NO TEMPORAL DISTRIBUTIONAL LIMIT THEOREM
FOR A.E. IRRATIONAL TRANSLATION

DMITRY DOLGOPYAT AND OMRI SARIG

ABSTRACT. Bromberg and Ulcigrai constructed piecewise smooth
functions on the torus such that the set of a for which the sum
ZZ;S f(xz+kamod 1) satisfies a temporal distributional limit the-
orem along the orbit of a.e. z has Hausdorff dimension one. We
show that the Lebesgue measure of this set is equal to zero.

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

1.1. Background. Suppose T": X — X isamap, f: X — Ris a
function, and zy € X is a fized initial condition. We say that the T
ergodic sums Sy, = f(xo) + f(Txo) +- -+ f(T™ tup) satisty a temporal
distributional limit theorem (TDLT) on the orbit of xg, if there exists a
non-constant real valued random variable Y, centering constants Ay €
R and scaling constants By — 00 s.t.

Sp — AN

Bu v Y in distribution, (1.1)

when n is sampled uniformly from {1,..., N} and x is fixed. Equiva-
lently, for every Borel set E C Rs.t. P(Y € OF) =0,

1 Sp — An
i < < L2 7

N
We allow and expect Ay, By,Y to depend on T, f, .

Such limit theorems have been discovered for several zero entropy
uniquely ergodic transformations, including systems where the more
traditional spatial limit theorems, with x( is sampled from a measure
on X, fail [Becl0, Becll, ADDS15, DS17, PS, DSa. Of particular
interest are TDLT for

Rq 2 [0,1] = [0,1], Ro(x) =2 +amodl, fz(z):= lypg(z) — 5,
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because the R,—ergodic sums of fz along the orbit of x represent the
discrepancy of the sequence = +namod 1 with respect to [0, 3) [Sch78,
CK76, Becl0]. Another source of interest is the connection to the
“deterministic random walk” [AK82, ADDS15].

The validity of the TDLT for R, and fz depends on the diophantine
properties of o and . Recall that a € (0,1) is badly approximable
if for some ¢ > 0, |ga — p| > ¢/|q| for all irreducible fractions p/q.
Equivalently, the digits in the continued fraction expansion of a are
bounded [Khi63]. Say that 5 € (0,1) is badly approzimable with respect
to « if for some C' > 0, |qa —  —p| > C/|q| for all p,q € Z,q # 0. If «
is badly approximable then every g € QN (0,1) is badly approximable
with respect to a. The recent paper [BU] shows:

Theorem 1.1 (Bromberg & Ulcigrai). Suppose « is badly approzimable
and B is badly approximable with respect to a, e.g. B € QN (0,1).
Then the R,-ergodic sums of fg satisfy a temporal distributional limit
theorem with Gaussian limit on the orbit of every initial condition.

The set of badly approximable a has Hausdorff dimension one [Jar29],
but Lebesgue measure zero [Khi24|. This leads to the following ques-
tion: Is there a B s.t. the R,—ergodic sums of fg satisfy a temporal
distributional limit theorem for a.e. a and a.e. initial condition?

In this paper we answer this question negatively.

1.2. Main result. To state our result in its most general form, we
need the following terminology.

Let T := R/Z. We say that f : T — R is piecewise smooth if there
exists a finite set & C T s.t. f is continuously differentiable on T \ &
and 3¢ : T — R with bounded variation s.t. f’' = on T \ &. For
example: fg(x) = 1y g)(z) — B (take & = {0, 3}, ¢ = 0). We show:

Theorem 1.2. Let f be a piecewise smooth function of zero mean.
Then there is a set of full measure € C T x T s.t. if (a,x) € € then
the R,—ergodic sums of f do not satisfy a TDLT on the orbit of x.

The condition fT f = 01is necessary: By Weyl’s equidistribution theo-

rem, for every a € QQ, f Riemann integrable s.t. fT f=1 and xq €T,
Sp/N % U[0,1] as n ~ U(1,...,N). See §1.4 for the notation.
—00

This paper has a companion [DSb] which gives a different proof of
Theorem 1.2, in the special case f(z) = {2} —1. Unlike the proof given
below, [DSb] does not identify the set of o where the TDLT fails, but it
does give more information on the different scaling limits for the distri-
butions of S,,, n ~ U(1,..., Ny) along different subsequences N;, — 0.
[DSb] also shows that if we randomize both n and « by sampling (n, «)
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uniformly from {1,..., N} x T, then (Sn — % 2?:1 Sk)/\/ In N con-
verges in distribution to the Cauchy distribution.

The methods of [DSb] are specific for f(z) = {z} — 3, and we do not
know how to apply them to other functions such as fz(z) = 1 g)(x)—f.

1.3. The structure of the proof. Suppose f is piecewise smooth
and has mean zero.

We shall see below that if f is continuous, then for a.e. «, f is
an R,-coboundry, therefore S, are bounded, hence (1.1) cannot hold
with By — oo, Y non-constant. We remark that (1.1) does hold with
By =1, Ay = f(z0), Y = distribution of minus the transfer function,
but this is not a TDLT since no actual scaling is involved.

The heart of the proof is to show that if f is discontinuous, then for
a.e. «, the temporal distributions of the ergodic sums have different
asymptotic scaling behavior on different subsequences. The proof of
this has three independent parts:

(1) A reduction to the case f(z) = Zd: bh(z + Bp), h(z) = {z} — 1.

(2) A proof that if N/ C N has positive lower density, then there exists
M > 1 s.t. the following set has full Lebesgue measure in (0, 1):

. ~dng oo, 1, < M s.t. for all k:

AW, M) = {a € (0,1): i, € Ny G s1/(a@1 + -+« + ) — 00 }

Here a,, and ¢, are the partial quotients and principal denominators
of «, see §3.1.

(3) Construction of N' = N (by,...,b4;01,...,084) € N with positive
density, s.t. for every o € AN, M) and a.e. z, one can analyze

d
the temporal distributions of the Birkhoff sums of » by,h(z+G,,).

m=1

1.4. Notation. n ~ U(1,...,N) means that n is a random variable
taking values in {1,..., N}, each with probability % Ula, b] is the
uniform distribution on [a,b]. Lebesgue’s measure is denoted by mes.
N ={1,2,3,...} and Ny = NU {0}. If € R, then ||z| := dist(z, Z)
and {z} is the unique number in [0,1) s.t. = € {z} + Z. Card(-) is the
cardinality. If € > 0, then @ = b &+ ¢ means that |a — b < ¢.
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d
2. REDUCTION TO THE CASE f(z) = Y bph(z + Bn)

m=1

Let h(z) = {z} — 3, and let G denote the collection of all non-

d
identically zero functions of the form f(z) = > b,h(x + B,), where
1

d € N,b;, 5; € R. We explain how to reduce the proof of Theorem 1.2

from the case of a general piecewise smooth f(z) to the case f € G.
The following proposition was proved in [DSb]. Let C(T) denote the

space of continuous real-valued functions on T with the sup norm.

Proposition 2.1. If f(t) is differentiable on T \ {51,..., B4} and f’
extends to a function with bounded variation on T, then there are d €
No, b1,...,b5 € R s.t. for a.e. a € T there is p, € C(T) s.t.

f(w):Zbih(x+ﬂi)+/Tf(t)dt+soa(x)—soa(x+a) (z # Br.-... Ba).

The following proposition was proved in [DS17]. Let (€2, B, 1) be a
probability space, and let T": {2 — €) be a probability preserving map.

Proposition 2.2. Suppose f = g+p—@oT p-a.e. with f,g,¢0: Q2 — R
measurable. If the ergodic sums of g satisfy a TDLT along the orbit of
a.e. x, then so do the ergodic sums of f.

These results show that if Theorem 1.2 holds for every f € G, then
Theorem 1.2 holds for any discontinuous piecewise smooth function
with zero mean. As for continuous piecewise smooth functions with
zero mean, these are R,-cohomologous to g = 0 for a.e. « because
the b; in Proposition 2.1 must all vanish. Since the zero function does

not satisfy the TDLT, continuous piecewise smooth functions do not
satisfy a TDLT.

3. THE SET A HAS FULL MEASURE

3.1. Statement and plan of proof. Let a be an irrational number,
1

aq + )
ap € Z, a; € N (i > 1). We call a,, the quotients of . Let p,/q, denote
the principal convergents of a;, determined recursively by

with continued fraction expansion |ag; a1, ag,as,...] = ag +

gn+1 = An+19n + qn-1, Prn+1 = An+1Pn + Dn—1

and py = ag,q0 = 1; p1 = 1 + aiag, ¢1 = a1. We call ¢, the principal
denominators and a; the partial quotients of a. Sometimes — but not
always! — we will write g, = qr(@), pr = pr(@), ar = ar(a).
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Given N C Nand M > 1, let A= AN, M) C (0,1) denote the set
of irrational a € (0,1) s.t. for some subsequence ny, 1 oo,

App+1
Ir, < M st. rpgn, €N, s 5 00. 3.1
b= i (a0—|-..._|_ank) k—o0 ( )

The lower density of N is d(N) := liminf -Card(N N [1,N]). The
purpose of this section is to prove:

Theorem 3.1. If a set N has positive lower density then there erists
M such that AN, M) has full Lebesque measure in (0,1).

The proof consists of the following three lemmas:
Lemma 3.2. For almost all a there is ng = no() s.t. if k > ng and
app1 > th(Ink)(Inlnk), then g1 /(a1 + -+ +ax) > s Inlnk.
Lemma 3.3. Suppose o € (0,1) \ Q and (p,q) € No x N satisfy
ged(p,q) = 1 and |qa —p| < oL where L > 4. Then there exists k
s.t. ¢ = qp(a) and api1(a) > L.
Lemma 3.4. Suppose ¥ : Ry — R is a non-decreasing function s.t.

> mpl(n) = 0. (3.2)

n

Suppose N' C N has positive lower density. For all M sufficiently large,
for a.e. a € (0,1) there are infinitely many pairs (m,n) € Ng x N s.t.
n e N,ged(m,n) < M, and Ina — m| < ———.

(m.m) o] < i
Remark 1. By the monotonicity of ¢, if et < n < ¥ then ¢ (e¥™1) <
¥(n) < 4 (e*) . Hence (3.2) holds iff > @ = o0.

Remark 2. If N = N, then Lemma 3.4 holds with M = 1 by the
classical Khinchine Theorem. We do not know if Lemma 3.4 holds
with M =1 for any set A/ with positive lower density.

Proof of Theorem 3.1 given Lemmas 3.2-3.4. We apply these lemmas
with () = ¢(Int) (Inlnt) (Inlnlnt) and ¢ > 1/111(%‘?’).

Fix M > 1 as in Lemma 3.4. Then 3Q C (0,1) of full measure s.t.
for every a € 2 there are infinitely many (m,n) € Ny x N as follows.
Let m* :=m/ged(m,n), n*:=n/ged(m,n), p:=ged(m,n), then

1) pn* € N, p < M, |n*a —m*| = roml < L (- < p);
p n*(n*)
(2) 3k s.t. n* = gp(@) and api1(a) > 39(gr) (- Lemma 3.3). By its

1+3\/5>k. 9o

recursive definition, ¢, > k-th Fibonacci number > %(
for all k large enough, ajy1(e) > 19(qy) > 1k(Ink)(Inln k);
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(3) ax1/(a1 + -+ +ax) > $Inlnk — oo (.- Lemma 3.2).

So every a € Q) belongs to A = AN, M), and A has full measure. [
Next we prove Lemmas 3.2-3.4.

3.2. Proof of Lemma 3.2. By [DV86], for almost every «

(a1 + - ak-{—l) — maX;j<k41 aj 1

2.
Kk 2~
So if k is large enough, and aj4; > $k(Ink)(Inlnk) then
ar+ -+ ag Q11 1
R LR~ el - )
3211?42{1% Api1, SEY? <2, and a1+---—|—ak> Inln k.00

3.3. Proof of Lemma 3.3. For every (p, ¢) as in the lemma, |ga—p| <
2%1. A classical result in the theory of continued fractions [Khi63, Thm
19] says that in this case 3k s.t. ¢ = qr(a),p = pr(a).

To estimate ag.; = agy1(a) we recall the following facts, valid for
the principal denominators of any irrational o € (0, 1) [Khi63]:

(2) larer = prl > gos

(b) Gra1 + qx < (ka1 + 2)qr, whence by (a) agyq > m —92
In our case, |Qka—pk|=|q&—p|§qﬁ,so a1 > L—2> L. 0

3.4. Preparations for the proof of Lemma 3.4. Let (2, F,P) be
a probability space, and A € F be measurable events. Given D > 1,
we say that A, are D-quasi-independent, if

P(Akl N Akz) S DP(Akl)P(Ak2) for all k’l 7& kQ. (33)

The following proposition is a slight variation on Sullivan’s Borel-
Cantelli Lemma from ([Sul82]):

Proposition 3.5. For every D > 1 there exists a constant §(D) > 0
such that the following holds in any probability space:

(a) If Ay are D-quasi-independent measurable events s.t. klim P(Ag) =
—00

0 but Y, P(Ag) = 0o, then P(Ay occurs infinitely often) > 6(D).
(b) The quasi-independence assumption in (a) can be weakened to the
assumption that for some r € N, P(Ay, N Ax,) < DP(Ag, )P(Ag,)
for all |ky — ky| > 7.
(¢c) One can take 5(D) = 5

ﬁ.
Proof. Since P(A;) — 0 but > P(A;) = oo, there is an increasing
Njt1
1
sequence N; such that lim Z P(Ag)

Jj—00 N D '
k?:Nj-i-l
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Let B; be the event that at least one of events {Ak}k N1 occurs.
Nj+1
SlnceB_Uk N+1( k\U] =N,;+1 )

Njt1
k=N;+1 N;j+1<k1<ko<Nji1
Nja
> > P(A) - > P(A)P(A,)
k=N;+1 N;j+1<k1<ko<N;i1
Nj+1 D Nj+1 ?
> > PA) -S| > P4
k=N, +1 k=N;+1
Nji1
Si li P(A _ 1 d D> 1, liminf P(B;) > 5.
1nceji>mk%:1(k)—5an > 1, liminfP(B;) > 55.

Let E denote the event that A; happens infinitely often. F is also the
event that B; happens mﬁmtely often, therefore £ = (2, U2, ,, B
In a probablhty space, the measure of a decreasing intersection of sets
is the limit of the measure of these sets. So P(E) > liminf P(B;) > 75,
proving (a) and (c).

Part (b) follows from part (a) by applying it to the sets {Ag,+¢}
where 0 < ¢ <r — 1 is chosen to get ZIP’(AMM) = 0. O

k

The multiplicity of a collection of measurable sets { Ey} is defined to
be the largest K s.t. there are K different k; with P(ﬂfil Ex,) > 0.

Proposition 3.6. Let E). be measurable sets in a finite measure space.
If the multiplicity of {Ex} is less than K, then

1
es (U Ek) > 174 Z mes(Ey).
k k
Proof. 1\ g, > + >_; 1g, almost everywhere. O

Proposition 3.7. For every non-empty open interval I C [0, 1],
Card{(m,n) € {0,...,N}*: 2 € I, ged(m,n) = 1} ~ 3mes(I)N?/x?,
as N — oo.

Proof. This classical fact due to Dirichlet follows from the inclusion-
exclusion principle and the identity ((2) = 7%/6, see [HW08, Theorem
459]. O
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Proposition 3.8. Suppose a = [0; ay, a9, ...] anda@ = [0; apy1, apro, - . .|
Then the principal convergents Dy/q; of @ and the principal convergents

pe/qe of a are related by ( Pt Pryi ) = (pl_l b ) (]Tl P )

Qi Dyl Q-1 4 Qi

Proof. Since ag = 0, the recurrence relations for p,/q, imply

Prn Pnt1 _ [ Pn-1 Pn 0 1 Po D1 _ 0 1
Gn  Gn+1 -1 Gn 1 apnt1 )"\ 0 @ I a )~

So | Pr Pntl = 01 . 0 1 . It follows that
Gn  Gn+1 1 a I app
( Pt Pryin ) = < Pr=1Pi ) ( Zfl Zfl“ ) , where p;/q; are the
Gy Qi -1 q a7 qi4 e
principal convergents of @ := [0; aj41, aj42, . . .. O

3.5. Proof of Lemma 3.4. Without loss of generality, tlim WY(t) = oo,
—00
otherwise replace ¢ (t) by the bigger monotone function 1 (t) + Int.
Fix M > 1, to be determined later. Let
Qe :={(m,n) eN?*:necN,ncle" e],0<m<n,ged(m,n) < M},
Apng ={a€eT:|na—m| < #(e’“)}’
Ak = U Am,n,ka
(m,n)eQy,
A :={a €T : « belongs to infinitely many Ay }.
The lemma is equivalent to saying that A has full Lebesgue measure
for a suitable choice of M.

We will prove a slightly different statement. Fix ¢ > 0 small. Given
an non-empty interval I C [e,1 — ¢], let

(1) == {(m,n) € O : % eI}
Al = | Awnx

(m,n)eQy (1)
A(I) :={a € T : «a belongs to infinitely many Ax(I)}.

We will prove that there exists a positive constant § = d(e, M) s.t. for
all intervals I C [e,1 —¢], mes(A(I)N 1) > dmes(]). It then follows by
a standard density point argument (see below) that AN [e,1 — ¢] has
full measure. Since ¢ is arbitrary, the lemma is proved.

CLAIM 1. There exist K = K(¢) s.t. for every k > K, the multiplicity
of { Ak }mnyca, () is uniformly bounded by M.
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PROOF: Suppose (m;,n;) € Qip(I) (i = 1,2) and Ay gk N Aok 7
@. Then there is a s.t. |nya —my| < 0y = #(ek) (i = 1,2). Choose
K=K(e )solargethatk>K:>(5k<

If k > K, then o > 7 —¢;, > min [—— > . Let r; := ged(my, n;) and
(nf,m;) = T,li(n,,mz) Then |nfa —m? | < 5k and m} < nf <n; <eé¥

so lmrm ] = i (nie — 1o3) — (i — mi)| < 248k < 1. So
nim; = nimj. Since ged(nl,mf) = 1, (n],m]) = (nj, m5). It follows
that (ng,mq) € {(rnf,rm3) : r = 1,..., M}. So the multiplicity of
{ Ak }momyea, ) is uniformly bounded by M.

CramM 2. Let d(N) := liminf & Card(N N [1,N]) > 0, then there
exists M = M(N) and K = K (e, N, |I|) s.t. for all k > K,

d(N)mes([) 6mes([)

< . .
IM0(e) es(Ax(1)) < () (3.4)
In particular, mes(Ag(I)) — 0 and ) mes(Ag(])) = 0.
PROOF: mes(A,, k) = mes([% Ty o —i—rmn}) = 2r,,, where
Tonn = W Since n € [eP71, ¥,
Card(Q4(1)) < mes(.Ak(I)) <€ Card(Q(1)) (3.5)

M) T

where the lower bound uses Claim 1 and Proposition 3.6.

Card(€2 (1)) satisfies the bounds A — B < Card(Qx(/)) < A where
A= Card{(m,n) :n €N, n € [eF! "], % el}
B := Card{(m,n) :n € N, n € [¢" €], % € I,ged(m,n) > M}.
Choose K = K (g, N, |I|) > K(¢) s.t. for all k > K

(a) Card{ne./\/'0<n<ek} > 1 ZdN)

(b) Card{n € [e*1, " NN : p|n} <2(e — k1) /p for all p > 1;
(c) For all n > i~ 1, p>1,

2
—mes( ) < Card{m € N : T I,plm} < —nmes(I).
n p

pV2
If k > K, then 1d(N)e*mes(I) < A < 2¢*mes(I) and

B < Z Card{(m,n) : n € [e"', €], ™ e I, plm,p|n}
n

p=M
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[eS) k-1 k [eS)
< Z 2(ek — eF 1) ~2e"mes([) < e mes( Z 1
e’ p ~ p?

IN
e

1
d(N)e*mes(I), provided we choose M s.t. Z p < 1—d(./\/)

6
p=M
Together we get 1d(N)e*mes(I) < Card(Q(I)) < 2¢*mes(I). The
claim now follows from (3.5).

CLAIM 3. There exists D = D(N, M), r = r(M), and K = K(e, N, 1)
s.t. for all k’l,kg > K s.t. |:I€1 — /{32| > T(M),

mes( A, (I) N Ak, (I)|I) < Dmes(Ag, (I)|I)mes(Ag,(I)|I) (3.6)

ProoF: By Claim 2, if ky, ko are large enough, then
AN 1

W) ) (3.7)
SM ) p(ek)ip(er)
where we put 5 instead of 4 in the denominator to deal with edge effects
arising from mes(Ax(/) \ I) = O (W)

mes(, (D s (D11 >

To prove the claim, it remains to bound mes (Akl(l )N A, (1 )‘I )

from above by #7, where R; := t(e").

A cylinder is a set of the form

[ai,...;a,] ={a € (0,1)\Q: a;i(a) =a; (1 <i<n)}.

Equivalently, a € [ay,...,a,] iff @ has an infinite continued fraction
expansion of the form a = [0;ay, ..., a,, *,*,...].

Our plan is to cover Ay, (1) by unions of cylinders of total measure
O(1/R;), and then use the following well-known fact: There is a con-
stant G > 1 s.t. for any (aq,...,a,,b1,...,b,) € N*T™

-1 < mesfay, ..., a,;01,...,0n] < (3.8)
~ mesfay,...,a,]mes[by, ..., 0] T '
This is because the invariant measure ﬁldﬁ of T : (0,1) — (0,1),

T(z) = {1} (the Gauss map) is a Gibbs-Markov measure, because of
the bounded distortion of T, see §2 in [ADU93].

To cover Ay, (I) by cylinders, it is enough to cover A,, , , by cylinders
for every (m,n) € Q,(I). Suppose a € A, 1, Then r := ged(m,n) <
M and (m*,n*) := L(m,n) satisfies

1

gcd(m*jn*) = ]_7 n* & U [ek;ﬁ_l,ek:]’ |n*04 — m*| < n*RZ

|k —ky | <In M
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Assume k; is so large that R; = ¢(e*) > 4. Then Lemma 3.3 gives
a1 > 2. Thus Ay, (I) C Cy, (I, R;) where

qz( ) [ek*ilvek*L
C(I,R):= | ae(0,1)\Q:Ist. ap(a )ZIWQ
k*€[k—In M,k ( )/C] )

(a

This is a union of cylinders, because (), ps(«), ap1(a) are constant
on cylinders of length ¢ + 1.

We claim that for some ¢*(M) which only depends on M, for all k;
large enough,
c*(M)mes(I)

R; '

Every rational * € (0, 1) has two finite continued fraction expansions:
[0;a1,...,a/ and [0;a4,...,a; — 1,1] with a;, > 1. We write £ = £(™)
and a; = a;(™*). With this notation

eo(lLR)= | U U la®),.. ey (2),0]

ky€lk;—In M,k;] gcd(m,n)=1 b>R;/2

mes(Cy, (I, R;)) < (3.9)

ne[ek -t ek:] m/nel
U [[al(%), e ,(Ig(%)(%) —1,1, b]]
+pe— +pe- :
We have [ai,...,a/] = (50=+5) or (2, 7="), depending on the

parity of ¢ [Khi63]. Since |peqe—1—ps 11qe| =land g1 = ae+1¢]z+qé 1,

we have mes([[al’ e ae’b]]) T Gpi(@erita)  (bartae 1)((b+1)f12+!u 1) <
b(b+1) ————— leading to
X EIEN N S oo
kX elki—In M k;] ,, €le kY ]gcd(m n)=1b>R;/2
m/nel
smM' L L o)

n=1 g

where ¢*(M) only depends on M. The last step uses Prop. 3.7.
Next we cover Ag, (I) N Ay, (I) by cylinders. Suppose without loss of
generality that ko > k;. Arguing as before one sees that if

ky > ki +1n M +1, (3.10)
then Ay, (I)NAg, (I) can be covered by sets [ay, . .., as, b, ay, ..., aj, Bﬂ_as
follows: The convergents p;/q; of (every) ain [aq, ..., as b, a1, ..., a5, b],

(1 <i<Il+1+2), satisfy
(a) q € [eM Y €M), ky € [ky —In M, ki), pi/q € 1, b > Ry /2;
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(b) quigeq € [€¥271,€R2], k3 € (ko —In M, ks, pr/qs € I, b > Ry/2
(¢) k5 > ki (this is where (3.10) is used).

We claim that

[ar,. .. a0 b] C Ci, (1), (3.11)

b < ehzmhitl (3.12)

[@..... a0 € | Cra—trtr—ms([0, 1], R2). (3.13)
Ir|<3

(3.11) follows from (a). Next, e*> > g1 > bg > be*1~1 proving (3.12).
To prove (3.13), let p,/G;, 1 < i < £+ 2, be the principal convergents
of (every) @ € [b,ay, ..., az b]. By Prop. 3.8, ¢;, 1,7 = Gi—1D11 + @141
whence ¢,y < 147 < 241Gy, Since ¢ € [eFi71 €M and ¢, €
1,

I

ks —kt—2 < Qry141 < _l+1 < Qy147 < ek’zk*k?rl' (3.14)
2q, q

e

Next, let p;/q; (1 <1i < Z)ﬁdenote the principal convergents of (every)
a € [ay,...,a;0b]. Then ?—“ =1/(b+ 1_7)7 S0 Gj,, = bg; + p;, whence
I+1
b < Gy < (b+1)g. Thus g € [(b+1)"'g;,,b7'qy,,]. Tt follows that
the I-th principal convergent of every a € [ai, ..., ag b]] satisfies
(YZ c [6 2—]6{—3—1111)7eks—k‘f-i-l—lnb]‘ (315)

It is now easy to see (3.13).

By (3.13), Ay, (NAg (NI C | ) |4 W la.b.a ]
‘T|<3 [@ b]cckl (I) [leb/]cck27k1+r71n b([ofl])
Now arguing as in the proof of (3.9) and using (3.8) we obtain

mes(Ag, (1) N Ap,(1)NI) <

[exp (k3 —k7+1)]
< Z Z Z 2Gmes(Ck2_kl+r_1nb([O,l],Rg))
= z : n2b(b+1)
ki €lki—In Mokg] pefeh -1 kl] ged(m,n)=1 =[R1/2]

1=1,2;|r|<3 m/nel

const mes(/)
- R R,

(3.16) uses the estimate mes(Cr,—k, +r—mb([0, 1], R2)) = O(1/R3) which
is also valid when ky — k1 + r — Inb is small, provided we choose M
large enough so that the asymptotic in Prop. 3.7 holds for all N > M
with I = [0,1]. See the proof of (3.9).

Combining (3.16) with (3.7), we find that under (3.10) Ay, (I) are
D-quasi-independent for sufficiently large D, proving Claim 3.

(3.16)
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Claims 2 and 3 allow us to apply Sullivan’s Borel-Cantelli Lemma
(Prop. 3.5). We obtain § = §(M) s.t. for every interval I C [g,1 — ¢],
mes(ANT) > dmes(/). This means that [¢,1 — ] \ A has no Lebesgue
density points, and therefore must have measure zero. So A has full
measure in [e,1 — €. Since ¢ is arbitrary, A has full measure. O

4. PROOF OF THEOREM 1.2

As explained in Section 2, it is enough to prove Theorem 1.2 for
f(@) =0 buh(z + By) # 0 with h(z) = {2} — L. Without loss of
generality, f; are different and b; # 0. Notice that

Z - Z sin(2mj(z + Bm))

™
Jj=1 J

Therefore || f||5 = ﬁ Z —2D(B1n, ..., B4n), where D : T? — R is
7r n

d 2

D(vi,...,7a) ::/0 [mesin(%r(y-l—%n)) dy. (4.1)

Since f £ 0, D(G1n, ..., Bqn) > 0 for some n. Let T denote the closure
in T¢ of O := {(Bin,...,Bm)modZ : n € Z}. This is a minimal set

for the translation by (81, ..., 34) on T¢ so a standard compactness
argument shows that for every ¢ > 0, the set
N:={neN: D(Bin,...,Bm) > e} (4.2)

is syndetic: its gaps are bounded. Thus N has positive lower density.
By Theorem 3.1, if M is sufficiently large then the set A := AN, M)
has full measure in T. Let

n—1

Zf (x + ka).

k=0
The proof of Theorem 1.2 for f(z) above consists of two parts:

Theorem 4.1. Suppose o € A, then for a.e. x € [0,1), there exist
Ag(z) € R and By(x), Np(x) — oo such that

Sn(av ZL’) B Ak(x) dist
Theorem 4.2. Suppose a € A, then for a.e. x € [0,1), there are no
An(z) € R and By(x) — oo such that

Sn(Oé,.T) - AN(%) dist

U[0,1], as n ~ U(0,..., Ng(x)).

» U[0,1], asn ~ U(0,...,N).
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4.1. Preliminaries.
Lemma 4.3. Sy(a,-) : T — R has dq discontinuities.

Proof. The discontinuities of S, are preimages of discontinuities of f
by R* with k =0,1,...,¢q— 1. O

Lemma 4.4. Let C := sup|f'| < |d bn|. If 2',2" belong to same
continuity component of R;, then

|5, (v, ') — Sp(a, 2")| < Crl|a’ — 2"|.

Proof. Since |S!| = !ZZ;E f'(z + ka)| < Cr, the restriction of S, to on
each continuity component is Lipshitz with Lipshitz constant Cr. [

Lemma 4.5. There are constants C, Cy such that the following holds.
Suppose that q, 1s a principal denominator of o, and q,+1 > cq, with
c> 1. Let p,(z) := 9, (a,z), then

2

l k
mes {:1: S, () =Ly, :tC’lz for ¢ =0,.. .,k} > 1—6’22. (4.3)

Proof. If x and = + {g,o belong to the same continuity interval of RI"
for all £ =0,...,k then we have by Lemma 4.4 that for ¢/ < k

-1 -1
|Stg (00, 2) = Cpta| <D 1S, (0,2 + jgact) — Sy (0, 2)] < Can Y |lgnel|
j=0 j=0
-1
Cq, C, 02
< ¢ j< " where C} = C/2.
In+1 555

Therefore if Sy, (o, z) # lp, £ C’lé for some ¢ = 0,...,k, then there
must exist 0 < £ < k s.t. z, R (z) are separated by a discontinuity of
S, (a,+). Since dist(x, R%"(z)) < £/gny1, x must belong to a ball with
radius k/g,11 centered at a discontinuity of S, («,-). By Lemma 4.3,
there are dg, discontinuities, so the measure of such points is less than

dqy, <ﬂ> < 2% The lemma follows with C := 2d. O

qn+1 -

Lemma 4.6. There is a constant C3 = Cs(by,...,bq) s.t. for every
n > 1 and o = [0;aq,az,...], max{|S,(a,z)]: 0 < r < ¢, — 1} <
Cs(ag + -+ + ap—1).

Proof. Let r = Z;:& bjq; denote the Ostrowski expansion of r. Recall
that this means that 0 < b; < a; and b; =a; = b;_; =0. So

bn—lfl bn—2*1 bo—l

Sy = Z S‘InfloRgznilk_F Z Sqn72oRg¢n72k+"'+ZSQOORgzOk'
k=0 k=0 k=0
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By the Denjoy-Koksma inequality |S,| < > b;V(f) < V(f)>_ a; where
V(f) <2 b; is the total variation of f on T. O

Lemma 4.7. There exist positive constants €1,€5 such that for every
o irrational, if ¢, 1s a principal denominator of « and g,r, € N with
rn < M then mes{x : |S,, (o, x)] >e1} > €.

Proof. We follow an argument from [Bec94|. Suppose ¢, is a principal
denominator of o and ¢,r, € N for some r, < M. Let N = g,r,.

Since f(z) = =3¢ _ b P sn@rj@tbm))  for each j € N

T

2
1 1 N-1

|Sn(a, )32 > W/ (Z mesm (27 m+ka+ﬁm))> dx.
m=1 k=0

Using the identities S0, sin(y+ ka) = swte/ 2)2_ ;ﬁ%;;gmﬂ)x/ 2 and

(4£8) sin(£54) we find that

cos A — cos B = 2sin

[Sn (e, )Z2 =
2

sin(mNjo) (N-1)a )

>

B (7?] sin(mja) ) <Z bm sin <27T <‘7$ NEAEE ) * 2W]5m>> de

2

sin(mNja)

- (7Tj sn(nja) ) <Z by, sin (27 (y —i—jﬁm))>

N
= (M) D(jf, ..., j0Bm) with D as in (4.1).
mjsin(mja)
We now take j = N = r,q,. The first term is bounded below because

||NOZ||<M||anz||< Moo M < M2 ZO(L),SO Sin(.”NQO‘) N

— Ggn41 — an+1qn — an+1N N nNsin(rNa) o
7~ 1. The second term is bounded below by ¢, because N = ¢,,r,, € N.
It follows that for all n large enough, [|S;,.4.(c,-)|l2 > \/€0/27.
For any L>-function ¢ and any € > 0,

lellZe < llpllzomes{z : [o(z)| = &} + &%

loll72 — €2
Hence mes{z : |¢(z)| > &} > W
n large enough, [|S;,q.(a,)|l2 > y/20/2m, and by the Denjoy-Koksma

inequality [|S;,q, (a, )|z < MV(f). So for some £ > 0 and for all n
large enough, mes{z : |S,, 4, (o, x)| >} > €.

Looking at the inequality |S,nnqn(oz )] < St Sy (o, + kgua)],
we see that if |S,,,, (o, )] > €, then |S,, (a,z + kg,a)| > €/M for
some 0 < k < M — 1. So for all n large enough, mes{z : |S,, (o, z)| >
E/M} > /M.

We just saw that for all
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4.2. Proof of Theorem 4.1. Let Q*(«) be the set of  where the
conclusion of Theorem 4.1 holds. Q*(a) is R,-invariant and it is mea-
surable by Lemma A.1 in the appendix. Therefore to show that Q*(«a)
has full measure, it suffices to show that it has positive measure.

Suppose a € A and let ng T oo be a sequence satisfying (3.1) with
N given by (4.2). There is no loss of generality in assuming that

L > k?’.
ao + e _|_ ank
SO quys1 > K3Liqn,, where Ly :=ag+ -+ + a,,.
Recall that p,, (r) = S,, (a,z). For all k sufficiently large, there is
a set Ay, of measure at least £5/2 such that for all x € A,

Cyl

St (00) = € (o) £ 5

iny (2)] = 1. (45)

This is because Lemma 4.5 says that the total measure of x for which

(4.4) fails is O(1/k?) while (4.5) holds on the set of measure &5 by

Lemma 4.7.

It follows that mes((),~; Uysn Ak) > €2/2. Therefore there exists

x which belongs to infinitely many A;. After re-indexing ny, we may

assume that (4.4), (4.5) are satisfied for all £ € N. Henceforth, we fix
such an z and work with this z. Let

1
Ni(2) = kLign,,  Bu(2) := kLilpn, ()], Ar(2) := S (sg0(ptn, (1)) ~1) By
Any n < Nj can be written uniquely in the form

n=1n)g,, +r(n) with 0<I(n) <kL,and 0 <r(n) < g,,.

) forall ¢ =0,1,... kL (4.4)

It is easy to see that % ]ji) U[0,1] as n ~ U(1,..., Ng).
—00

Writing Si(a, 7) = Signyg,, (@, ) + Sy (@, @ + al(n)gn,) we obtain
from (4.4) and Lemma 4.6 that
Sn(a, ) = 1(n) iy, (x) + O(Ly).

So ST];(:) is asymptotically uniform on [0, 1] when pu,, > 0, and [—1, 0]

when p,, <0. So %);Ak — U[0,1], as n ~ U(1,..., Ng(z)). O
—00

4.3. Proof of Theorem 4.2. Let 2(a) denote theset of x € T := R/Z
for which there are By (z) — oo and Ay(z) € R s.t.

Sn(aa Ilf) B AN<$) dist

» U[0,1], as n ~ U(1,...,N). (4.6)
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Q(«) is measurable, and A,(-), B,(-) can be chosen to be measur-
able on Q(«), see the appendix. Assume by way of contradiction that
mes[Q(a)] # 0 for some a € A.

Q(«) is invariant under R,(z) = v + amod1 on T := R/Z. Since
R, is ergodic, and Q(«) is measurable, mes[Q(«a)] = 1.

Since a € A, there is an increasing sequence ny satisfying (3.1)
where N is given by (4.2). We can choose ny so that ¢, r,, € N for
Tn, < M, and a,, 11 > k*Ly, where Ly := ag + - - - + ay, . In particular,
Qny+1 > k3Lank

Recall that i, (7) := S, (a, ). By Lemma 4.7 we can choose x such
that for infinitely many k, |p,, ()| > 1. We will suppose that j,, (z) >
0 for infinitely many k; the case where p,, () < 0 for infinitely many
k is similar.

CrAamM 1. It is possible to assume without loss of generality that
By, loo = SUPseq(a) |Ba,, (2)| < 3C3Ly for all k where Cj is the
constant from Lemma 4.6.

Proof. We claim that for every x with (4.6), B,, (z) < 3C3Ly for
all k£ large enough. Otherwise, by Lemma 4.6, there are infinitely
many k s.t. By, (z) > 3max{|S.(a,z)| : 7 = 0,...,¢n, 1}, Whence
Sn(a,2) /By, | < 5 forall 0 < n < gy — 1. In such circumstances,
(4.6) does not hold (the spread is not big enough).

Since B,, (r) < 3C3Ly for all k large enough, there is no harm in
replacing By, (z) in (4.6) by min{B,, (v),3C3Ly}.
CrLAM 2. Fix D > C = |)_ b/, and let Ej denote the set of x € Q(«)

Lan

st. Sp(a,2) = Sp(a, Ry (z)) £ anZil forall0 < ¢ < B, (),0<r<
¢n, — 1. Then mes(Ef) < Cyk—3.
Proof. If x € E}, then there are 0 < £ < By, (),0 <r < g, —1s.t.

D/
|Sy (o, ) — Sy, @ + Lgp, )| > .
Any+1

By Lemma 4.4, {z}, {z + {q,, a} are separated by a singularity of
Sr(a,-). So z belongs to a ball of radius 2||¢g,, || centered at one of
the dgy, discontinuities of Sy, (v, ---). Thus mes(Ef) < dgy, -2|/¢gy, |-
[ Ban, lloo c .
Now ||lgn, | < ll|gn, | < qzk’jrl < ?:zn,jff < kiqcfk by our choice of

ny. So mes(E¢) < Cy/k* with Cy := 6dC3.
CrAM 3. Let Fj, denote the set of z € Q(a) s.t.

qunk (CY,$) =/ (:unk ({E) +

14
kst) forall 0 </ < B, (z).
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Then mes(FY) < Csk™2.
Proof. This follows from Lemma 4.5.

By Claims 2 and 3, and a Borel-Cantelli argument, for a.e. x there
is ko(z) s.t. © € Ex N Fy, for all k > ko(x).

Suppose k > ko(z), and let Ny, := g, By, (). Every 0 <n < Ny —1
can be uniquely represented as n = {q,, +r with 0 < /¢ < B, (x) —1
and 0 <r < g, — 1. Using the bound || B,, [« = O(L), we find:

Su(er,@) = Ag, () S, (@,)  Si(a, Ra"™x) — Ay, (2)

= +
B‘Ink ('Z‘) B‘Ink (1‘) Ban (33)
Seg, (a, )  Sp(a,x) — A, (x)+o(1
= gan( )—|— ( ) q’“( ) (),becausexEEk
By, (x) By, (x)
(i, 1 Sy(a,x) — A,, (x) + o1
= (i () + o ))+ (@2) i, (7) <),becausexEFk.
Ban (:U> B(Ink (x)

If n ~ U(0,..., Ny —1), then ¢,r are independent random variables,
t~U(0,...,B,, (z) —1) and r ~ U(0,...,qn, —1). Thus the distri-
bution of W is close to U[0, ui,, (z)], and the distribution of

any,

Sr(avl’)_Aan (z)+o(1)
Ban (93)

Taking a subsequence such that ju,, (z) — € > £, we see that the ran-

Sn(a, ) — Aan (z)

By, (2)
Tk

in distribution to the sum of two independent uniformly distributed
random variables. This contradicts to (4.6), because the sum of two
independent uniform random variables is not uniform. O

converges to U[0, 1] (because = € Q).

dom variables , where n ~ U(0, ..., np—1), converge

APPENDIX A. MEASURABILITY CONCERNS

Let Q(a) denote the set of v € T := R/Z such that for some

By(z) — oo and Ay(z) € R, SulezAv@ O r7rg 9] agn ~
By (@) N—oo
U(1,...,N) and let Q*(a) denote the set of x € T such that along a

subsequence Ni(z) there exist some By, () — oo and Ay, (z) € R,

Snlonr) “An, (@) _dist U0, 1], as n ~ U(1,..., N;). We make no assump-
By (@) k—o0
tions on the measurability of Ay, By, Ny as functions of . The purpose

of this section is to prove:

Lemma A.1. Q(«) and Q*(«) are measurable.
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The crux of the argument is to show that Ay(x), By(x) can be re-
placed by measurable functions, defined in terms of the percentiles of
the random quantities S, (z, ), n ~ U(1,..., N).

Recall that given 0 < ¢t < 1, the upper and lower t-percentiles of a
random variable X are defined by

XH(X,t) ;== 1inf{¢: Pr(X < &) >t}
X (X,t) = sup{{ : Pr(X < ¢) <t}
Notice that Pr(X < x*(X,t)) > ¢, Pr(X < x (X,t)) < ¢, and

Prix (X,t) < X < xT(X,1)) = 0. In case X is non-atomic (i.e.
P(X =a) =0 for all a), we can say more:

0<t<1).

Lemma A.2. Suppose X is a non-atomic real valued random variable,
fix 0 <t <1 andlet xf = x*(X,t), then

(a) Pr(X < xi) =t and Pr(X < x;) =t;
(b) Ve >0, Pr(x; —e <X <x;),Pr(x; < X < xi +¢) are positive;
(c) 3ty <ty s.t. xz, < X4, and X3, X5, have the same sign.

Proof. Since X is non-atomic, Pr(X < x;f) = Pr(X < x{) > t and
Pr(X < x;) <t If x{ = x;, part (a) holds. If x;” > x; then for all
h > 0 small enough x; +h < x;7 — h whence

OgPr(Xt_<X<Xj):hlir(r)l+Pr(X;+h<X<er—h)
—
= lim Pr(X <y —h)— lim Pr(X <x, +h)<t—t=0.

h—07+ h—07+
Necessarily lim Pr(X < x;” —h) =t and lim Pr(X < x; +h) = {,
h—0+ h—0+

which gives us Pr(X < x;) =t and Pr(X < x;) =Pr(X < x{) =t

For (b) assume by contradiction that Pr(xy; —e < X < x;) = 0,
then for all x; —e < & < x;, Pr(X <¢) =Pr(X < x; ) =t, whence
X; < X; — &, a contradiction. Similarly, Pr(x; < X < x; +¢)=0is
impossible.

To prove (c) note that since X is non-atomic, either Pr(X > 0) or
Pr(X < 0) is positive. Assume w.lo.g. that Pr(X > 0) # 0. By
non-atomicity, there are positive a < b s.t. Pr(X € (0,a)) # 0 and
Pr(X € (a,b)) # 0. Take t; :== Pr(X < a) and 5 := Pr(X < b). O

From now on fix a non-atomic random variable Y, and choose 0 <
t7 < ty < 1 as in Lemma A.2(c) s.t. x (Y, t1) < xT(Y,t2) and
sgn(x (Y, t1)) = sgn(x " (Y, t2)).

Lemma A.3. Let Sy be (possibly atomic) random variables s.t. for

_ dist Sn—A%,  dist
some Axy € R and By — oo, % %5 Y. Then NB* N LY,
N—o0 N N—oo
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where Ay, By are the unique solution to
A*N‘FBTVXi(Y,tl) X (SN,tl)
Ay + Byx* (Y, ta) = X" (Sn, ta).

Proof. Without loss of generality, x~ (Y, ¢1), xT(Y, t2) are both positive.
We need the following fact (which is not automatic since Sy are
allowed to be atomic):

(A.1)

lim Pr(Sy < x (Sn,t)) =tforall 0 <t < 1. (A.2)

N—oo

Indeed, given € > 0, let {5 := Byx~ (Y,t —¢) + An, then
_ SN—AN - _ - _ — 4
Pr(Sy < £v) = Pr( AN (Yot 5)) —— Pr(Y < x~(V;t=¢)) = t—,

by Lemma A.2(a). So for all N large enough, {y < x~ (S, t), whence
liminf Pr(Sy < x (Sn,t)) > limPr(Sy < &v) = t —e. Since ¢
is arbitrary, liminf Pr(Sy < x~(Sn,t)) > t. The other inequality
limsup Pr(Sy < x~(Sn,t)) <t is clear since Pr(Sy < x (Sn,t)) <t
for all N.

With (A.2) proved, we proceed to prove that

Ay — A B*
= N 0 and =¥ — 1. (A.3)
BN N—oo N N—oo
It will then be obvious that SNB_ ;‘N —)dlSt Y 1mphes A7V —>Ndist Y.
—00
Define two affine transformations, gpN(t) = % and @N@) _ tg;vN'

Notice that (¢}) " (t) = Al +Bit, s0 (p}) ™ (" (Y1) = X~ (Sw, 1),
. * Snyt2)—x" (SN, x co 1 .
by (A.1). Since By = Xxgr(fiv/;zgfi,gylet)l) > 0, ¢l is increasing. By

(A.2), Pr(py(Sy) < x~(Y,t1)) = Pr(Sy < x (Sn,t1)) = t1. So

t1 = lim Pr(oy(Sy) < x™ (Y, t1))

N—oo

= lim Pr(pn(Sy) < en((eh) " (X~ (Y. 1))])

N—o00
) B B Ay — A
= Nhinoopr(QON(SN) < Bz (X (Y,t1) + NB—NN>)

We claim that this implies that

*

B A — A
lim inf =X (X‘(Y, t) + N—N) > (Y, th). (A.4)

N—o0 N
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Otherwise, Je s.t. li]VrILiOI;f % (X*(Y, t1) + %) <x (Y,t;) — ¢, s0

*

. . B - A* _A
t, = thri)lor(l)fPr<90N(SN) < B]]:[[ (X (Y.11) + NB—NN)>

< liminf Pr (@N(SN) <x (Y,t1) — 5> =Pr(Y < x (Y,t1) —¢)

N—o0
=Pr(Y <x (Y.t1)) = Pr(x (Y.t1) —e <Y < ty)
< t1, by Lemma A.2, parts (a),(b).

Similarly, one shows that

*

B
lim sup —* (x*(Y, ta) +
N—o00 BN

Ay — A
e E O
N
It remains to see that (A.4) and (A.5) imply (A.3). First we divide
(A.4) by (A.5) to obtain

_ At —A
X (Yit) + =5 S X~ (Y 1)

lim sup T = .
N XF(Y ) + S T XF(Yo)
Since x — gj:—gf is strictly decreasing on [0,00) when a > b > 0, this
implies that
Ay —A
lim sup —~—— < 0. (A.6)
N—o0 BN

Looking at (A.4), and recalling that x~(Y,t;) > 0, we deduce that

*

B
liminf =% > 1. (A7)

N—oo N

Next we look at the difference of (A.4) and (A.5) and obtain

. B; _ _
h]r\?sup T (Y1) = x~ (V1)) < xT(Yita) — x™ (Y, 1),
—00 N

whence limsup(Bj%/By) < 1. Together with (A.7), this proves that

By /B o 1. Substituting this in (A.4), gives lim inf% >0,

which, in view of (A.6), implies that % = 0. This completes
—00

the proof of (A.3), and with it, the lemma. O

Proof of Lemma A.1. We begin with the measurability of Q(«).
Let Sy(x) denote the random variable equal to S, («, z) with prob-
ability % foreach 1 <n < N.
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We will apply Lemma A.3 with Y := U|0, 1], Sy = S,.(x) and (say)
t1:= 3, to := 2. It says that

Qa) = {z e T O A@ Dt 7rrg )},

By (z) N—o0

where A% (x) and Bj(x) are the unique solutions to (A.1). Since the
percentiles of Sy(x) are measurable as functions of z, A} (z), By(z)
are measurable as functions of x.

We claim that Q(a) = Q;(a) N Qa(a) where
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This will prove the lemma, since the measurability of A} (-), By (+) im-
plies the measurability of €;(«).

If x € Q(«) then x € Q4(a) because ]P’HM

2| > 2] —— 0, and
N N—o0
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x € Qa(ag) because ]E(eit( By )) —— E (e“y) pointwise.
N—oo

Conversely, if z € Q;(a) N Q2(a) then it is not difficult to see that

Sy (2)—A%

E(eit( By )) —— E (") for allt € R. So z € Q(a) by Lévy’s

N—oo
continuity theorem. Thus Q(«a) = Qi(a) N Qa(«@), whence Q(a) is
measurable.

The proof that Q2*(«) is measurable is similar. Enumerate Q\ {0} =
{t, : n € N}, then a € Q*(«) iff for every ¢ € N there exist M € N s.t.
for some N > M
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These are measurable conditions, because Ay (+), By (+) are measurable.
So Q*(«) is measurable. O
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