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Abstract

This paper addresses the problem of jointly clustering
two segmentations of closely correlated images. We fo-
cus in particular on the application of reconstructing neu-
ronal structures in over-segmented electron microscopy im-
ages. We formulate the problem of co-clustering as a
quadratic semi-assignment problem and investigate convex
relaxations using semidefinite and linear programming. We
further introduce a linear programming method with man-
ageable number of constraints and present an approach for
learning the cost function. Our method increases computa-
tional efficiency by orders of magnitude while maintaining
accuracy, automatically finds the optimal number of clus-
ters, and empirically tends to produce binary assignment
solutions. We illustrate our approach in simulations and in
experiments with real EM data.

1. Introduction

We address the problem of jointly clustering two seg-
mentations of an image or two closely correlated images,
so as to ensure good matching between the clusters in the
two segmentations. We pose this as an optimization prob-
lem and apply our approach to neuronal reconstruction from
electron microscopy (EM) images.

Figures 1 illustrates the application with example EM
images along with their ground-truth segmentation and the
automatic segmentation that needs to be clustered. Notice
the considerable deformation of cell boundaries across sec-
tions and the over-segmentation in the automatic segments.
Our goal is to jointly cluster the automatic segments based
on their likelihood to belong to the same neuron.

We refer to the joint grouping of segments in two
segmentations as co-clustering, and formulate this as a
quadratic optimization problem, specifically a Quadratic
Semi-Assignment Problem (QSAP). Coefficients in the
quadratic function encode whether pairs of segments should
be placed in the same cluster or in distinct clusters.

Figure 1. Row 1: Two consecutive sections of a neuronal tissue
acquired using an electron microscope. Row 2: Ground-truth seg-
mentation. Each segment corresponds to a region belonging to a
distinct cell. The numbers show matches between segments of the
same cell in the two sections. Row 3: Input automatic segmen-
tation - note the over-segmentation relative to the ground-truth.
Our objective is to cluster the automatic segments to recover the
ground-truth. Row 4 shows the output of the proposed approach:
colors indicate mapping between segments.

QSAP is NP-hard in general [10]. To make the problem
tractable, we study two relaxations based on Semi-Definite
Programming (SDP) and Linear Programming (LP), using
the work of Charikar et al.[4]. The linkage application com-
monly requires solving systems with more than 2000 seg-
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ments; we found the SDP solution to be impractical for
such large systems. The LP formulation proposed in [4]
also proved to be impractical for large systems. This for-
mulation involves enforcing triangular inequalities, requir-
ing therefore O(n3) constraints, where n is the number of
segments. This results in billions of inequalities for typical
systems. We address this by enforcing only the local metric
constraints, bounding the number of constraints to O(n2).
We found that this greatly reduces the time-complexity of
the optimization without significantly affecting the accu-
racy.

We present an approach to learning the coefficients of
the optimization function using a boosted classifier trained
to minimize the Rand index error of the classification. This
opens up the possibility of applying the results to other co-
clustering problems in vision.

Computing globally optimal binary solutions from the
real-valued solutions obtained from the SDP and LP isNP -
hard. We present empirical results of LP’s integrality, and
theoretical discussions about the relation of the integrality
of our LP solution to studies in optimization theory.

We compare the performance of the LP formulation with
the SDP version, normalized cuts, and connected compo-
nents with learned cost function. Experiments indicate the
utility of the proposed approach.

2. Co-clustering problem
Let Ω ⊂ <2 denote a discrete 2D domain of points (pix-

els), and let P and Q denote two segmentations of Ω; P =
{pi}Ni=1 and Q = {qi}Mi=1 are two non-overlapping parti-
tions of Ω (pi∩pj = ∅, qk ∩ ql = ∅ and ∪ipi = ∪jqj = Ω).
Such segmentations can be obtained by applying two differ-
ent segmentation algorithms to an image or by segmenting
two closely correlated images. Our objective is to cluster
the segments in P and Q simultaneously, so as to obtain a
good match between clusters in P and Q. We further as-
sume that P and Q are over-segmentations of Ω, and hence
we do not need to consider splitting a segment to achieve a
good match.

Let C be the set of clusters, such that each cluster C ∈ C
is a subset of P ∪Q. We associate a cost with C defined as

H(C) =
∑
C∈C

∑
r,r′∈C

F (r, r′) (1)

with F (r, r′) ∈ R and expressH(C) as a quadratic function
as follows. Let xC ∈ {0, 1}N denote a vector indicating
which of the segments in P belongs to cluster C. Similarly,
let yC ∈ {0, 1}M be the indicator vector for segments in Q
that belong toC. Let zC ∈ {0, 1}N+M be a vector obtained
by concatenating xC and yC (i.e., zC = [xT

C yT
C ]T ). H(C)

is then expressed by a general quadratic function on pairs
of elements in the clusters, as H(C) =

∑
C∈C zT

C F zC .

Our objective is to compute the clustering that minimizes
the cost H(C), stated as

Min : H(C) =
∑
C∈C

zT
C F zC

s.t. zC ∈ {0, 1}N+M and
∑
C

(zC)i = 1 ∀i, (2)

where the constraints ensure that each segment in P and Q
participates in exactly one cluster. Note that while we focus
here on co-clustering, the formulation and its solutions are
applicable to the general problem of clustering as well.

When the number of clusters |C| is known, the opti-
mization (2) is equivalent to finding the minimal k-cut in
a weighted graph G with the edge weight matrix set to −F .
Here, each cluster corresponds to a component in G and
k = |C| is the known number of clusters. For the equiv-
alence, notice that when the edge matrix is set to −F , Min
k-cut minimizes

∑
C(1−zC)T (−F )zC , which is the same

as minimizing zT
CFzC , as all the vertices in the graph are

forced to belong to exactly one component in G.
While the problem of finding the minimal k-cut with

non-negative weights and with a fixed number of clusters
has a polynomial solution (with complexity O(nk2

)), the
problem of finding the minimal cut with negative weights or
with an unknown number of clusters is NP-hard [7]. More
generally, this problem can be viewed as a Quadratic Semi-
Assignment Problem (QSAP) which is also NP-hard [10].
The focus of our work is to construct tractable relaxations
that exhibit good empirical performance in the EM recon-
struction application. An SDP relaxation, along with an LP
relaxation based on Charikar et al. [4], form the starting
point for our work.

Image segmentation has been addressed with graph
theoretic algorithms, most notably with Shi and Malik’s
Normalized-cuts [14]. Yu and Shi modified N-cuts to han-
dle negative weights and used their modification to model
“pop-out” in perceptual grouping [17]. Cosegmentation of
an object occuring in two images has been studied in [12]
and [11].

3. Convex Relaxations

DeBie and Cristianini presented a fast SDP relaxation
of N-cuts and Max-cut [2]. Also, Xing and Jordan study
SDP relaxation of k-Ncuts [16]. QSAP is a special case
of Quadratic Assignment Problem (QAP). Many problems,
such as the traveling salesman problem and graph partition-
ing, can be formulated as QAP, which is also NP -hard and
difficult to even approximate [10]. Schellewald et al. study
convex relaxations of QAP for feature matching in [13]. A
closely related work of Kumar et al. deals with convex
relaxations of quadratic optimization problems [9].
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3.1. Semi-Definite Program (SDP) relaxation

Let Z = [z1 . . . z|C|], andR = ZZT , Z is (N+M)×|C|
andR is (N+M)×(N+M). Here,R is akin to the cluster
co-occurrence matrix; it is 1 when two segments belong to
the same cluster and 0 otherwise. In the spirit of Goemans
and Williamson’s approximation algorithm for the maxi-
mum cut [6] we relax R to obtain real-valued entries and
restate (2) as a Semi-Definite Program (SDP):

Min : Trace(FTR)
s.t. : R � 0, Rij ∈ [0, 1] ∀i, j, and Rii = 1 ∀i. (3)

(Note that we assume that F has negative weights, or else
the identity matrix would form a trivial solution.) The re-
laxed problem is convex for arbitrary F , and it is possible to
compute a globally optimal real-valued solution. Another
advantage is that the optimization does not require apriori
knowledge of the number of clusters.

It is generally NP-hard to convert the obtained real-
valued solution to a globally optimal binary solution. A
common heuristic to obtaining a binary solution [6] is to
factorize the optimal R to QQT using Cholesky decompo-
sition and then convertQ to binary values, e.g., by assigning
1 in each row to the coordinate with the maximal value in
that row. We refer to this post-processing approach by SDP-
fact. Another possibility is to consider R as an adjacency
matrix of a weighted undirected graph. Clustering is then
computed by finding connected components in a sub-graph
obtained by considering edges with weights above a thresh-
old. This post-processing approach is referred to as SDP-
thresh. We pursued both approaches in our experiments.

We observed that current implementations of SDP
solvers, including SDPT3 [15], SeDuMi and SDPLR [3],
have difficulty solving problems constructed for the EM ap-
plication when the number of variables was in the 1000’s,
i.e. N + M ≈ 2000. The theoretical computational
complexity of general SDP solvers is high, growing as
O((]var)2(size SDP)2.5) [2]. In practice, the solvers im-
prove their efficiency by exploiting the structure of specific
problems. However, current solvers find our application
challenging.

3.2. Linear Program (LP) relaxation

Given the practical issues with SDP, we use a Linear
Programming relaxation based on [4]. Notice that R is a
matrix of inner products between vectors, Rij = vi · vj

where the vectors vi = [ZiC ]C∈C populate the rows of Z
and indicate for each segment i its cluster association. Let
dij = 1√

2
‖vi − vj‖2, where

√
2dij denotes the `2 distance

between vi and vj in the cluster space. Since we require
‖vi‖ = 1 for all i, we have

d2
ij =

1
2
(
‖vi‖22 + ‖vj‖22 − 2vi · vj

)
= 1−Rij . (4)

Let D = [dij ]; our objective then is to maximize
Trace(FTD). We relax the entries in D from being `2 dis-
tances to being a metric, i.e., nonnegative, symmetric and
follow the triangular inequality. This constraint is valid
because a clustering induces an equivalence relation, and
hence by transitivity dik = dkj = 0 implies that also
dij = 0 while if dik +dkj ∈ {1, 2} the triangular inequality
is satisfied trivially. The LP formulation then is

Max :
∑

i,j Fijdij

s.t. : 0 ≤ dij ≤ 1 , dij = dji ∀i, j, dii = 0 ∀i,
and dij ≤ dik + dkj ∀i, j, k. (5)

After optimizing this cost function we post-process the so-
lutions by thresholding the matrix D and considering the
connected components obtained by eliminating edges with
weights exceeding a specified threshold.

Although the metric constraints used with the LP for-
mulation seem to be weaker than the SDP formulation, we
will show empirically cases in which the LP optimization
performs better than the SDP. Note that while in general
SDP problems may be expressed as linear programs with
infinite number of constraints [8], this proposed LP formu-
lation has only a finite number of constraints. However, the
number of triangular inequalities in the LP grows as O(n3)
where n is the number of variables. For a typical EM co-
clustering problem with 2000 variables, we will have more
than 3× 8× 109 inequalities! We found this to be imprac-
tical – we tested this using lp solve, a state-of-the-art open
source solver. We therefore seek to reduce the number of
constraints while maintaining empirical performance.

3.3. LP-R - LP with local metric constraints

We further relax our LP formulation by constraining the
distances in D to satisfy the triangular inequality only lo-
cally. Consider a graph GP consisting of nodes correspond-
ing to segments, pi ∈ P , and edges connecting spatially
adjacent segments. Similarly, a graph GQ is defined for seg-
mentation Q. Let G be a graph constructed by combining
GP and GQ and adding edges between overlapping segment
pairs pi ∈ P and qj ∈ Q. The distances in D are con-
strained to be locally metric within all cliques in G. Let
E = {eij} be the set of edges in G. The reduced LP ver-
sion, referred to as LP-R, is

Max :
∑

i,j Fijdij

s.t. 0 ≤ dij ≤ 1 , dij = dji ∀i, j, dii = 0 ∀i, and
dij ≤ dik + dkj ∀eij , eik and ejk ∈ E. (6)

The number of constraints in LP-R is 3 times the num-
ber of 3-cliques in G. Let us first count the number of 3-
cliques within GP and GQ separately. The segments in P
and Q are constrained to be connected regions in the image
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plane. Therefore, GP and GQ are planar graphs, and hence
the number of 3-cliques within GP is O(n), and similarly
for GQ. For counting the 3-cliques that extend across GP

and GQ, consider without loss of generality 3-cliques with
two nodes in GP and one in GQ. There are O(n) edges in
GP , and each adjacent pair can be simultaneously adjacent
toO(n) nodes in GQ. Therefore, the number of such cliques
is bounded by O(n2). Thus, the number of inequalities in
LP-R grows as O(n2). We observed empirically that the
number of inequalities grows almost linearly with respect
to the number of segments.

3.4. Non-integrality of LP solutions

Our goal in clustering is to assign exactly one cluster to
every segment from P∪Q. We therefore want our optimiza-
tion to yield binary solutions. The LP formulation, however,
only limits the variables to lie within the [0, 1] range and a
binary solution is not guaranteed.

One way to demonstrate that an LP system achieves bi-
nary solutions is to examine the vertices of the feasibility
polytope. If all of the vertices are binary then a binary
optimal solution must exist. To examine the vertices, con-
sider the set of hyperplanes that compose the inequality con-
straints in our LP system (5). Denote these hyperplanes by
Ad = b. Every vertex in the polytope lies at the intersec-
tion of a subset of these hyperplanes. A sufficient condition
for the vertices to be binary is if the matrix A is totally uni-
modular (TUM), that is, if the determinant of every square
subset of the rows and columns of A belongs to {−1, 0, 1},
and if b is integer.

Unfortunately, our constraint matrix is not totally uni-
modular. The matrix A can be viewed as the node-
hyperedge incidence matrix of a directed hypergraph H.
The nodes in H correspond to the variables dij (columns
of A), and each row of A that corresponds to a triangular
inequality constraint represents a hyperedge with one head
and two tails. For example, the inequality d12 + d13 ≥ d23

forms a directed hyperedge connecting the tail nodes d12

and d13 to the head node d23. Such a hypergraph is called 2-
LDH (Leontief Directed Hypergraph). Coullard and Ng [5]
showed that the incidence matrix of a 2-LDH H is totally
unimodular if and only if there exists no odd pseudo-cycle
in H. (A pseudo-cycle in H is a sequence of nodes where
each node is connected to its successor in the cycle by a dis-
tinct hyperedge and that contains at least one tail-tail arc.
An odd pseudo-cycle is a pseudo-cycle with odd number of
tail-tail arcs.) We next construct an odd pseudo-cycle and
use this construction to find a vertex with non-binary values.

Consider a system with 4 segments, denoted 1, 2, 3, and
4, and denote the unknown distances between those seg-
ments by dij , 1 ≤ i, j ≤ 4. Consider a vertex of the fea-
sibility polytope obtained by the following subset of con-

straints:

Ãd̃ =


1 1 0 −1 0 0
1 0 1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




d12

d13

d14

d23

d24

d34

 =


0
0
0
1
1
1

 .

Ã is a sub-matrix of A with the first three rows represent-
ing triangular inequalities between subsets of the six vari-
ables and the last three rows representing the constraints
that limit variables to take values ≤ 1. Indeed, the cycle
d12 → d13 → d14 → d12 forms a 3-pseudo-cycle (and
hence the determinant of the top-left 3 × 3 sub-matrix of
Ã is -2) implying that A is not totally unimodular. Conse-
quently these six constraints intersect at a non-binary point
〈d12 = d13 = d14 = 1/2, d23 = d24 = d34 = 1〉. In
fact, the matrix A contains many more odd pseudo-cycles
and hence, many vertices with rational values exist. Still,
our simulations and experiments with real data demonstrate
that typically we can find solutions in which many of the
variables obtain binary values.

4. Learning the cost function

Quadratic cost functions can be used to encode a vari-
ety of criteria for clustering. For example, in Section 5 we
demonstrate properties of our algorithm using a cost func-
tion that relies on the shape of the segments. Specifically,
we construct a function that seeks clusters of segments in
P and Q whose symmetric difference is minimal. Like-
wise, criteria that involve intensities and texture can also be
incorporated. Furthermore, for a variety of applications it
may make sense to learn the cost function from examples.
In this section we describe a simple procedure for learning
the cost function from training data. This procedure is later
used in Section 6 to link regions corresponding to neuronal
cells across EM sections.

Our objective is, given training data, to learn the compo-
nents of F from properties of the segments in P and Q. In
training, we assume that we are given the results of two au-
tomatic segmentations P = {pi} and Q = {qi} along with
the ground-truth clustering, i.e., the desired partition of the
set of segments P ∪ Q. Let Rgt denote the co-occurrence
matrix for the ground-truth clustering (as in Section 3.1,
Rgt

ij = 1 if segments i and j belong to the same ground
truth cluster and zero otherwise). Let R denote the co-
occurrence matrix computed using a co-clustering formula-
tion. To evaluate the accuracy of R we use the Rand index,
which has been used extensively for evaluating clustering
and segmentation algorithms, e.g. [1]. Denote respectively
by lgt(r) and lcc(r) the cluster assigned to a segment r in
the ground truth and in the computed co-clustering. The
Rand index counts the number of false merges and splits in
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the computed co-clustering as follows.∑
r,r′∈P∪Q

1 (lgt(r) = lgt(r′) ∧ lcc(r) 6= lcc(r′)) +

1 (lgt(r) 6= lgt(r′) ∧ lcc(r) = lcc(r′)) . (7)

where 1(.) denotes binary indicator function and ∧ is the
logical and operator. This measure can be expressed in
terms of the co-occurrence matrices Rgt and R as follows.

Rand(R) =
∑

i,j [1−Rij ]Rgt
ij +

∑
i,j Rij [1−Rgt

ij ]
=

∑
i,j [1− 2Rgt

ij ]Rij + c,

where c =
∑

ij R
gt
ij is a constant independent of R. Com-

pare this with the SDP and LP formulations (3) and (5), if
F was defined as 1− 2Rgt, minimizing the Rand error can
be posed as a QSAP problem. We therefore seek a function
that assigns to Fij the values −1 and +1 to pairs of to-be-
linked and not-to-be-linked segments in P ∪Q respectively.

There have been numerous studies on trainable cluster-
ing and segmentation algorithms. Here we use a boosted
classifier to learn the cost function for the optimization, and
use intensity histograms as features. For pairs of segments
belonging to the same section (p, p′ ∈ P and q, q′ ∈ Q) we
compute their histograms of intensities along their bound-
ary interface. For pairs of segments that belong to adjacent
sections, p ∈ P and q ∈ Q, we compute the intensity his-
togram in the region of overlap (p ∩ q), and concatenate it
to the histograms of the individual segments p and q. We
chose to use intensity histograms despite their simplicity as
they have been used effectively in a variety of applications
such as object recognition and tracking. The Gentle-Boost
classifier outputs a “soft” confidence value. As we seek to
rely on the information for which the classification is more
confident we allow F to attain real values, and so we di-
rectly use the values returned by the Gentle-Boost classifier
to populate F . We further trade-off between false split and
false merge errors by assigning different costs during train-
ing to errors in classifying samples with ground-truth labels
+1 and −1.

In the rest of the text, the co-clustering formulations
combined with boosting are referred to as B-SDP, B-LP and
B-LP-R.

5. Simulation experiments
We illustrate the co-clustering problem and the proposed

formulation through simulation experiments. The results
highlight (a) the relative sparsity of the optimization so-
lutions, (b) the similarity in the results obtained with the
SDP and LP formulations, and (c) the need for caution when
defining the objective function to avoid trivial solutions.

For the simulations, we define the following problem.
We are given as input two segmentations of an image that
are noisy refinements of some ground-truth segmentation.

Our objective is to co-cluster the segments to recover the
ground-truth segmentation. We assume that the two seg-
mentations are computed with two independent algorithms,
so that they coincide, with some noise, on the ground truth
segment boundaries, while they are uncorrelated on the
false boundaries, see Figure 2 for an illustration.
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0 0.2 0.7 0.9 1
0

0.3

0.4

0.8

1

0 0.3 0.7 0.8 1
0

0.25

0.4

0.75

1

(a) (b) (c)
Figure 2. Illustration of the input for simulation: (a) Ground-truth
consisting of 4 segments. (b) and (c) Each segment is perturbed
and split into sub-segments to simulate automatic segmentations.
Boundaries of the automatic segmentation are shown in dashed,
green lines.

We attempt to recover the ground truth segments by
seeking clusters of P and Q whose pixel-wise symmetric
difference is minimal. Let C ⊆ P ∪ Q. As P and Q are
non-overlapping partitions of the image we can measure the
symmetric difference in C by∑

p∈P∩C

|p|+
∑

q∈Q∩C

|q| − 2
∑

p∈P∩C

∑
q∈Q∩C

|p ∩ q|, (8)

where |p| denote the area of p. Since the diagonal values of
F do not affect the optimization, minimizing the symmet-
ric difference is equivalent to simply maximizing the area
of overlap between segments, i.e. max

∑
C zT

CFzC with
F (p, q) = |p ∩ q|.

Notice that for this QSAP a trivial solution is optimal.
In this solution all the segments of P and Q are put in a
single cluster, i.e., R = 11T , where 1 = (1, ..., 1)T . This
makes intuitive sense because for a cluster containing all
the segments the symmetric difference vanishes. More gen-
erally, the 11T trivial solution exists whenever F has all
non-positive entries. One approach to avoiding this trivial
solution is to add penalties, e.g., as the sum of squares of
the cluster-sizes so as to favor smaller clusters in the opti-
mization. We achieve this by modifying F as follows.

F =
[

FP FPQ

FPQ FQ

]
, (9)

with FPQ(p, q) = |p∩q| and FP (p, p′) = FQ(q, q′) = −λ,
and λ > 0 is a constant adjusting the relative cost for clus-
ter size. We solve this optimization problem with SDP (3),
LP (5) and LP-R (6). We then assign two segments to the
same cluster if Rij > 0.5 in the case of SDP-thresh and
Dij < 0.5 in the case of LP and LP-R.

In our simulation experiments, the image is a unit square
and is divided into four rectangular ground-truth segments.
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Figure 3. Results on simulated data: (a) Number of trials in which 0 Rand index error was achieved by co-clustering with the SDP, LP and
LP-R formulations, and the strawman minimum pairwise distance based clustering. The x-axis is the noise level relative to the average
automatic segment size. (b) The median area of segments classified as errors by the Rand index averaged over trials. (c) The average
number of values in the solutions for the SDP and LP that are in the range [0.1, 0.9] for varying noise levels. Both in terms of counts of
Rand errors and the area of the errors, LP and LP-R perform almost the same as the SDP formulation, and all three of these outperform the
strawman algorithm. However, the SDP solutions have many more “soft” values compared to those of LP and LP-R.

The automatic segmentations P andQ are produced by ran-
domly splitting each ground truth segment into four sub-
segments. We further perturb the boundaries of the seg-
ments by an amount drawn from a uniform distribution in
the range [−α, α] with α > 0 measured relative to the aver-
age size of segments in the automatic segmentation.

We compare our optimization with a strawman approach
that applies a threshold to the area of overlap and forms
clusters from the obtained connected components, referred
to as CC. We further give extra leeway to this strawman al-
gorithm by allowing it to choose a different, optimal thresh-
old in each trial. Of course in real applications one expects
to use a single constant threshold for all trials. We use the
Rand Index (7) to evaluate our results.

Figure 3 shows the experimental results. Co-clustering
with the SDP, LP and LP-R formulations clearly outper-
forms the strawman. Furthermore, the solutions computed
by the LP and LP-R formulations have predominantly bi-
nary values, even for high levels of noise in the range of
10% of the segment sizes. Finally, both post-processing ap-
proaches to SDP produce very similar results.

6. The Linkage problem

We illustrate our co-clustering formulation with an appli-
cation to neuronal reconstruction using electron microscopy
(EM) images.

EM is a proven approach to reconstructing brain cir-
cuits. The most popular reconstruction technique involves
serial section transmission electron microscopy (ssTEM) in
which tissue blocks are cut into very thin sections and pho-
tographed using EM. There is significant physical deforma-
tion of the sections during this process, making it difficult
to precisely align hundreds of sections into one 3D stack
after imaging. Moreover, there is an order of magnitude
difference in z and x − y resolution - the sections are typ-
ically 40 − 50nm thick, whereas the image resolution may
be 4nm. Consequently, the practical approach is to segment
each 2D section-image into regions belonging to individual
cells and then link the 2D segments across sections to form

3D volumes. We will focus on the 3D linkage application:
Given the segmentations of two adjacent sections, link the
segments that are likely to belong to the same neuron.

There are two challenges in 3D linkage. (1) Misalign-
ment between sections: The sections get physically de-
formed during EM imaging, and the tissue structure may
change considerably across sections. Consequently, the cell
boundaries may not align perfectly across sections. (2) In-
correct segmentation: EM image segmentation is a chal-
lenging problem and is a topic of active research. Currently,
it is difficult to segment neuronal images such that each seg-
ment would correspond to a distinct neuron. This problem
can be partially ameliorated by setting the segmentation pa-
rameters such that there are very few false mergers.

6.1. Evaluation method

We tested the co-clustering approach on an EM stack of
10 sections taken from the fly larva. Each section’s image
was 1600×1600 pixels, with approximately 1000 segments
in each section. A round robin protocol was employed with
5 sections used for training and the other 5 for testing and
vice-versa. The task was to compute co-clustering of seg-
mentations of pairs of adjacent sections.

We compare four methods; in each case, a weighted
undirected graph G = (V,E,W ) is constructed with nodes
corresponding to segments and weights computed by the
method in question. To compute the final clustering, a sub-
graph G′ = (V,E′) is constructed by thresholding the edge
weights such that E′(∆) = {e|e ∈ E ∧ w(e) ≤ ∆}. The
clusters are defined to be the connected components in G′.
Applying a sequence of thresholds results in error curves.
We also varied the relative weight given to false-merge and
false-split errors when training the boosted classifier. For
clarity, we only plot the lower envelope of the results for
each method.

1. B-LP-R: The output of the boosted classifier is used
to populate F , and the LP-R formulation in (6) is used to
compute the distance matrix D = [dij ]. The edge weight,
Wij , between two segments i and j is defined as dij .
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2.LP-R(S-Diff): LP-R is used to optimize the symmetric
difference cost function (9) with λ = 1000. The weightsW
are set according to D.

3. B-Ncuts: Normalized-cuts was used to cluster the
segments with the weighted adjacency matrix defined to be
−F , the output of the boosted classifier. As the original ver-
sion of N-cuts was defined for non-negative weights [14],
we tried the following variations: (a) B-Ncuts: ignore
the negative weights, (b) B-Norm-Ncuts: normalize the
weights to the [0, 1] range, and (c) B-Neg-Ncuts: use an ex-
tension of N-cuts to handle negative weights [17]. We found
B-Ncuts and B-Neg-Ncuts to be better than B-Norm-Ncuts.
In case of B-Neg-Ncuts, we also tried varying the relative
weight given to positive and negative values in F . The out-
put of Ncuts is a set of eigenvectors whose components de-
fine the coordinates of the segments in the cluster space.
We compute pairwise distance between the segments in this
cluster space and use them to define the edge-weights, W
in G.

4. B-CC: Clustering by connected components. The
edge weights, W , in G are simply the output of the boosted
classifier.
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(a) (b)
Figure 4. Linkage results using co-clustering with LP, connected
components and N-cuts on intensity histogram/boost coefficients,
and symmetric difference. (a) Segment-wise Rand index shown as
a trade-of between false splits and false merges of segment pairs.
(b) Edit score showing the number of required splits and merges
by a model proofreader. Co-clustering with B-LP-R outperforms
the other methods.

The evaluation is performed at the granularity of seg-
ments. The reason is that the EM reconstructions are proof-
read by experts to correct mistakes, and the corrections are
performed by regrouping the member segments. Our ob-
jective is to reduce the manual effort involved in proofread-
ing. Therefore, the evaluation measure has granularity at
the level of segments, and not pixels. Another evaluation
aspect peculiar to EM reconstruction is the asymmetry be-
tween false merge and false split errors. Our experience
has shown that when reconstructing 100’s of EM sections,
false merge errors add up very quickly. Proofreaders find
it difficult to proofread volumes with large merge errors.
Therefore, false merge errors are assigned a much higher
cost relative to false split errors during the evaluation.

Two evaluation measures are employed: The Rand index
and an edit score. The Rand index is computed as per the
definition in (7), except that we count the first and second
terms in the summation separately as false split and false
merge errors, respectively.

The edit score is designed to mimic the number of clicks
that would be required by a proofreader to correct the link-
age errors. Drawing from our experience, we model the
proofreading as a three step process. First, each cluster from
the automatic linkage is assigned to ground-truth segment
cluster (according to the proofreader’s judgement) based on
the number of overlapping segments. Next, for each auto-
matically generated cluster, all the false merged segments
are split away one at a time and placed in a distinct new
set. Counting the number of such segments gives the num-
ber of required splits. At this point only merge operations
are required. Counting the number of segment-clusters that
should be joined together provides the number of required
mergers. Notice that the Rand error grows quadratically
with the number of segments that are linked erroneously,
whereas the edit score grows linearly with this number.

6.2. Evaluation results

Figure 4(a) shows the number of false merge and false
split pairs for the four investigated methods. Figure 4(b)
shows the number of split and merge operations required
according to the edit score criterion. B-LP-R clearly out-
performs the other approaches. Compared to thresholding
and connected component analysis, joint optimization im-
proves the linkage. At the operating point typically used for
reconstructions (number of required splits ≈ 30), B-LP-R
produces a 15% decrease in the number of merge opera-
tions relative to B-CC for the same number of split oper-
ations. Similarly, B-LP-R produces a 7% reduction in the
number of false split pairs relative to B-CC for the same
number of false merge pairs. Figure 5 shows examples of
linkage results obtained with B-CC and B-LP-R.

One possible reason for the inferior performance of N-
cuts could be that the EM linkage applications requires the
generation of a large number of small clusters. E.g., for
a system with 2000 segments, the number of ground-truth
clusters is around 500. This may put the normalization in
N-cuts at a disadvantage.

6.3. SDP vs. LP-R

We tested the SDP-based co-clustering on a smaller EM
dataset of 10 sections with approximately 150 segments
per section, see Figure 6. We found that B-LP-R performs
slightly better than B-SDP and B-LP, and significantly bet-
ter than B-Ncuts and B-Neg-Ncuts. However, the results
should be interpreted conservatively because the total num-
ber of segments in the dataset is only about 1500.

We ran our optimization on a 2.66GHz machine with
32GB RAM. For the small EM dataset, the SDP optimiza-
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tion using SDPT3 took roughly 1800 seconds. The LP with
all triangular inequalities took roughly 200 seconds, while
the LP-R took less than 1 second. Neither SDP nor LP could
not be used on the larger dataset with ≈1000 segment per
section; only LP-R was feasible and took 5 to 7 seconds.

We found the results of LP-R to be very sparse and with
few non-binary values. For systems with F and D ap-
proximately of size 1800 × 1800, the number of non-zero
values in 1 − D was approximately 4000 (≈ 0.1%) and
the number of values in the range [0.1, 0.9] was around 60
(≈ 2 × 10−3%). For the smaller EM dataset with F and
D of size 150 × 150, LP-R solutions had no values in the
range [0.1, 0.9]. For the same systems, SDP had around 400
values (≈ 2%) in the range [0.1, 0.9].

B
-C

C
B

-L
P-

R

section 1 section 2
Figure 5. Linkage results for B-CC and B-LP-R at an operating
point with number of false split pairs≈ 2.9× 104, or equivalently
the number of required mergers ≈ 380. False mergers marked in
red. B-LP-R has fewer false mergers.
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Figure 6. Results of linkage on small EM dataset for co-clustering-
LP, co-clustering-LP-R, co-clustering-SDP, Ncuts with positive
weights only, and N-cuts with positive and negative weights. LP-R
clearly outperforms the other approaches.

7. Conclusion

We presented a formulation of co-clustering of two seg-
mentations as a QSA problem and studied convex relax-
ations based on SDP and LP. In particular, we demonstrated

how to modify the formulation in [4] for practical applica-
tions by sparsifying the set of constraints and by learning
the cost function. Experiments indicate that the approach
outperforms connected components and Ncuts. Moreover,
the LP-R’s solutions are sparse and mostly binary. We also
highlighted the relationship between LP-R and total uni-
modularity of 2-LDHs. This suggests a possibility of forc-
ing integrality by modifying the LP to ensure acyclicity of
the corresponding 2-LDH.
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