovery is typically sensitive
to high frequency noise at low angles of incidence
(Schechner et al., 2000b) On the other hand, DC re-
covery is generally possible and there are no particular
difficulties at the low frequencies. This nicely com-
plements the characteristics of focus-based layer sep-
aration, where the recovery of the high frequencies is
stable but problems arise in the low frequencies. Fu-
sion of focus and polarization cues for separating semi-
reflections is thus a promising research direction.

The ability to separate transparent layers can be
utilized to generate special effects. For example, in
Aizawa et al. (2000) images were rendered with each
of the occluding (opaque) layers defocused, moved and
enhanced arbitrarily. The same effects, and possibly
other interesting ones can now be generated in scenes
containing semireflections.
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Notes

1. The depth dependence of the scale change can typically be ne-
glected.

2. The superposition is linear, since the real/virtual layers are the
images of the objects multiplied by the transmission/reflection
coefficients of the semi-reflecting surface, and these coefficients
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do not depend on the light intensities. The physical processes in
transparent/semi-reflected scenes are described in Schechner et al.
(1999a, 1999b, 1999c, 2000b). Nonlinear transmission and reflec-
tion effects (as appear in photorefractive crystals) are negligible
at intensities and materials typical to imaging applications.

3. Courtesy of Bonnie Lorimer.
4. The STD was sampled on a grid in our demonstrations. A practical

implementation will preferably use efficient search algorithms
(Luenberger, 1989) to optimize the mutual information (Thevenaz
and Unser, 1998; Viola and Wells, 1997).

5. The system was not telecentric, so there was slight magnification
with change of focus settings. This was compensated for manually
by resizing one of the images.

6. It is interesting to note that a mathematical proof exists (Hausler
and Korner, 1984) for the validity of a focus criterion that is
completely based on local calculations which do not depend on
transversal neighbors: As a function of axial position, the intensity
at each transversal point has an extremum at the plane of best
focus.

7. There are secondary maxima, though, due to the unmonotonic-
ity of the frequency response of the blur operator, and due to
edge bleeding. However, the misleading maxima are usually
much smaller than the maximum associated with the focusing
on feature-dense regions, as edges.

8. Near the plane of best focus, the measured rate of increase of the
STD as a function of defocus was much lower than expected from
geometric considerations. We believe that this is due to noticeable
diffraction and spherical aberration effects in that regime.

References

Abbott, A.L. and Ahuja, N. 1993. Active stereo: Integrating disparity,
vergence, focus, aperture and calibration for surface estimation.
IEEE Trans. Pattern. Anal. Mach. Intell., 15(10):1007–1029.

Agard, D.A. 1984. Optical sectioning microscopy: Cellular architec-
ture in three dimensions.Ann. Rev. Biophys. Bioeng., 13:191–219.

Agard, D.A. and Sedat, J.W. 1983. Three-dimensional structure of a
polytene nucleus.Nature, 302(5910):676–681.

Aghdasi, F. and Ward, R.K. 1996. Reduction of boundary artifacts in
image restoration.IEEE Trans. Image Processing, 5(4):611–618.

Aizawa, K., Kodama, K., and Kubota, A. 2000. Producing object-
based special effects by fusing multiple differently focused im-
ages.IEEE Trans. on Circuits and Systems for Video Technology,
10(2):323–330.

Bergen, J.R., Burt, P.J., Hingorani, R., and Peleg, S. 1992. A three-
frame algorithm for estimating two-component image motion.
IEEE Trans. Pattern. Anal. Mach. Intell., 14(9):886–895.

Borga, M. and Knutsson, H. 1999. Estimating multiple depths in
semi-transparent stereo images. InProc. Scandinavian Conf. on
Image Analysis, Kangerlussuaq, Greenland. Vol. I, pp. 127–133.
Published by the Pattern Recognition Society of Denmark, Lyn-
gby, Denmark.

Castleman, K.R. 1979.Digital image processing. Prentice-Hall, New
Jersey, pp. 357–360.

Chiu, M.Y., Barrett, H.H., Simpson, R.G., Chou, C., Arendt, J.W., and
Gindi, G.R. 1979. Three dimensional radiographic imaging with
a restricted view angle.J. Opt. Soc. Am. A, 69(10):1323–1333.

Conchello, J.A. and Hansen E.W. 1990. Enhanced 3-D reconstruction
from confocal scanning microscope images. I: Deterministic and

maximum likelihood reconstructions.App. Opt., 29(26):3795–
3804.

Cover, T.M. and Thomas, J.A. 1991.Elements of information theory.
John Wiley & Sons, New York, pp. 12–21.

Darrell, T. and Simoncelli, E. 1993a. Separation of transparent mo-
tion into layers using velocity-tuned mechanisms. M.I.T Media
Lab., Massachusetts Institute of Technology, Cambridge, MA.
Media-Lab TR-244.

Darrell, T. and Simoncelli, E. 1993b. ‘Nulling’ filters and the separa-
tion of transparent motions. InProc. IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, New York,
pp. 738–739.

Darrell, T. and Wohn K. 1988. Pyramid based depth from focus.
In Proc. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, Ann Arbor, MI, pp. 504–509.

Diaspro, A., Sartore M., and Nicolini, C. 1990. 3D representation of
biostructures imaged with an optical microscope.Imag. and Vis.
Comp., 8(2):130–141.

Engelhardt, K. and Hausler, G. 1988. Acquisition of 3-D data by
focus sensing.App. Opt., 27(22):4684–4689.

Erhardt, A., Zinger, G., Komitowski, D., and Bille, J. 1985. Recon-
structing 3-D light-microscopic images by digital image process-
ing. App. Opt., 24(2):194–200.

Farid, H. and Adelson, E.H. 1999. Separating reflections from images
by use of independent components analysis.J. Opt. Soc. Am. A,
16(9):2136–2145.

Fay, F.S., Fujiwara, K., Rees, D.D., and Fogarty, K.E. 1983. Distri-
bution of actinin in single isolated smooth muscle cells,J. of Cell
Biology, 96:783–795.

Fujikake, H., Takizawa, K., Aida, T., Kikuchi, H., Fujii, T., and
Kawakita, M. 1998. Electrically-controllable liquid crystal polar-
izing filter for eliminating reflected light.Optical Review, 5(2):93–
98.

Hausler, G. and Korner, E. 1984. Simple focusing criterion.App.
Opt, 23(15):2468–2469.

Irani, M., Rousso, B., and Peleg, S. 1994. Computing occluding and
transparent motions.Int. J. Comp. Vis., 12(1):5–16.

Itoh, K., Hayashi, A., and Ichioka, Y. 1989. Digitized optical mi-
croscopy with extended depth of field.App. Opt., 28(16):3487–
3493.

Jansson, P.A., Hunt, R.H., and Plyler, E.K. 1970. Resolution en-
hancement of spectra.J. Opt. Soc. Am., 60(5):596–599.

Jarvis, R.A. 1983. A perspective on range-finding techniques
for computer vision.IEEE Trans. Pattern Anal. Mach. Intell.,
5(2):122–139.

Krishnan, A. and Ahuja, N. 1996. Panoramic image acquisi-
tion. In Proc. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, San Francisco, CA, pp. 379–
384.

Kubota, A., Kodama, K., and Aizawa, K. 1999. Registration and
blur estimation methods for multiple differently focused images.
In Proc. International Conference on Image Processing, Kobe,
Japan, Vol. 2, pp. 447–451.

Luenberger, D.G. 1989.Linear and Nonlinear Programming,2nd
ed., Adisson-Wesley, London.

Marcias-Garza, F., Bovik, A.C., Diller, K.R., Aggarwal, S.J., and
Aggarwal, J.K. 1988. The missing cone problem and low-pass
distortion in optical serial sectioning microscopy. InProc. IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing, New York, Vol-II, pp. 890–893.



Separation of Transparent Layers using Focus 39

McNally, J.G., Preza, C., Conchello, J.A., and Thomas, L.J., Jr.
1994. Artifacts in computational optical-sectioning microscopy.
J. Opt. Soc. Am. A, 11(3):1056–1067.

Nair, H.N. and Stewart, C.V. 1992. Robust focus ranging. InProc.
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, Champaign, IL, pp. 309–314.

Nayar, S.K. 1992. Shape from focus system. InProc. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition,
Champaign, IL, pp. 302–308.

Nayar, S.K., Watanabe, M., and Nogouchi, M. 1995. Real time fo-
cus range sensor. InProc. IEEE International Conf. on Computer
Vision, Cambridge, MA, pp. 995–1001.

Noguchi, M. and Nayar, S.K. 1994. Microscopic shape from focus
using active illumination. InProc. IAPR International Conference
on Image Processing,Jerusalem, Israel, Vol-1, pp. 147–152.

Ohnishi, N., Kumaki, K., Yamamura, T., and Tanaka, T. 1996. Sep-
arating real and virtual objects from their overlapping images.
In Proc. European Conf. on Computer VisionVol. II, Cambridge,
UK. Springer, New York, pp. 636–646. Lecture notes in Computer
Science 1065.

Oren M. and Nayar, S.K. 1995. A theory of specular surface ge-
ometry. InProc. IEEE International Conf. on Computer Vision,
Cambridge, MA, pp. 740–747.

Preza, C., Miller, M.I., Thomas, L.J., Jr., and McNally, J.G. 1992.
Regularized linear method for reconstruction of three-dimensional
microscopic objects from optical sections.J. Opt. Soc. Am. A,
9(2):219–228.

Schechner, Y.Y. and Kiryati, N. 1998. Depth from defocus vs. Stereo:
How different really are they? InProc. IEEE Computer Society
International Conference on Pattern Recognition, Brisbane, Aus-
tralia, Vol. 2, pp. 1784–1786. To be published in the Int. J. Com-
puter Vision.

Schechner, Y.Y. and Kiryati, N. 1999. The optimal axial interval in
estimating depth from defocus. InProc. IEEE International Conf.
on Computer Vision, Kerkyra, Greece, Vol. II, pp. 843–848.

Schechner, Y.Y., Kiryati, N., and Basri, R. 1998. Separation of trans-
parent layers using focus. InProc. IEEE International Conf. on
Computer Vision, Mumbai, India, pp. 1061–1066.

Schechner, Y.Y., Kiryati, N., and Shamir, J. 1999a. Separation of
transparent layers by polarization analysis. InProc. Scandina-
vian Conf. on Image Analysis, Kangerlussuaq, Greenland, Vol. I,
pp. 235–242. Published by the Pattern Recognition Society of
Denmark, Lyngby, Denmark.

Schechner, Y.Y., Shamir, J., and Kiryati, N. 1999b. Vision through
semireflecting media: Polarization analysis.Optics Letters,
24(16):1088–1090.

Schechner, Y.Y., Shamir, J., and Kiryati, N., 1999c. Polarization-
based decorrelation of transparent layers: The inclination angle
of of an invisible surface. InProc. IEEE International Conf. on
Computer Vision, Kerkyra, Greece, Vol. II, pp. 814–819.

Schechner, Y.Y., Kiryati, N., and Shamir, J. 2000a. Blind recovery
of transparent and semireflected scenes. InProc. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition,
Hilton Head Island, SC, Vol. 1, pp. 38–43.

Schechner, Y.Y., Shamir, J., and Kiryati, N. 2000b. Polarization
and statistical analysis of scenes containing a semireflector.
J. Opt. Soc. Am. A, 17(2):276–284.

Sheppard, C.J.R. and Gu, M. 1991. Three dimensional optical
transfer function for an annular lens.Optics Communications,
81(5):276–280.

Shizawa, M. 1992. On visual ambiguities due to transparency in
motion and stereo. InProc. European Conf. on Computer Vi-
sion, Santa Margherita Ligure, Italy, Springer-Verlag, New York,
pp. 411–419. Lecture notes in Computer Science 588.

Shizawa, M. 1993. Direct estimation of multiple disparities for trans-
parent multiple surfaces in binocular stereo. InProc. IEEE Inter-
national Conf. on Computer Vision, Berlin, pp. 447–454.

Shizawa, M. and Mase, K. 1990. Simultaneous multiple optical flow
estimation. InProc. International Conference on Pattern Recog-
nition, Atlantic City, NJ, Vol. 1, pp. 274–278.

Streibl, N. 1984. Fundamental restrictions for 3-D light distributions.
Optik, 66(4):341–354.

Streibl, N. 1985. Three-dimensional imaging by a microscope.
J. Opt. Soc. Am. A, 2(2):121–127.

Subbarao, M. and Jenn-Kwei Tyan. 1995. The optimal focus measure
for passive autofocusing and depth from focus. InProc. SPIE
2598—Videometrics VI, Philadelphia, PA, pp. 89–99.

Sugimoto, S.A. and Ichioka, Y. 1985. Digital composition of images
with increased depth of focus considering depth information.App.
Opt., 24(14):2076–2080.

Sundaram, H. and Nayar, S. 1997. Are textureless scenes recover-
able? InProc. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 814–
820.

Torroba, P., Cap, N., and Rabal, H. 1994. Defocus detection using a
visibility criterion. Journal of Modern Optics, 41(1):111–117.

Thevenaz, P. and Unser, M. 1998. An efficient mutual information
optimizer for multiresolution image registration. InProc. IEEE
Computer Society International Conference on Image Processing,
Chicago, IL, Vol. I, pp. 833–837.

Viola, P. and Wells, W.M. III, 1997. Alignment by maximization of
mutual information.Int. J. of Computer Vision, 24(2):137–154.

Wang, J.Y.A. and Adelson, E.H. 1993. Layered representation for
motion analysis. InProc. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, New York, pp. 361–
365.

Watanabe, M. and Nayar, S.K. 1996. Telecentric optics for com-
putational vision. InProc. European Conf. on Computer Vision,
Cambridge, UK. Springer, New York, Vol. II, pp. 439–451. Lec-
ture notes in Computer Science 1065.

Weinshall, D. 1989. Perception of multiple transparent planes in
stereo vision.Nature, 341(6244):737–739.

Xiong, Y. and Shafer, S.A. 1993. Depth from focusing and defocus-
ing. In Proc. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, New York, pp. 68–73.

Yeo, T.T.E., Ong, S.H., Jayasooriah, and Sinniah, R. 1993. Aut-
ofocusing for tissue microscopy.Image and Vision Computing,
11(10):629–639.


