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Abstract. Consider situations where the depth at each point in the scene is multi-valued, due to the presence of
a virtual image semi-reflected by a transparent surface. The semi-reflected image is linearly superimposed on the
image of an object that is behind the transparent surface. A novel approach is proposed for the separation of the
superimposed layers. Focusing on either of the layers yields initial separation, but crosstalk remains. The separation
is enhanced by mutual blurring of the perturbing components in the images. However, this blurring requires the
estimation of the defocus blur kernels. We thus propose a method for self calibration of the blur kernels, given the
raw images. The kernels are sought to minimize the mutual information of the recovered layers. Autofocusing and
depth estimation in the presence of semi-reflections are also considered. Experimental results are presented.
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1. Introduction is of importance itself, since it indicates the presence
of a clear, transparent surface in front of the camera,
The situation in which several (typically two) lin- at a distance closer than the imaged objects (Ohnishi
early superimposed contributions exist is often en- etal., 1996; Schechner et al., 1999b, 2000b).
countered in real-world scenes. For example (Darrell  The termtransparent layershas been used to de-
and Simoncelli, 1993a; Fujikake et al., 1998), looking scribe situations in which a scene is semi-reflected from
out of a car (or room) window, we see both the out- a transparent surface (Bergen et al., 1992; Darrell and
side world (termedeal object(Ohnishi et al., 1996;  Simoncelli, 1993a; Wang and Adelson, 1993). It means
Oren and Nayar, 1995; Schechner et al., 1999a, 1999b,that the image is decomposed into depth ordered lay-
1999c¢, 2000b)), and a semi-reflection of the objects ers, each with an associated map describing its inten-
inside, termedirtual objects The treatment of such  sity (and, if applicable, its motion (Wang and Adelson,
cases isimportant, since the combination of several un- 1993)). We adopt this terminology, but stress the fact
related images is likely to degrade the ability to analyze that this workdoes notdeal with imaging through an
and understand them. The detection of the phenomenonobject with variable opacity. Approaches to recovering
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each of the layers by nulling the others relied mainly on An algorithm for DFF was demonstrated (Itoh et al.,
triangulation methods like motion (Bergen et al., 1992; 1989) on a layered microscopic object, but due to the
Darrelland Simoncelli, 1993a, 1993b; Iranietal., 1994; very small depth of field used, the interfering layer
Oren and Nayar, 1995; Shizawa and Mase, 1990), andwas very blurred so no reconstruction process was nec-
stereo (Borga and Knutsson, 1999; Shizawa, 1993). Al- essary. Note that microscopic specimens usually con-
gorithms were developed to cope with multiple super- tain detail in a continuum of depth, and there is cor-
imposed motion fields (Bergen et al., 1992; Shizawa relation between adjacent layers, so their crosstalk is
and Mase, 1990) and ambiguities in the solutions were not as disturbing as in semi-reflections. Fundamen-
discovered (Shizawa, 1992; Weinshall, 1989). Another tal consequences of the imaging operation (e.g. the
approach to the problem has been based on polarizationloss of biconic regions in the three dimensional fre-
cues (Farid and Adelson, 1999; Fujikake et al., 1998; quency domain) that pose limits on the reconstruction
Ohnishi et al., 1996; Schechner et al., 1999a, 1999b, ability, and the relation to tomography, were discov-
1999c¢, 2000b)). However, that approach needs a po-ered (Chiu et al., 1979; Marcias-Garza et al., 1988;
larizing filter to be operated with the camera, may be Streibl, 1984, 1985; Sundaram and Nayar, 1997). Some
unstable when the angle of incidence is very low, and of the three dimensional reconstruction methods used
is difficult to generalize to cases in which more than in microscopy (Agard and Sedat, 1983; Agard, 1984;
two layers exist. Conchello and Hansen, 1990) may be applicable to the

Inrecentyears, range imaging relying on the limited case of discrete layers as well.
depth of field (DOF) of lenses has been gaining popu-  We study the possibility of exploiting the limited
larity. An approach for depth estimation usingamonoc- depth of field to detect, separate and recover the in-
ular system based on focus sensing (Darrel and Wohn, tensity distribution of transparent, multi-valued layers.
1988; Engelhardt and Hausler, 1988; Jarvis, 1983; Nair Focusing yields an initial separation, but crosstalk re-
and Stewart, 1992; Nayar, 1992; Nayar et al., 1995; mains. The layers are separated based on the focused
Noguchi and Nayar, 1994; Subbarao and Tyan, 1995; images, or by changing the lens aperture. The crosstalk
Sugimoto and Ichioka, 1985; Xiong and Shafer, 1993) is attenuated by mutual blurring of the disturbing com-
is termedDepth from FocugDFF) in the computer-  ponents in the images (Section 2). Proper blurring re-
vision literature. In that approach, the scene is imaged quires the point spread functions (PSF) in the images
with different focus settings (e.g., by axially moving to be well estimated. A wrong PSF will leave each re-
the sensor, the object or the lens), thus obtaining im- covered layer contaminated by its complementary. We
ageslicesof the scene. In each slice, a limited range of therefore study the effect of error inthe PSFs. Then, we
depth is in focus. Depth is extracted by a search for the propose a method for estimating the PSFs from the raw
slice that maximizes some focus criterion (Hausler and images (Section 3). Itis based on seeking the minimum
Korner, 1984; Jarvis, 1983; Nair and Stewart, 1992; of the mutual information between the recovered lay-
Nayar, 1992; Noguchi and Nayar, 1994; Subbarao and ers. Recovery experiments are described in Section 4.
Tyan, 1995; Torroba et al., 1994; Yeo et al., 1993) (usu- We also discuss the implication of semi-reflections on
ally related to the two dimensional intensity variations the focusing process and the depth extracted from it
in the region), and corresponds to the plane of best fo- (Section 5). Preliminary and partial results were pre-
cus. DFF and image-based rendering based on focusedsented in Schechner et al. (1998, 2000a).
slices has usually been performed on opaque (and oc-
cluding) layers. In particular, just recently a method
has been presented for generating arbitrarily focused2. Recovery from Focused Slices
images and other special effects performed separately
on each occluding layer (Aizawa et al., 2000). 2.1. Using Two Focused Slices

Physical modeling of DOF as applied to process-
ing images of transparent objects has long been con-Consider atwo-layered scene. Suppose that either man-
sidered in the field of microscopy (Agard and Sedat, ually or by some automatic procedure (see Section 5),
1983; Agard, 1984; Castleman, 1979; Conchello and we acquire two images, such that in each image one
Hansen, 1990; Diaspro etal., 1990; Erhardt et al., 1985; of the layers is in focus. Assume for the moment that
Fay et al.,1983; Itoh et al., 1989; Marcias-Garza et al., we also have an estimate of the blur kernel operating
1988; McNally et al., 1994; Preza et al., 1992; Streibl, on each layer, when the camera is focused on the other
1984), where the defocus effect is most pronounced. one. This assumption may be satisfied if the imaging
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Figure 1 A telecentric imaging system (Watanabe and Nayar,
1996). An apertureD is situated at distancE (the focal length)

in front of the lens. An object point at distanads at best focus if
the sensor is at. If the sensor is af, the image of the point is a
blurred spot parameterized by its effective diameter

system is of our design, or by calibration. Due to the
change of focus settings, the images may undergo a
scale change. If a telecentric imaging system (Fig. 1)
is used, this problem is avoided (Nayar et al., 1995;

Watanabe and Nayar, 1996). Otherwise, we assume that

the scale changeis corrected during preprocessing
(Kubota et al., 1999).

Let layer f, be superimposédon layer f,. We con-
sider only the sliceg, and gy, in which either layer
f1 or layer f,, respectively, is in focus. The other layer
is blurred. Modeling the blur as convolution with blur
kernels,

Ga= fi+ faxhaa  Go=fo+ faxhy (1)
(The assumption of a space-invariant response to con-
stant depth objects is very common in analysis of de-
focused images, and is approximately true for paraxial
systems or in systems corrected for aberrations). If a
telecentric system is useldy, = hpy = h.

In the frequency domain Eq. (1) take the form

Ga=Fi1+HaF2 Gp=F+HpF. (2
Assuming that the kernels are symmetricHpg = O
and ImHy, = 0, so the real components Gf, andGy,
are respectively

ReG,; = ReF; + Hy, - ReF;

3
ReG, = ReF, + Hy, - ReF, @)

with similar expressions for the imaginary components
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Figure 2 Visualization of the constraints on reconstruction from
focused slices and the convergence of a suggested algorithm. For
each frequency, the relations (3) between the real components of
Ga, Gp, F1 and F; take the form of two straight lines. The visual-
ization of the imaginary parts is similar.

Hoa Hip # 1. Since the imaging system cannot amplify
any componentHi,, Hza < 1), a unique intersection
exists unles$oy = Hyp = 1.

To gain insight, consider a telecentric system (the
generalization is straightforward). In this cast, =
Hiy = H, and the slopes of the lines in Fig. 2 (rep-
resenting the constraints) are reciprocal to each other.
As H — 1 the slopes of the two lines become simi-
lar, hence the solution is more sensitive to nois&in
andGy. As the frequency decreasd$,— 1, hence at
low frequencies the recovery is ill conditioned. Due
to energy conservation, the average gray level (DC) is
not affected by defocusing. Thus, at D€=1. In the
noiseless case the constraints on the DC component
coincide into a single line, implying an infinite number
of solutions. In the presence of noise the lines become
parallel and there is no solution. The recovery of the
DC component is thus ill posed. This phenomenon is
also seen in the three dimensional frequency domain.
The image space is band limited byrassing cone of
frequencieqChiu et al., 1979; Marcias-Garza et al.,

of the images. These equations can be visualized as two1988), whose axis is in the axial frequency directipn

pairs of straight lines (see Fig. 2). The solution, which
corresponds to the line intersection, uniquely exists for

and its apex is at the origin. Recovery of the average in-
tensity in each individual layer is impossible since the
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information about inter-layer variations of the average A

transversal intensity is in the missing cone (Sheppard - b

and Gu, 1991). A similar conclusion may be derived

from observing the three dimensional frequency do- Ay A A

A
main support that relies on diffraction limited optics fz — fi=8, fz*hzu _>fz
(Sundaram and Nayar, 1997).
In order to obtain another point of view on these diffi- < ~ \
culties, consider the naive inverse filtering approach to fi— fzng_ fl*hlb
the problem given by Eq. (2). In the transversal spatial
frequency domain, the reconstruction is

f
1
Figure 3 A step in the iterative process. Initial hypotheses for the

layers serve as input images for a processing step, based on Eq. (1).
The new estimates are fed back as input for the next iteration.

-

Fi = B(Ga — GpHaa) F2=B(Gp — GaH) (4)

where

for oddl, wherem = (I + 1)/2 and

B=(1—HipHza)". (5) ) m

BM) = (HipHza)* . (7)
k=1

As H — 1, B — oo hence the solution is instable.
Note, however, thahe problem is well posed and sta- B(m) has a major effect on the amplification of noise
ble at the high frequencieSinceH is a LPF, then  addedtothe rawimageg andg, (with the noise of the
B — 1 at high frequencies. As seen in Egs. (4), the unfocused slice attenuated Ib}). Again, we see that
high frequency contents of the slice in which a layer at high frequencies the amplification of additive noise
is in focus are retained, while those of the other slice @pproaches 1. As the frequency decreases, noise am-
are diminished. Even if high frequency noise is added plification increases. The additive DC error increases
during image acquisition, it is amplified only slightly linearly withm.
in the reconstruction. This behavior is quite opposite L€t us define theéasic solutioras the result of using
to typical reconstruction problems, in which instability ™ = 1. Eq. (6) indicates that we can do the recovery
and noise amplification appear in the high frequencies. directly, without iterations, by calculating the kernel
lterative solutions have been suggested to similar (filter) beforehandmis a parameter that controls how
inversion problems in microscopy (Agard and Sedat, close the filtelB(m) is to the inverse filter, and is anal-
1983; Agard, 1984; Diaspro et al., 1990) and in other 0gousto regularization parameters in typical inversion
fields. A similar approach was used in Aizawa et al. Mmethods.
(2000) to generate special effects on occluding layers, ~Inthe spatialdomain, Eqg. (7) turns into a convolution
when the inverse filtering needed special care in the kernel
low frequency components. The method that we con- .

sider can be visualized as progression along vectors in bm(X, y) =8(x. y) + h&%

alternating directions parallel to the axes in Fig. 2. It once
converges to the solution from any initial hypothesis + hip * hoa * hap * g + - - -
—_—— ———

for [H| < 1. As|H| decreases (roughly speaking, as
the frequency increases), the constraint lines approach

twice

orthogonality, thus convergence is faster. A single it- + hp hog % hyp %+ - -5 hagk hyp % hog .
eration is described in Fig. 3. This is a version of the — —
Van-Cittert restoration algorithm (Jansson et al., 1970). m-1 times

With slicesga andgs as the initial hypotheses fofy (8)

and f, respectively, at theth iteration .
The spatial support diy, is approximately 8 m pixels
A A wide, wherd is the blur diameter (assuming for a mo-
lil(m) - ?(m) [Ga — GoHzal (6) ment that both kernels have a similar support). Here, the
Fo(m) = B(m) [Gp — GaH1p] finite support of the image has to be taken into account.
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The largem is, the larger the disturbing effect of the Close layer Far layer
image boundaries. The unknown surroundings affect 8
larger portions of the image. It is therefore preferable
to limit m even in the absence of noise.

This difficulty seems to indicate at a basic limit to  Originals
the ability to recover the layers. If the blur diameter
is very large, only a smaith can be used, and the initial
layer estimation achieved only by focusing cannot be
improved much. In this case the initial slices already
show a good separation of the individual layers, since
in each of the two slices, one layer is very blurred and
thus hardly disturbs the other one. On the other hand,
if d is small, then in each slice one layer is focused,
while the other is nearly focused—creating confusing
images. But then, we are able to enhance the recovery
using a largem with only a small effect of the image
boundaries. Using a largen leads, however, to noise
amplification and to greater sensitivity to errors in the
assumed PSF (see Subsection 2.4).

Focused
slices

Basic
solution

Example. A simulated scene consists of the image of m=1

Lena, as the close object, seen reflected through a win-

dow out of which Mt. Shuksahis seen. The original

layers appear in the top of Fig. 4. While any of the lay-

ersis focused, the other is blurred by a Gaussian kernel :

with standard deviation (STD) of 2.5 pixels. The slices 3

. . . . Enhanced

in which each of the layers is focused are shown inthe “olugon

second row of Fig. 4 (all the images in this work are m=6

presented contrast-stretched).

During reconstruction, “mirror” (Aghdasi and Ward,

1996) extrapolation was used for the surroundings of

the image in order to reduce the effect of the bound- Figure 4 $imu|ation res_ults. In the chused slices one of the orig?

aries. The basic solution(= 1) removes the crosstalk inal Igyers_ is focused while the other is defocus blurred. The basic
. . solution with the correct kernel removes the crosstalk, butthe low fre-

between the images, but it lacks contrast due to the at'quency content of the images is too low. Approximating the inverse

tenuation of the low frequencies. Using= 6, which filter with 6 terms ( = 6) amplifies the low frequency components.

is equivalent to 13 iterations, improves the balance be-

tween the low frequency components to the high ones.

With largerm’s the results are similar.

strated in a setup similar to Bergen etal. (1992). In Irani
et al. (1994), one of the objects is “dominant”. It can
easily be seen there that even as the dominant object is
2.2. Similarity to Motion-Based Separation faded out in the recovery, considerable low-frequency
contamination remains.

In separating transparent layers, the fact that the high Shizawa and Mase (1990) have shown that, in re-
frequencies can be easily recovered, while the low ones gions of translational motion, the spatiotemporal en-
are noisy or lost, is not unigue to this approach. It also ergy of each layer resides in a plane, which passes
appears in results obtained using motion. Note that, like through the origin in the spatiotemporal frequency
focus changes, motion leaves the DC component unvar-domain. This idea was used (Darrel and Simoncelli,
ied. In Bergen et al. (1992), the results of motion-based 1993a, 1993b) to generate “nulling” filters to eliminate
recovery of semi-reflected scenes are clearly highpassthe contribution of layers, thus isolating a single one.
filtered versions of the superimposing components. An However, any two of these frequency planes have a
algorithm presented in Irani et al. (1994) was demon- common frequency “line” passing through the origin
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(the DC), whose components are thus generally insep-2.4. Effect of Error in the PSF
arable.

These similarities are examples of the unification The algorithm suggested in Subsection 2.1 computes
of triangulation and DOF approaches discussed in Fu(m) = I§(m)[Ga — GpHaa]- We normally assume
Schechner and Kiryati (1998). In general, Schechner (Eq. (2)) thatG, = F1+ HpaFo andGy = Fo+ HypF.
and Kiryati (1990) showed that the depth from focus or If the assumption holds,
defocus approaches are manifestations of the geomet-
ric triangulation principle. For example, it was shown F1(m) = F1(1 — HipHza) B(M). (13)
that for the same system dimensions, the depth sensi-
tivity of stereo, motion blur and defocus blur systems Note that, regardless of the precise form of the PSFs,
are basically the same. Along these lines, the similar- had the imaging PSFs and the PSFs used in the recovery
ity of the inherent instabilities of separation based on peen equal, the reconstruction would have converged
motion and focus is not surprising. to Fy asm — oo when|Hay|, |H2a| < 1. In practice,
the imaging PSFs are slightly different, i.€q = F1+
2.3. Using a Focused Slice and a Pinhole Image HzaFz andGp = Fz + HuFy where
Another approach to layer separation is based on us- Hip = Hip — Eap. Hoa = Haa — Bza.  (14)
ing as input a pinhole image and a focused slice, rather
than two focused slices. Acquiring one image via avery
small aperture (“pinhole camera”) leads to a simpler al-
gorithm, since just a single slice with one of the layers
in focus is needed. The advantage is that the two im-
ages are taken without changing the axial positions of .
the system components, hence no geometric distortions Fi = [F1 (1 — HioHza) + ExsHaaF1 — EzaF2]B(M)
arise. Acquisition of such images is practically impos- = F1(M) + B(M) (ExpHzaF1 — EzaFo) . (15)
sible in microscopy (due to the significant diffraction
effects associated with small objects) but is possible in A similar relation is obtained for the other layer.

and Eyy,, Ez; are some functions of the spatial fre-
guency. This difference may be due to inaccurate prior
modeling of the imaging PSFs or due to errors in depth
estimation. The reconstruction process leads to

systems inspecting macroscopic objects. An error in the PSF leads to contamination of the re-
The “pinhole” image is described by covered layer by its complementary. The larBés, the
stronger is the amplification of this disturbance. Note
g = (h+ f2), ) that B(m) monotonically increases wittm, within the
a support of the blur transfer function H;pHz; > O,

as is the case when the recovery PSF’s are Gaussians.
Note that usually in the low frequencies (which is the
regime of the crosstalkil;y, Hos > 0. Thus, we may
expect that the best sense of separation will be achieved
using a smalm, actually, one iteration should provide
the least contamination. This is so although the uncon-

where Ya is the attenuation of the intensity due to
contraction of the aperture. This image is used in con-
junction with one of the focused slices of Eq. (1), for
exampleg,. The inverse filtering solution is

= S(Ga — aGoHza) F2 = S(@Go — Ga) taminated solution obey8 — F asm increases. In
(10) other words, decreasing the reconstruction error does
not necessarily lead to less crosstalk.
where Both H andH (of any layer) are low-pass filters that
conserve the average value of the images. Heaee
= (1= Hp) L. (11) at the very low and at the very high frequencies, Ee.,

is a bandpass filter. HoweveB(m) amplifies the low
frequencies. At the low frequencies, their combined
effect may have a finite or infinite limit as — oo,
m depending on the PSF models used.
=Y HE'. (12) Continuing with the example shown in Fig. 4, where
k=1 the imaging PSF had an STD of=2.5 pixels, the

As in Subsection 2.1$ can be approximated by
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Close layer Far layer ter involved, H,,, since the layerf; is focused. Sup-
pose that, in addition to usings, in the reconstruction
rather than the true imaging transfer functidg,, we
inaccurately use the scalarather than the true value
a used in the imaging process. lesdlenote the relative
error in this parameteg = (a — &)/a. We obtain that

Fi = Fi(m) — eHa S(MF1 — (Eza 4 €Ha) S(MF,
(16)
Fo = Fo(m) 4 (Eza + ©)S(M)F2 + eSMF1,  (17)

where hereF;(m) and Fo(m) are the results had the
imaging defocus kernel beenthe same as the one usedin
the reconstruction and had= &. Note the importance

of the estimation o&: if e = 0 thenF, (the defocused
layer) is recovered uncontaminated By. However,
even in this casd; (the focused layer) will have a
contamination of,, amplified byé(m) andEa;.

3. Seeking the Blur Kernels

The recovery methods outlined in Section 2 are based
on the use of known, or estimated blur kernels. If the
imaging system is of our design, or if it is calibrated,
and in addition we have depth estimates of the lay-
ers obtained during the focusing process (e.g., as will
be described in Section 5), we may know the kernels
a-priori. Generally, however, the kernels are unknown.
Even a-priori knowledge is sometimes inaccurate. We
Figure 5 Simulated images when using the wrong PSF in the re- thus wish to achieve self-calibration, i.e., to estimate
construction. The original blur kernel had a STDro& 2.5 pixels. the kernels out of the images themselves. This will en-
Crosstalk between the recovered layers is seen clearly if the STD gple blind separation and restoration of the layers.
of_ the kernels used is 1.5 or 5 pixels. The contamination increases To do that, we need a criterion for layer separation.
with m. Note that the method for estimating the blur kernels
based on minimizing the fitting error in different lay-
effects of using a wrong PSF in the reconstruction are ers as in Aizawa et al. (2000) may fail in this case as
demonstrated in Fig. 5. When the PSF used in the re- the layers are transparent and there is no unique blur
construction has STD of 1.25 pixels, negative traces re- kernel at each point. Moreover, the fitting error is not
main (i.e., brighter areas in one image appear as darkera criterion for separation. Assume that the statistical
areas in the other). When the PSF used in the recon-dependence of the real and virtual layers is small (even
struction has STD of 5 pixels, positive traces remain zero). This is reasonable since they usually originate
(i.e., brighter areas in one image appear brighter in the from unrelated scenes. The Kullback-Leibler distance
other). The contamination is slight in the basic solution measures how far the images are from statistical inde-
(m = 1), but is more noticeable with larger's, that pendence, indicating their mutual information (Cover
is, whenB — B. So, the separation seems worse, even and Thomas, 1991). Let the probabilities for certain
though each of the images has a better balance (due tovaluesf; and f, be P(f1) andP(f,), respectively. In
the enhancement of the low frequencies). practice these probabilities are estimated by the his-
We can perform the same analysis for the method tograms of the recovered images. The joint probability
described in subsection 2.3. Now there is only one fil- is P(f1, f2), whichis in practice estimated by the joint
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histogram of the images, that is, the relative number of assumed to be Gaussians. Then, the kernels are param-
pixels in which f; has a certain valudé; and f, has eterized only by their standard deviations (proportional
a certain valuef;, at corresponding pixels. The mutual to the blur radii). This limitation may lead to a solution

information is then that is suboptimal but easier to obtain.
. Another possible criterion for separation is decor-
r y P(fy, f2) relation. Decorrelation was a necessary condition for
Z(fq, f2) = P(fy, fo)log————. (18 ) . :
(h, 1) Z (1, T2)log P(f1) P(f2) (18) the recovery of semi-reflected layers by independent

itz components analysis in Farid and Adelson (1999), and
In this approach we assume that if the layers are cor- Py polarization analysis in Schechner et al. (1999b,
rectly separated, each of their estimates contaims- 1999c). Note that requiring decorrelation between the
mum informatiorabout the other. Mutual information ~ €stimated layers is based on the assumption that the
was suggested and used as a criterion for alignment©riginal layers are decorrelated: that assumption is usu-
in Thevenaz and Unser (1998), and Viola and Wells 2lly only an approximation.
(1997), where its maximum was sought. We use this 10 illustrate the use of these criteria, we search for
measure to look for the highest discrepancy between the optimal blur kernels to separate the images shown
images, thus minimizing it. The distance (Eq. (18)) de- in the second row of Fig. 4. Here we simplified the

pends on the quantization &f and f,, and on their dy- calculations by restricting both kernels to be isotropic
namic range, which in turn depends on the brightness Gaussians of the same STD, as these were indeed the

of the individual layersf, and f,. To decrease the de- kernels usedinthe synthesis. Hence, the correlation and
pendence on these parameters, we performed two nor-Mutual information are functions of a single _variaﬁ)le.
malizations. First, each estimated layer was contrast- AS Seenin Fig. 6, using the correct kernel (with STD of
stretched to a standard dynamic range. THemas 2.5 pixels) yields decorrelated basic solutioms< 1),
normalized by the mean entropy of the estimated lay- with minimal mgtual informationZ, is plotted). The
ers, when treated as individual images. The self infor- POsitive correlation for larger values of assumed STD,

mation (Cover and Thomas, 1991) (entropy)feis and the negative correlation for smaller values, is con-
sistent with the visual appearance of positive and nega-
H(f) = — Z P(f1) log P(f1), (19) tive traces in Fig. 5. Observe that, as expected from the

fy theory, in Fig. 5 the crosstalk was stronger for langer

~ Indeed, in Fig. 6 the absolute correlation and mutual
and the expression fof; is similar. The measure we information are greater fan = 6 than form = 1 when

used is the wrong kernel is used.
O In a different simulation, the focused slices corre-
To(f1, ) = ?( f1, f2)~ ’ (20) sponding to the original layers shown in the top of
[H(f1) +H(f2]/2 Fig. 4 were created using an exponential imaging ker-

nel rather than a Gaussian, but the STD was still 2.5.
! : The recovery was done with Gaussian kernels. The cor-
information of a layer. relation and mutual information curves (as a function of

The recovered layers depend on the kemels used.yhe 455umed STD) were similar to those seen in Fig. 6.
Therefore, the problem of seeking the kernels can be Thg minimal mutual information was however at STD
stated as a minimization problem: of r = 2.2 pixels. There was no visible crosstalk in the
resulting images.

The blurring along the sensor raster rows may be
different than the blurring along the columns. This is
According to Subsection 2.4, errors in the kernels lead because blurring is caused not only by the optical pro-
to crosstalk (contamination) of the estimated layers, cesses, butalso from interpixel crosstalk in the sensors,
which is expected to increase their mutual information. and the raster reading process in the CCD. Moreover,

There are generally many degrees of freedom in the the inter-pixel spacing along the sensor rows is gener-
form of the kernels. On the other hand, the kernels are ally different than along the columns, thus even the op-
constrained: they are non-negative, they conserve en-tical blur may affectthem differently. We assigned a dif-
ergy etc. To simplify the problem, the kernels can be ferentblur “radius” to each axis*" andr U™ \When

indicating the ratio of mutual information to the self

(A1, hog] = arg minZy(fy, f2).  (21)

16,h2a
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Correlation - hole image. Ideally, it is the square of the reciprocal
g7 ' of the ratio of the-numbersof the camera, in the two
0.67 e states. If, however, the optical system is not calibrated,
0.4} T ] or if there is automatic gain control in the sensor, this

m=1 ratio is not an adequate estimatoraofa can then be

02} ] estimated by the ratio of the average values of the im-

0 SR . ages, for example. Such an approximation may serve
o2l | as a starting point for better estimates.

’ L When using the decorrelation criterion in the multi-
04r 1 parameter case, there may be numerous parameter
o6t/ | combinations that lead to decorrelation, but will not all

lead to the minimum mutual information, or to good
0.8 1,7 1 separation. Ip is N-dimensional, the zero-correlation
-1 . . . ‘ . . . Lo constraint defines Bl — 1 dimensional hypersurface in
I 15 2 25 3 35 4 45 5 g the parameter space. It is possible to use this criterion
to obtain initial estimates gd, and search for minimal
Mutual information mutual information within a lower dimensional man-

Ll T ifold. For example, for each combination IP* and
03 ,\\ | reolumn 5 that leads to decorrelation can be found (near

e the rough estimate based on intensity ratios). Then the

L | search for minimum mutual information can be limited
\\ to a subspace of only two parameters.
02§ 1

4. Recovery Experiments
0.1} 4.1. Recovery from Two Focused Slices

0.05}

A print of the “Portrait of Doctor Gachet” (by van-

B Gogh) was positioned closely behind a glass window.
I 15 2 25 3 35 4 45 5  qip The window partly reflected a more distant picture,

a part of a print of the “Parasol” (by Goya). THe#

Figure 6 [Solid] At the assumed kernel STD pf= 2.5 pixels the was 5.6. The two focused slidesare shown at the
e oy o ey 0P of Fig. 7. The cross correlation between the raw
The absolute correlation and the mutual information are larger for a (focused) images is 0.98. The normalized mutual in-
large value ofn. formation isZ, ~ 0.5 indicating that significant sep-
aration is achieved by the focusing process, but that
substantial crosstalk remains.

The optimal parameter vectprin the sense of min-
imum mutual information is [1.9, 1.5, 1.5, 1.9] pixels,
whereryy, corresponds to the blur of the close layer,
andr,, corresponds to the blur of the far layer. With

R : ~ ~ these parameters, the basic soluti 1) shown at
p = arg minZ[ fy(p). f2(p)]. 22 tne middlo row of Fig. 7 had, wmc;%ozs (two or-
ders of magnitude better than the raw images). Using

When a single focused slice is used in conjunction m = 5 yields better balance between the low and high
with a “pinhole” image, as described in Subsection 2.3, frequency components, hiit increased to about 0.02.
the problem is much simpler. There are three parame- We believe that this is due to the error in the PSF model,
ters to determinerio¥, r$9U™ anda. The parametes as discussed above.
is easier to obtain as it indicates the ratio of the light  In another example, a print of the “Portrait of Ar-
energy in the wide-aperture image relative to the pin- mand Roulin” (by van-Gogh) was positioned closely

two slices are used, as in Subsection 2.1, there are two
kernels, with a total of four parameters. Defining the
parameter vectop = (roW, rgolumn yfow ' olumn - the
estimated vectop is
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Close layer Far layer Close layer Far layer

Focused
slices
Focused
slices
Basic
solution
m=1
Basic
solution
m=l
n =3

Figure 8 [Top] The slices in which either of the transparent layers
is focused. [Middle row] The basic solution. [Bottom row]: Recovery
withm=5.

Close layer Far layer

Figure 7. [Top] The slices in which either of the transparent layers
is focused. [Middle row] The basic solutiom(= 1). [Bottom row]:
Recovery withm = 5.

behind a glass window. The window partly reflected a
more distant picture, a print of a part of the “Miracle of
San Antonio” (by Goya). As seen in Fig. 8, the “Por-
trait” is hardly visible in the raw images. The cross cor-
relation between the raw (focused) images is 0.99, and
the normalized mutual information &, ~ 0.6. The
optimal parameter vectqr here is [17, 2.4, 1.9, 2.1]
pixels. With these parametefs ~ 0.004 at the basic
solution, rising to about 0.02 fon = 5.

In a third example, the scene consisted of a dis-
tant “vase” picture that was partly-reflected from the
glass-cover of a closer “crab” picture. The imaging
system was telecentric (Nayar et al., 1995; Watanabe
and Nayar, 1996), so no_ magnification corrections were Figure 9. [Top] The slices in which either of the transparent layers
needed. The focused slices and the recovered layers are; focused. [Bottom] The basic solution for the recovery of the “crab”
shown in Fig. 9. For the focused slicés ~ 0.4, and (left) and “vase” (right) layers.
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the cross correlation is 0.95. The optimal parameter (top right), the presence of the “Portrait” layer is more
vectorp in the sense of minimum mutual information noticeable.

is [4,4,11,1] pixels. The basic recovery, usiBgl), According to the ratio of thd #'s, the wide aperture
are shown in the bottom of Fig. 9. The crosstalk is image should have been brighter than the “pinhole” im-
significantly reduced. The mutual informati@p and age by(11/4)? ~ 7.6. However, the ratio between the
correlation decreased dramatically to 0.009 and 0.01, mean intensity of the wide aperture image to that of the

respectively. pinhole image was 4.17, not 7.6. This could be due to
poor calibration of the lens by its manufacturer, or be-

4.2. Recovery from a Focused Slice and cause of some automatic gain control in the sensor. We
a Pinhole Image addeda to the set of parameters to be searched in the

optimization process. In order to get additional cues for
The scene consisted of a print of the “Portrait of Ar- a, we calculated ratios of other statistical measures: the
mand Roulin” as the close layer and a print of a part ratios ofthe STD, median, and mean absolute deviation
of the “Miracle of San Antonio” as the far layer. The Wwere 4.07, 4.35 and 4.22, respectively. We thusalet
imaging system was not telecentric, leading to magnifi- assume values between 4.07 and 4.95. In this example
cation changes during focusing. Thus, in such a systemWwe demonstrate the possibility of using decorrelation
it may be preferable to use a fixed focus setting, and to limit the minimum mutual information search. First,
change the aperture between image acquisitions. Thefor each hypothesized pair of blur diameters, the pa-
“pinhole” image was acquired using the state corre- rametem that led to decorrelation of the basic solution
sponding to thef # = 11 mark on the lens, while the ~was sought. Then, the mutual information was calcu-
wide aperture image was acquired using the state Cor-|ated over the parameters that cause decorrelation. The
responding to thd # = 4 mark. We stress that we have blur diameters that led to minimal mutual information
not calibrated the lens, so these marks do not neces-atm = 1 werer ™ = rcolmn— 11 pixels, with the best
sarily correspond to the true values. The slice in which parametea being 4.28. The reconstruction results are
the far layer is focused (using the wide aperture) is shown in the middle row of Fig. 10. Their mutual in-

shown in the top left of Fig. 10. In the “pinhole” image ~ formation (normalized) is 0.004.
Using a largem with these parameters increased

the mutual information, so we looked for a better es-
timate, minimizing the mutual information after the
application ofB(m). Form = 5 the resulting param-
eters were different: ™" = r UM — 17 pixels, with

a = 4.24. Therecovered layers are shown in the bottom
row of Fig. 10. Their mutual information (normalized)

is 0.04. As discussed before, the increase is probably
due to inaccurate modeling of the blur kernel.

defocused
layer
m=I

locused
layer

s 5. Obtaining the Focused Slices

5.1. Using a Standard Focusing Technique

We have so far assumed that the focused slices are
known. We now consider their acquisition using focus-

ﬁig;}z;d 4 ing as in Depth from Focus (DFF) algorithms. Depth is
m=5 sampled by changing the focus settings, particularly the

sensor plane. According to Abbott and Ahuja (1993),

Krishnan and Ahuja (1996) and Schechner and Kiryati
) o ) (1998, 1999), the sampling should be at depth of field

Figure 10 [Top left] The slice in which the far layer is focused, . . . .

when viewed with the wide aperture. [Top right] The “pinhole” im- intervals, for whichd ~ Ax, whereAx is the inter-

age. [Middle row]: The basic recovery. [Bottom row]: Recoverywith ~ PiXel period (similar to stereo (Schechner and Kiryati,
m=>5. 1998)). An imaging system telecentric on the image
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side (Nayar et al., 1995; Watanabe and Nayar, 1996) T
is a preferred configuration, since it ensures constant
magpnification as the sensor is put out of focus. For |
such a system it is easy to show that the geometrical- e
optics blur-kernel diameter i = DAv/F, whereD |,
is the aperture widths is the focal length (see Fig. 1), i
and Av is the distance of the sensor plane from the
plane of best focus. The axial sampling period is there- [
fore Av &~ FAXx/D. The sampling period requirement
can also be analyzed in the frequency domain, as in
Sundaram and Nayar (1997). Weighted votes
Focus calculations are applied to the image slices ac-
quired. The basic requirement from the focus criterion 5 4 6 3 10 12 14 16
is that it will reach a maximum when the slice is in fo-
cus. Most criteria suggested in the literature (Itoh et al.,
1989; Jarvis, 1983; Nayar, 1992; Noguchi and Nayar, Figure 11 Experimental results_. [Dashed-dgtteq Iine]:The.conven-
1994; Subbarao and Tyan, 1995; Torroba et al., 1994; tional focus measure as a function of the _sllce |ndgx._ It mlstakenly
! o ! . SO " detects a single focused state at the 6th slice. [Solid line]: The loca-
Yeo et al., 1993) are sensitive to two dimensional vari- tions histogram of detected local maxima of the focus measure (the
ations in the slicé. Local focus operators yield “slices ~ same scene). The highest numbers of votes (positions of local max-
of local focus-measure’EOCUS(x, Y, ), where? is ima) are cprrectly accumulated at the 4th and 7th slices—the true
the axial position of the sensor (see Fig. 1). If we want focused slices.
to find the depth at a certain region (patch) (Nair and
Stewart, 1992), and the scene is composed of a single5.2. A Voting Scheme
layer, we can averade€OCUS(x, y, v) over the region,
to obtainFOCUS(?) from which a single valued depth ~ Towards solving the merging problem, observe that the
can be estimated. This approach is inadequate in thelayers are generally unrelated and that edges are usu-
presence of multiple layers. Ideally, each of them alone ally sparse. Thus, the positions of brightness edges in
would lead to a main pedkin FOCUS(?). But, due the two layers will only sporadically coincide. Since
to mutual interference, the peaks can move from their edges (and other feature-dense regions) are dominant
original positions, or even merge into a single peak in contributors to the focus criterion, it would be wise not
some “average” position, thus spoiling focus detection. to mix them by brute averaging of the local focus mea-
This phenomenon can be observed in experimen- surements over the entire region. If po{nt y) is on
tal results. The scene, the focused slices of which are an edge in one layer, but on a smooth region in the
shown in Fig. 9, had the “crab”and the “vase” objects other layer, then the peak ROCUS(X, y, v) corre-
at distances of 2.8 m and 5.3 m from the lens, respec- sponding to the edge will not be greatly affected by the
tively. The details of the experimental imaging system contribution of the other layer.
are described in Schechner et al. (1998). Depth varia- The following approach is proposed. For each pixel
tions within these objects were negligible with respect (X, y) in the slices, the focus measl®CUS(x, vy, v)
to the depth of field. Extension of the STD of the PSF is analyzed as a function af, to find its local max-
by about 0.5 pixels was accomplished by moving the ima. The result is expressed as a binary vector of local
sensor array 0.338 mm from the plane of best fédtus. maximapositions. Then, a vote table analogous to a his-
This extended the effective width of the kernel by about togram of maxima locations over all pixels is formed by
1 pixel (Ad ~ 1 pixel), and was also consistent with summing all the “hits” in each slice-index. Each vote is
our subjective sensation of DOF. The results of the fo- given aweight that depends on the corresponding value
cus search, shown by the dashed-dotted line in Fig. 11, of FOCUS(X, Yy, v), to enhance the contribution of high
indicate that the focus measure failed to detect the lay- focus-measure values, such as those arising from edges,
ers, as it yielded a single (merged) peak, somewherewhile reducing the random contribution of featureless
between the focused states of the individual layers. This areas. The results of the voting method are shown as
demonstrates the confusion of conventional autofocus- a solid line in Fig. 11, and demonstrate its success in
ing devices when applied to transparent scenes. creating significant, separate peaks corresponding to

N, Traditional
~.._ focus measure

e

Slice index
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the focused layers. Additional details can be found in to solve the optimization problem (Luenberger, 1989),
Schechner et al. (1998). The estimated depths werewith efficient ways to estimate the mutual information
correct, within the uncertainty imposed by the depth of (Thevenaz and Unser, 1998; Viola and Wells, 1997).
field of the system. Optimal design and rigorous per-  Semi-reflections can also be separated using polar-
formance evaluation of DFF methods in the presence ization cues (Farid and Adelson, 1999; Schechneretal.,
of transparencies remains an open research problem. 1999a, 1999b, 1999c¢, 2000b). It is interesting to note
that polarization based recovery is typically sensitive
. to high frequency noise at low angles of incidence
6. Conclusions (Schechner et al., 2000b) On the other hand, DC re-
) . covery is generally possible and there are no particular
This paper presents an approach based on focusing toyificulties at the low frequencies. This nicely com-
separate transparent layers, as appear in semi-reflectedl|ements the characteristics of focus-based layer sep-
scenes. This approach is more stable with respect t05ration, where the recovery of the high frequencies is
perturbations (Schechner and Kiryati, 1998) and oc- g¢aple but problems arise in the low frequencies. Fu-
cIus.ions than separation methods that rely on stereo Orgjon of focus and polarization cues for separating semi-
motion. We also presented a method for self calibra- yefiections is thus a promising research direction.
tion of the defocus blur kernels given the raw images.  The ability to separate transparent layers can be
Itis based on minimizing the mutual information of the | j4ilized to generate special effects. For example, in
recovered layers. Note that defocus blur, motion blur, Aizawa et al. (2000) images were rendered with each
and stereo disparity have similar origins (Schechner fine occluding (opaque) layers defocused, moved and

and Kiryati, 1998) and differ mainly in the scale and  gnhanced arbitrarily. The same effects, and possibly
shape of the kernels. Therefore, the method describedgiher interesting ones can now be generated in scenes
here could possibly be adapted to finding the motion containing semireflections.

PSFs or stereo disparities in transparent scenes.

In some cases the methods presented here are alsg
applicable to multiplicative layers (Shizawa and Mase, Acknowledgments
1990): If the opacity variations within the close layer
are small (a“weak” object), the transparency effect may
be approximated as a linear superposition of the lay-
ers, as done in microscopy (Agard and Sedat, 1983;
Conchello and Hansen, 1990; Marcias-Garza et al.
1988; Preza et al., 1992). In microscopy and in tomog-
raphy, the suggested method for self calibration of the
PSF can improve the removal of crosstalk between ad-
jacent slices.

In the analysis and experiments, depth variations
within each layer have been neglected. This approxi-
mation holds as long as these depth variations are small
with respect to the depth of field. Extending our anal-
ysis and recovery methods to deal with space-varying
depth and bluris aninteresting topic for future research.
A simplified interim approach could be based on ap-
plication of the filtering to small domains in which
the depth variations are sufficiently small. Note that
the mutual information recovery criterion can still be
applied globally, leading to a higher-dimensional opti- Notes
mization problem. We believe that fundamental prop-
erties, such as the inability to recover the DC of each * TIZitgzpth dependence of the scale change can typically be ne-
layer, will ho!d in the general case. Other obvious im- 2. 9I'he superposition is linear, since the real/virtual layers are the
provements in the performance of the approach can be  images of the objects multiplied by the transmission/reflection
achieved by incorporating efficient search algorithms  coefficients of the semi-reflecting surface, and these coefficients
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was at the Department of Electrical Engineering,
Technion—Israel Institute of Technology, Haifa. We
thank Joseph Shamir and Alex Bekker for their ad-
vice, support, and significant help, and for making the
facilities of the Electrooptics Laboratory of the Elec-
trical Engineering Department, Technion, available to
us. We thank Bonnie Lorimer for the permission to use
her photograph of Mt. Shuksan. This research was sup-
ported in part by the Eshkol Fellowship of the Israeli
Ministry of Science, by the Ollendorff Center of the
Department of Electrical Engineering, Technion, and
by the Tel-Aviv University Research Fund. The vision
group at the Weizmann Institute is supported in part by
the Israeli Ministry of Science, Grant No. 8504. Ro-
nen Basri is an incumbent of Arye Dissentshik Career
Development Chair at the Weizmann Institute.
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do not depend on the light intensities. The physical processes in

maximum likelihood reconstructiong\pp. Opt, 29(26):3795—

transparent/semi-reflected scenes are described in Schechneretal. 3804.

(199943, 1999b, 1999c, 2000b). Nonlinear transmission and reflec-
tion effects (as appear in photorefractive crystals) are negligible
at intensities and materials typical to imaging applications.

. Courtesy of Bonnie Lorimer.

. The STD was sampled on agrid in our demonstrations. A practical
implementation will preferably use efficient search algorithms
(Luenberger, 1989) to optimize the mutual information (Thevenaz
and Unser, 1998; Viola and Wells, 1997).

. The system was not telecentric, so there was slight magnification
with change of focus settings. This was compensated for manually
by resizing one of the images.

. Itis interesting to note that a mathematical proof exists (Hausler
and Korner, 1984) for the validity of a focus criterion that is
completely based on local calculations which do not depend on
transversal neighbors: As a function of axial position, the intensity

at each transversal point has an extremum at the plane of best

focus.

. There are secondary maxima, though, due to the unmonotonic-
ity of the frequency response of the blur operator, and due to
edge bleeding. However, the misleading maxima are usually
much smaller than the maximum associated with the focusing
on feature-dense regions, as edges.

STD as a function of defocus was much lower than expected from
geometric considerations. We believe that this is due to noticeable
diffraction and spherical aberration effects in that regime.
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