

# NO TEMPORAL DISTRIBUTIONAL LIMIT THEOREM FOR A.E. IRRATIONAL TRANSLATION

DMITRY DOLGOPYAT AND OMRI SARIG

**ABSTRACT.** Bromberg and Ulcigrai constructed piecewise smooth functions on the torus such that the set of  $\alpha$  for which the sum  $\sum_{k=0}^{n-1} f(x+k\alpha \bmod 1)$  satisfies a temporal distributional limit theorem along the orbit of a.e.  $x$  has Hausdorff dimension one. We show that the Lebesgue measure of this set is equal to zero.

## 1. INTRODUCTION AND STATEMENT OF MAIN RESULT

**1.1. Background.** Suppose  $T : X \rightarrow X$  is a map,  $f : X \rightarrow \mathbb{R}$  is a function, and  $x_0 \in X$  is a *fixed* initial condition. We say that the  $T$ -ergodic sums  $S_n = f(x_0) + f(Tx_0) + \dots + f(T^{n-1}x_0)$  satisfy a *temporal distributional limit theorem (TDLT) on the orbit of  $x_0$* , if there exists a non-constant real valued random variable  $Y$ , centering constants  $A_N \in \mathbb{R}$  and scaling constants  $B_N \rightarrow \infty$  s.t.

$$\frac{S_n - A_N}{B_N} \xrightarrow[N \rightarrow \infty]{} Y \text{ in distribution,} \quad (1.1)$$

when  $n$  is sampled uniformly from  $\{1, \dots, N\}$  and  $x_0$  is fixed. Equivalently, for every Borel set  $E \subset \mathbb{R}$  s.t.  $\mathbb{P}(Y \in \partial E) = 0$ ,

$$\frac{1}{N} \text{Card}\{1 \leq n \leq N : \frac{S_n - A_N}{B_N} \in E\} \xrightarrow[N \rightarrow \infty]{} \mathbb{P}(Y \in E).$$

We allow and expect  $A_N, B_N, Y$  to depend on  $T, f, x_0$ .

Such limit theorems have been discovered for several zero entropy uniquely ergodic transformations, including systems where the more traditional spatial limit theorems, with  $x_0$  sampled from a measure on  $X$ , fail [Bec10, Bec11, ADDS15, DS17, PS, DSa]. Of particular interest are TDLT for

$$R_\alpha : [0, 1] \rightarrow [0, 1], \quad R_\alpha(x) = x + \alpha \bmod 1, \quad f_\beta(x) := 1_{[0, \beta)}(x) - \beta,$$

---

2010 *Mathematics Subject Classification.* 37D25 (primary), 37D35 (secondary).

This work was partially supported by the ISF grants 199/14, 1149/18 and by the BSF grant 2016105. The authors thank Adam Kanigowski for simplifying the statement and the proof of Lemma 3.2.

because the  $R_\alpha$ -ergodic sums of  $f_\beta$  along the orbit of  $x$  represent the discrepancy of the sequence  $x + n\alpha \bmod 1$  with respect to  $[0, \beta)$  [Sch78, CK76, Bec10]. Another source of interest is the connection to the “deterministic random walk” [AK82, ADDS15].

The validity of the TDLT for  $R_\alpha$  and  $f_\beta$  depends on the diophantine properties of  $\alpha$  and  $\beta$ . Recall that  $\alpha \in (0, 1)$  is *badly approximable* if for some  $c > 0$ ,  $|q\alpha - p| \geq c/|q|$  for all irreducible fractions  $p/q$ . Equivalently, the digits in the continued fraction expansion of  $\alpha$  are bounded [Khi63]. Say that  $\beta \in (0, 1)$  is *badly approximable with respect to  $\alpha$*  if for some  $C > 0$ ,  $|q\alpha - \beta - p| > C/|q|$  for all  $p, q \in \mathbb{Z}, q \neq 0$ . If  $\alpha$  is badly approximable then every  $\beta \in \mathbb{Q} \cap (0, 1)$  is badly approximable with respect to  $\alpha$ . The recent paper [BU] shows:

**Theorem 1.1** (Bromberg & Ulcigrai). *Suppose  $\alpha$  is badly approximable and  $\beta$  is badly approximable with respect to  $\alpha$ , e.g.  $\beta \in \mathbb{Q} \cap (0, 1)$ . Then the  $R_\alpha$ -ergodic sums of  $f_\beta$  satisfy a temporal distributional limit theorem with Gaussian limit on the orbit of every initial condition.*

The set of badly approximable  $\alpha$  has Hausdorff dimension one [Jar29], but Lebesgue measure zero [Khi24]. This leads to the following question: *Is there a  $\beta$  s.t. the  $R_\alpha$ -ergodic sums of  $f_\beta$  satisfy a temporal distributional limit theorem for a.e.  $\alpha$  and a.e. initial condition?*

In this paper we answer this question negatively.

**1.2. Main result.** To state our result in its most general form, we need the following terminology.

Let  $\mathbb{T} := \mathbb{R}/\mathbb{Z}$ . We say that  $f : \mathbb{T} \rightarrow \mathbb{R}$  is *piecewise smooth* if there exists a finite set  $\mathfrak{S} \subset \mathbb{T}$  s.t.  $f$  is continuously differentiable on  $\mathbb{T} \setminus \mathfrak{S}$  and  $\exists \psi : \mathbb{T} \rightarrow \mathbb{R}$  with bounded variation s.t.  $f' = \psi$  on  $\mathbb{T} \setminus \mathfrak{S}$ . For example:  $f_\beta(x) = 1_{[0, \beta)}(x) - \beta$  (take  $\mathfrak{S} = \{0, \beta\}$ ,  $\psi \equiv 0$ ). We show:

**Theorem 1.2.** *Let  $f$  be a piecewise smooth function of zero mean. Then there is a set of full measure  $\mathcal{E} \subset \mathbb{T} \times \mathbb{T}$  s.t. if  $(\alpha, x) \in \mathcal{E}$  then the  $R_\alpha$ -ergodic sums of  $f$  do not satisfy a TDLT on the orbit of  $x$ .*

The condition  $\int_{\mathbb{T}} f = 0$  is necessary: By Weyl’s equidistribution theorem, for every  $\alpha \notin \mathbb{Q}$ ,  $f$  Riemann integrable s.t.  $\int_{\mathbb{T}} f = 1$ , and  $x_0 \in \mathbb{T}$ ,  $S_n/N \xrightarrow[N \rightarrow \infty]{\text{dist}} \mathbb{U}[0, 1]$  as  $n \sim \mathbb{U}(1, \dots, N)$ . See §1.4 for the notation.

This paper has a companion [DSb] which gives a different proof of Theorem 1.2, in the special case  $f(x) = \{x\} - \frac{1}{2}$ . Unlike the proof given below, [DSb] does not identify the set of  $\alpha$  where the TDLT fails, but it does give more information on the different scaling limits for the distributions of  $S_n$ ,  $n \sim \mathbb{U}(1, \dots, N_k)$  along different subsequences  $N_k \rightarrow \infty$ . [DSb] also shows that if we randomize both  $n$  and  $\alpha$  by sampling  $(n, \alpha)$

uniformly from  $\{1, \dots, N\} \times \mathbb{T}$ , then  $(S_n - \frac{1}{N} \sum_{k=1}^N S_k) / \sqrt{\ln N}$  converges in distribution to the Cauchy distribution.

The methods of [DSb] are specific for  $f(x) = \{x\} - \frac{1}{2}$ , and we do not know how to apply them to other functions such as  $f_\beta(x) = 1_{[0,\beta)}(x) - \beta$ .

**1.3. The structure of the proof.** Suppose  $f$  is piecewise smooth and has mean zero.

We shall see below that if  $f$  is continuous, then for a.e.  $\alpha$ ,  $f$  is an  $R_\alpha$ -coboundary, therefore  $S_n$  are bounded, hence (1.1) cannot hold with  $B_N \rightarrow \infty$ ,  $Y$  non-constant. We remark that (1.1) does hold with  $B_N \equiv 1$ ,  $A_N = f(x_0)$ ,  $Y$  = distribution of minus the transfer function, but this is not a TDLT since no actual scaling is involved.

The heart of the proof is to show that if  $f$  is discontinuous, then for a.e.  $\alpha$ , the temporal distributions of the ergodic sums have different asymptotic scaling behavior on different subsequences. The proof of this has three independent parts:

- (1) A reduction to the case  $f(x) = \sum_{m=1}^d b_m h(x + \beta_m)$ ,  $h(x) := \{x\} - \frac{1}{2}$ .
- (2) A proof that if  $\mathcal{N} \subset \mathbb{N}$  has positive lower density, then there exists  $M \geq 1$  s.t. the following set has full Lebesgue measure in  $(0, 1)$ :

$$\mathcal{A}(\mathcal{N}, M) := \left\{ \alpha \in (0, 1) : \begin{array}{l} \exists n_k \uparrow \infty, r_k \leq M \text{ s.t. for all } k: \\ r_k q_{n_k} \in \mathcal{N}, a_{n_k+1}/(a_1 + \dots + a_{n_k}) \rightarrow \infty \end{array} \right\}.$$

Here  $a_n$  and  $q_n$  are the partial quotients and principal denominators of  $\alpha$ , see §3.1.

- (3) Construction of  $\mathcal{N} = \mathcal{N}(b_1, \dots, b_d; \beta_1, \dots, \beta_d) \subseteq \mathbb{N}$  with positive density, s.t. for every  $\alpha \in \mathcal{A}(\mathcal{N}, M)$  and a.e.  $x$ , one can analyze the temporal distributions of the Birkhoff sums of  $\sum_{m=1}^d b_m h(x + \beta_m)$ .

**1.4. Notation.**  $n \sim \text{U}(1, \dots, N)$  means that  $n$  is a random variable taking values in  $\{1, \dots, N\}$ , each with probability  $\frac{1}{N}$ .  $\text{U}[a, b]$  is the uniform distribution on  $[a, b]$ . Lebesgue's measure is denoted by  $\text{mes}$ .  $\mathbb{N} = \{1, 2, 3, \dots\}$  and  $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ . If  $x \in \mathbb{R}$ , then  $\|x\| := \text{dist}(x, \mathbb{Z})$  and  $\{x\}$  is the unique number in  $[0, 1)$  s.t.  $x \in \{x\} + \mathbb{Z}$ .  $\text{Card}(\cdot)$  is the cardinality. If  $\varepsilon > 0$ , then  $a = b \pm \varepsilon$  means that  $|a - b| \leq \varepsilon$ .

## 2. REDUCTION TO THE CASE $f(x) = \sum_{m=1}^d b_m h(x + \beta_m)$

Let  $h(x) = \{x\} - \frac{1}{2}$ , and let  $\mathcal{G}$  denote the collection of all non-identically zero functions of the form  $f(x) = \sum_{m=1}^d b_m h(x + \beta_m)$ , where  $d \in \mathbb{N}, b_i, \beta_i \in \mathbb{R}$ . We explain how to reduce the proof of Theorem 1.2 from the case of a general piecewise smooth  $f(x)$  to the case  $f \in \mathcal{G}$ .

The following proposition was proved in [DSb]. Let  $C(\mathbb{T})$  denote the space of continuous real-valued functions on  $\mathbb{T}$  with the sup norm.

**Proposition 2.1.** *If  $f(t)$  is differentiable on  $\mathbb{T} \setminus \{\beta_1, \dots, \beta_d\}$  and  $f'$  extends to a function with bounded variation on  $\mathbb{T}$ , then there are  $d \in \mathbb{N}_0, b_1, \dots, b_d \in \mathbb{R}$  s.t. for a.e.  $\alpha \in \mathbb{T}$  there is  $\varphi_\alpha \in C(\mathbb{T})$  s.t.*

$$f(x) = \sum_{i=1}^d b_i h(x + \beta_i) + \int_{\mathbb{T}} f(t) dt + \varphi_\alpha(x) - \varphi_\alpha(x + \alpha) \quad (x \neq \beta_1, \dots, \beta_d).$$

The following proposition was proved in [DS17]. Let  $(\Omega, \mathcal{B}, \mu)$  be a probability space, and let  $T : \Omega \rightarrow \Omega$  be a probability preserving map.

**Proposition 2.2.** *Suppose  $f = g + \varphi - \varphi \circ T$   $\mu$ -a.e. with  $f, g, \varphi : \Omega \rightarrow \mathbb{R}$  measurable. If the ergodic sums of  $g$  satisfy a TDLT along the orbit of a.e.  $x$ , then so do the ergodic sums of  $f$ .*

These results show that if Theorem 1.2 holds for every  $f \in \mathcal{G}$ , then Theorem 1.2 holds for any *discontinuous* piecewise smooth function with zero mean. As for *continuous* piecewise smooth functions with zero mean, these are  $R_\alpha$ -cohomologous to  $g \equiv 0$  for a.e.  $\alpha$  because the  $b_i$  in Proposition 2.1 must all vanish. Since the zero function does not satisfy the TDLT, continuous piecewise smooth functions do not satisfy a TDLT.

## 3. THE SET $\mathcal{A}$ HAS FULL MEASURE

**3.1. Statement and plan of proof.** Let  $\alpha$  be an irrational number, with continued fraction expansion  $[a_0; a_1, a_2, a_3, \dots] := a_0 + \cfrac{1}{a_1 + \dots}$ ,  $a_0 \in \mathbb{Z}, a_i \in \mathbb{N}$  ( $i \geq 1$ ). We call  $a_n$  the *quotients* of  $\alpha$ . Let  $p_n/q_n$  denote the *principal convergents* of  $\alpha$ , determined recursively by

$$q_{n+1} = a_{n+1}q_n + q_{n-1}, \quad p_{n+1} = a_{n+1}p_n + p_{n-1}$$

and  $p_0 = a_0, q_0 = 1; p_1 = 1 + a_1 a_0, q_1 = a_1$ . We call  $q_n$  the *principal denominators* and  $a_i$  the *partial quotients* of  $\alpha$ . Sometimes – but not always! – we will write  $q_k = q_k(\alpha), p_k = p_k(\alpha), a_k = a_k(\alpha)$ .

Given  $\mathcal{N} \subset \mathbb{N}$  and  $M \geq 1$ , let  $\mathcal{A} = \mathcal{A}(\mathcal{N}, M) \subset (0, 1)$  denote the set of irrational  $\alpha \in (0, 1)$  s.t. for some subsequence  $n_k \uparrow \infty$ ,

$$\exists r_k \leq M \text{ s.t. } r_k q_{n_k} \in \mathcal{N}, \frac{a_{n_k+1}}{(a_0 + \dots + a_{n_k})} \xrightarrow{k \rightarrow \infty} \infty. \quad (3.1)$$

The *lower density* of  $\mathcal{N}$  is  $d(\mathcal{N}) := \liminf \frac{1}{N} \text{Card}(\mathcal{N} \cap [1, N])$ . The purpose of this section is to prove:

**Theorem 3.1.** *If a set  $\mathcal{N}$  has positive lower density then there exists  $M$  such that  $\mathcal{A}(\mathcal{N}, M)$  has full Lebesgue measure in  $(0, 1)$ .*

The proof consists of the following three lemmas:

**Lemma 3.2.** *For almost all  $\alpha$  there is  $n_0 = n_0(\alpha)$  s.t. if  $k \geq n_0$  and  $a_{k+1} > \frac{1}{4}k(\ln k)(\ln \ln k)$ , then  $a_{k+1}/(a_1 + \dots + a_k) \geq \frac{1}{8} \ln \ln k$ .*

**Lemma 3.3.** *Suppose  $\alpha \in (0, 1) \setminus \mathbb{Q}$  and  $(p, q) \in \mathbb{N}_0 \times \mathbb{N}$  satisfy  $\gcd(p, q) = 1$  and  $|q\alpha - p| \leq \frac{1}{qL}$  where  $L \geq 4$ . Then there exists  $k$  s.t.  $q = q_k(\alpha)$  and  $a_{k+1}(\alpha) \geq \frac{1}{2}L$ .*

**Lemma 3.4.** *Suppose  $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}$  is a non-decreasing function s.t.*

$$\sum_n \frac{1}{n\psi(n)} = \infty. \quad (3.2)$$

*Suppose  $\mathcal{N} \subset \mathbb{N}$  has positive lower density. For all  $M$  sufficiently large, for a.e.  $\alpha \in (0, 1)$  there are infinitely many pairs  $(m, n) \in \mathbb{N}_0 \times \mathbb{N}$  s.t.  $n \in \mathcal{N}$ ,  $\gcd(m, n) \leq M$ , and  $|n\alpha - m| \leq \frac{1}{n\psi(n)}$ .*

*Remark 1.* By the monotonicity of  $\psi$ , if  $e^{k-1} < n < e^k$  then  $\psi(e^{k-1}) \leq \psi(n) \leq \psi(e^k)$ . Hence (3.2) holds iff  $\sum \frac{1}{\psi(e^k)} = \infty$ .

*Remark 2.* If  $\mathcal{N} = \mathbb{N}$ , then Lemma 3.4 holds with  $M = 1$  by the classical Khinchine Theorem. We do not know if Lemma 3.4 holds with  $M = 1$  for any set  $\mathcal{N}$  with positive lower density.

*Proof of Theorem 3.1 given Lemmas 3.2–3.4.* We apply these lemmas with  $\psi(t) = c(\ln t)(\ln \ln t)(\ln \ln \ln t)$  and  $c > 1/\ln(\frac{1+\sqrt{5}}{2})$ .

Fix  $M > 1$  as in Lemma 3.4. Then  $\exists \Omega \subset (0, 1)$  of full measure s.t. for every  $\alpha \in \Omega$  there are infinitely many  $(m, n) \in \mathbb{N}_0 \times \mathbb{N}$  as follows.

Let  $m^* := m/\gcd(m, n)$ ,  $n^* := n/\gcd(m, n)$ ,  $p := \gcd(m, n)$ , then

$$(1) \quad pn^* \in \mathcal{N}, p \leq M, |n^*\alpha - m^*| = \frac{|n\alpha - m|}{p} \leq \frac{1}{n^*\psi(n^*)} \quad (\because n^* \leq n);$$

(2)  $\exists k$  s.t.  $n^* = q_k(\alpha)$  and  $a_{k+1}(\alpha) \geq \frac{1}{2}\psi(q_k)$  ( $\because$  Lemma 3.3). By its recursive definition,  $q_k \geq k$ -th Fibonacci number  $\geq \frac{1}{3}(\frac{1+\sqrt{5}}{3})^k$ . So for all  $k$  large enough,  $a_{k+1}(\alpha) \geq \frac{1}{2}\psi(q_k) > \frac{1}{4}k(\ln k)(\ln \ln k)$ ;

$$(3) \quad a_{k+1}/(a_1 + \dots + a_k) \geq \frac{1}{8} \ln \ln k \rightarrow \infty \quad (\because \text{Lemma 3.2}).$$

So every  $\alpha \in \Omega$  belongs to  $\mathcal{A} = \mathcal{A}(\mathcal{N}, M)$ , and  $\mathcal{A}$  has full measure.  $\square$

Next we prove Lemmas 3.2–3.4.

**3.2. Proof of Lemma 3.2.** By [DV86], for almost every  $\alpha$

$$\frac{(a_1 + \dots + a_{k+1}) - \max_{j \leq k+1} a_j}{k \ln k} \rightarrow \frac{1}{\ln 2} < 2.$$

So if  $k$  is large enough, and  $a_{k+1} > \frac{1}{4}k(\ln k)(\ln \ln k)$  then

$$\max_{j \leq k+1} a_j = a_{k+1}, \quad \frac{a_1 + \dots + a_k}{k \ln k} \leq 2, \quad \text{and} \quad \frac{a_{k+1}}{a_1 + \dots + a_k} > \frac{1}{8} \ln \ln k. \quad \square$$

**3.3. Proof of Lemma 3.3.** For every  $(p, q)$  as in the lemma,  $|q\alpha - p| < \frac{1}{2q}$ . A classical result in the theory of continued fractions [Khi63, Thm 19] says that in this case  $\exists k$  s.t.  $q = q_k(\alpha), p = p_k(\alpha)$ .

To estimate  $a_{k+1} = a_{k+1}(\alpha)$  we recall the following facts, valid for the principal denominators of any irrational  $\alpha \in (0, 1)$  [Khi63]:

- (a)  $|q_k \alpha - p_k| > \frac{1}{q_k + q_{k+1}}$ ;
- (b)  $q_{k+1} + q_k < (a_{k+1} + 2)q_k$ , whence by (a)  $a_{k+1} > \frac{1}{q_k |q_k \alpha - p_k|} - 2$ .

In our case,  $|q_k \alpha - p_k| = |q\alpha - p| \leq \frac{1}{q_k L}$ , so  $a_{k+1} > L - 2 \geq \frac{L}{2}$ .  $\square$

**3.4. Preparations for the proof of Lemma 3.4.** Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space, and  $A_k \in \mathcal{F}$  be measurable events. Given  $D > 1$ , we say that  $A_k$  are *D-quasi-independent*, if

$$\mathbb{P}(A_{k_1} \cap A_{k_2}) \leq D\mathbb{P}(A_{k_1})\mathbb{P}(A_{k_2}) \text{ for all } k_1 \neq k_2. \quad (3.3)$$

The following proposition is a slight variation on Sullivan's Borel–Cantelli Lemma from ([Sul82]):

**Proposition 3.5.** *For every  $D \geq 1$  there exists a constant  $\delta(D) > 0$  such that the following holds in any probability space:*

- (a) *If  $A_k$  are D-quasi-independent measurable events s.t.  $\lim_{k \rightarrow \infty} \mathbb{P}(A_k) = 0$  but  $\sum_k \mathbb{P}(A_k) = \infty$ , then  $\mathbb{P}(A_k \text{ occurs infinitely often}) \geq \delta(D)$ .*
- (b) *The quasi-independence assumption in (a) can be weakened to the assumption that for some  $r \in \mathbb{N}$ ,  $\mathbb{P}(A_{k_1} \cap A_{k_2}) \leq D\mathbb{P}(A_{k_1})\mathbb{P}(A_{k_2})$  for all  $|k_2 - k_1| \geq r$ .*
- (c) *One can take  $\delta(D) = \frac{1}{2D}$ .*

*Proof.* Since  $\mathbb{P}(A_k) \rightarrow 0$  but  $\sum \mathbb{P}(A_k) = \infty$ , there is an increasing sequence  $N_j$  such that  $\lim_{j \rightarrow \infty} \sum_{k=N_j+1}^{N_{j+1}} \mathbb{P}(A_k) = \frac{1}{D}$ .

Let  $B_j$  be the event that at least one of events  $\{A_k\}_{k=N_j+1}^{N_{j+1}}$  occurs. Since  $B_j = \bigcup_{k=N_j+1}^{N_{j+1}} (A_k \setminus \bigcup_{j=N_j+1}^{k-1} A_j)$ ,

$$\begin{aligned} \mathbb{P}(B_j) &\geq \sum_{k=N_j+1}^{N_{j+1}} \mathbb{P}(A_k) - \sum_{N_j+1 \leq k_1 < k_2 \leq N_{j+1}} \mathbb{P}(A_{k_1} \cap A_{k_2}) \\ &\geq \sum_{k=N_j+1}^{N_{j+1}} \mathbb{P}(A_k) - D \sum_{N_j+1 \leq k_1 < k_2 \leq N_{j+1}} \mathbb{P}(A_{k_1}) \mathbb{P}(A_{k_2}) \\ &\geq \sum_{k=N_j+1}^{N_{j+1}} \mathbb{P}(A_k) - \frac{D}{2} \left( \sum_{k=N_j+1}^{N_{j+1}} \mathbb{P}(A_k) \right)^2. \end{aligned}$$

Since  $\lim_{j \rightarrow \infty} \sum_{k=N_j+1}^{N_{j+1}} \mathbb{P}(A_k) = \frac{1}{D}$  and  $D \geq 1$ ,  $\liminf \mathbb{P}(B_j) \geq \frac{1}{2D}$ .

Let  $E$  denote the event that  $A_j$  happens infinitely often.  $E$  is also the event that  $B_j$  happens infinitely often, therefore  $E = \bigcap_{n=1}^{\infty} \bigcup_{j=n+1}^{\infty} B_j$ . In a probability space, the measure of a decreasing intersection of sets is the limit of the measure of these sets. So  $\mathbb{P}(E) \geq \liminf \mathbb{P}(B_j) \geq \frac{1}{2D}$ , proving (a) and (c).

Part (b) follows from part (a) by applying it to the sets  $\{A_{kr+\ell}\}$  where  $0 \leq \ell \leq r-1$  is chosen to get  $\sum_k \mathbb{P}(A_{kr+\ell}) = \infty$ .  $\square$

The *multiplicity* of a collection of measurable sets  $\{E_k\}$  is defined to be the largest  $K$  s.t. there are  $K$  different  $k_i$  with  $\mathbb{P}(\bigcap_{i=1}^K E_{k_i}) > 0$ .

**Proposition 3.6.** *Let  $E_k$  be measurable sets in a finite measure space. If the multiplicity of  $\{E_k\}$  is less than  $K$ , then*

$$\text{mes} \left( \bigcup_k E_k \right) \geq \frac{1}{K} \sum_k \text{mes}(E_k).$$

*Proof.*  $1_{\bigcup_i E_i} \geq \frac{1}{K} \sum_i 1_{E_i}$  almost everywhere.  $\square$

**Proposition 3.7.** *For every non-empty open interval  $I \subset [0, 1]$ ,  $\text{Card}\{(m, n) \in \{0, \dots, N\}^2 : \frac{m}{n} \in I, \gcd(m, n) = 1\} \sim 3\text{mes}(I)N^2/\pi^2$ , as  $N \rightarrow \infty$ .*

*Proof.* This classical fact due to Dirichlet follows from the inclusion-exclusion principle and the identity  $\zeta(2) = \pi^2/6$ , see [HW08, Theorem 459].  $\square$

**Proposition 3.8.** *Suppose  $\alpha = [0; a_1, a_2, \dots]$  and  $\bar{\alpha} = [0; a_{\ell+1}, a_{\ell+2}, \dots]$ . Then the principal convergents  $\bar{p}_{\bar{\ell}}/\bar{q}_{\bar{\ell}}$  of  $\bar{\alpha}$  and the principal convergents  $p_{\ell}/q_{\ell}$  of  $\alpha$  are related by  $\begin{pmatrix} p_{\ell+\bar{\ell}} & p_{\ell+\bar{\ell}+1} \\ q_{\ell+\bar{\ell}} & q_{\ell+\bar{\ell}+1} \end{pmatrix} = \begin{pmatrix} p_{\ell-1} & p_{\ell} \\ q_{\ell-1} & q_{\ell} \end{pmatrix} \begin{pmatrix} \bar{p}_{\bar{\ell}} & \bar{p}_{\bar{\ell}+1} \\ \bar{q}_{\bar{\ell}} & \bar{q}_{\bar{\ell}+1} \end{pmatrix}$*

*Proof.* Since  $a_0 = 0$ , the recurrence relations for  $p_n/q_n$  imply

$$\begin{pmatrix} p_n & p_{n+1} \\ q_n & q_{n+1} \end{pmatrix} = \begin{pmatrix} p_{n-1} & p_n \\ q_{n-1} & q_n \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & a_{n+1} \end{pmatrix}, \quad \begin{pmatrix} p_0 & p_1 \\ q_0 & q_1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & a_1 \end{pmatrix}.$$

So  $\begin{pmatrix} p_n & p_{n+1} \\ q_n & q_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & a_1 \end{pmatrix} \cdot \dots \cdot \begin{pmatrix} 0 & 1 \\ 1 & a_{n+1} \end{pmatrix}$ . It follows that  $\begin{pmatrix} p_{\ell+\bar{\ell}} & p_{\ell+\bar{\ell}+1} \\ q_{\ell+\bar{\ell}} & q_{\ell+\bar{\ell}+1} \end{pmatrix} = \begin{pmatrix} p_{\ell-1} & p_{\ell} \\ q_{\ell-1} & q_{\ell} \end{pmatrix} \begin{pmatrix} \bar{p}_{\bar{\ell}} & \bar{p}_{\bar{\ell}+1} \\ \bar{q}_{\bar{\ell}} & \bar{q}_{\bar{\ell}+1} \end{pmatrix}$ , where  $\bar{p}_i/\bar{q}_i$  are the principal convergents of  $\bar{\alpha} := [0; a_{\ell+1}, a_{\ell+2}, \dots]$ .  $\square$

**3.5. Proof of Lemma 3.4.** Without loss of generality,  $\lim_{t \rightarrow \infty} \psi(t) = \infty$ , otherwise replace  $\psi(t)$  by the bigger monotone function  $\psi(t) + \ln t$ .

Fix  $M > 1$ , to be determined later. Let

$$\begin{aligned} \Omega_k &:= \{(m, n) \in \mathbb{N}^2 : n \in \mathcal{N}, n \in [e^{k-1}, e^k], 0 < m < n, \gcd(m, n) \leq M\}, \\ A_{m,n,k} &:= \{\alpha \in \mathbb{T} : |n\alpha - m| \leq \frac{1}{e^k \psi(e^k)}\}, \\ \mathcal{A}_k &:= \bigcup_{(m,n) \in \Omega_k} A_{m,n,k}, \\ \mathcal{A} &:= \{\alpha \in \mathbb{T} : \alpha \text{ belongs to infinitely many } \mathcal{A}_k\}. \end{aligned}$$

The lemma is equivalent to saying that  $\mathcal{A}$  has full Lebesgue measure for a suitable choice of  $M$ .

We will prove a slightly different statement. Fix  $\varepsilon > 0$  small. Given an non-empty interval  $I \subset [\varepsilon, 1 - \varepsilon]$ , let

$$\begin{aligned} \Omega_k(I) &:= \{(m, n) \in \Omega_k : \frac{m}{n} \in I\} \\ \mathcal{A}_k(I) &:= \bigcup_{(m,n) \in \Omega_k(I)} A_{m,n,k} \\ \mathcal{A}(I) &:= \{\alpha \in \mathbb{T} : \alpha \text{ belongs to infinitely many } \mathcal{A}_k(I)\}. \end{aligned}$$

We will prove that there exists a positive constant  $\delta = \delta(\varepsilon, M)$  s.t. for all intervals  $I \subset [\varepsilon, 1 - \varepsilon]$ ,  $\text{mes}(\mathcal{A}(I) \cap I) \geq \delta \text{mes}(I)$ . It then follows by a standard density point argument (see below) that  $\mathcal{A} \cap [\varepsilon, 1 - \varepsilon]$  has full measure. Since  $\varepsilon$  is arbitrary, the lemma is proved.

**CLAIM 1.** There exist  $K = K(\varepsilon)$  s.t. for every  $k > K$ , the multiplicity of  $\{A_{m,n,k}\}_{(m,n) \in \Omega_k(I)}$  is uniformly bounded by  $M$ .

PROOF: Suppose  $(m_i, n_i) \in \Omega_k(I)$  ( $i = 1, 2$ ) and  $A_{m_1, n_1, k} \cap A_{m_2, n_2, k} \neq \emptyset$ . Then there is  $\alpha$  s.t.  $|n_i\alpha - m_i| \leq \delta_k := \frac{1}{e^k \psi(e^k)}$  ( $i = 1, 2$ ). Choose  $K = K(\varepsilon)$  so large that  $k > K \Rightarrow \delta_k < \frac{\varepsilon}{4e^k}$ .

If  $k > K$ , then  $\alpha \geq \frac{m_i}{n_i} - \delta_k > \min I - \frac{\varepsilon}{2} > \frac{\varepsilon}{2}$ . Let  $r_i := \gcd(m_i, n_i)$  and  $(n_i^*, m_i^*) := \frac{1}{r_i}(n_i, m_i)$ . Then  $|n_i^*\alpha - m_i^*| \leq \delta_k$  and  $m_i^* \leq n_i^* \leq n_i \leq e^k$ , so  $|n_2^*m_1^* - n_1^*m_2^*| = \frac{1}{\alpha}|m_1^*(n_2^*\alpha - m_2^*) - m_2^*(n_1^*\alpha - m_1^*)| \leq \frac{2e^k \delta_k}{\varepsilon/2} < 1$ . So  $n_2^*m_1^* = n_1^*m_2^*$ . Since  $\gcd(n_i^*, m_i^*) = 1$ ,  $(n_i^*, m_i^*) = (n_2^*, m_2^*)$ . It follows that  $(n_2, m_2) \in \{(rn_1^*, rm_1^*) : r = 1, \dots, M\}$ . So the multiplicity of  $\{A_{m, n, k}\}_{(m, n) \in \Omega_k(I)}$  is uniformly bounded by  $M$ .

CLAIM 2. Let  $d(\mathcal{N}) := \liminf \frac{1}{N} \text{Card}(\mathcal{N} \cap [1, N]) > 0$ , then there exists  $M = M(\mathcal{N})$  and  $\tilde{K} = \tilde{K}(\varepsilon, \mathcal{N}, |I|)$  s.t. for all  $k > \tilde{K}$ ,

$$\frac{d(\mathcal{N}) \text{mes}(I)}{4M\psi(e^k)} \leq \text{mes}(\mathcal{A}_k(I)) \leq \frac{6\text{mes}(I)}{\psi(e^k)}. \quad (3.4)$$

In particular,  $\text{mes}(\mathcal{A}_k(I)) \xrightarrow{k \rightarrow \infty} 0$  and  $\sum \text{mes}(\mathcal{A}_k(I)) = \infty$ .

PROOF:  $\text{mes}(A_{m, n, k}) = \text{mes}([\frac{m}{n} - r_{m, n}, \frac{m}{n} + r_{m, n}]) = 2r_{m, n}$  where  $r_{m, n} = \frac{1}{ne^k \psi(e^k)}$ . Since  $n \in [e^{k-1}, e^k]$ ,

$$\frac{\text{Card}(\Omega_k(I))}{Me^{2k}\psi(e^k)} \leq \text{mes}(\mathcal{A}_k(I)) \leq \frac{e \text{Card}(\Omega_k(I))}{e^{2k}\psi(e^k)}, \quad (3.5)$$

where the lower bound uses Claim 1 and Proposition 3.6.

$\text{Card}(\Omega_k(I))$  satisfies the bounds  $A - B \leq \text{Card}(\Omega_k(I)) \leq A$  where

$$\begin{aligned} A &:= \text{Card}\{(m, n) : n \in \mathcal{N}, n \in [e^{k-1}, e^k], \frac{m}{n} \in I\} \\ B &:= \text{Card}\{(m, n) : n \in \mathcal{N}, n \in [e^{k-1}, e^k], \frac{m}{n} \in I, \gcd(m, n) \geq M\}. \end{aligned}$$

Choose  $\tilde{K} = \tilde{K}(\varepsilon, \mathcal{N}, |I|) > K(\varepsilon)$  s.t. for all  $k > \tilde{K}$

- (a)  $\text{Card}\{n \in \mathcal{N} : 0 \leq n \leq e^k\} \geq \frac{1}{\sqrt{2}}d(\mathcal{N})$
- (b)  $\text{Card}\{n \in [e^{k-1}, e^k] \cap \mathbb{N} : p|n\} \leq 2(e^k - e^{k-1})/p$  for all  $p \geq 1$ ;
- (c) For all  $n > e^{\tilde{K}-1}$ ,  $p \geq 1$ ,

$$\frac{n}{p\sqrt{2}} \text{mes}(I) \leq \text{Card}\{m \in \mathbb{N} : \frac{m}{n} \in I, p|m\} \leq \frac{2n}{p} \text{mes}(I).$$

If  $k > \tilde{K}$ , then  $\frac{1}{2}d(\mathcal{N})e^{2k} \text{mes}(I) \leq A \leq 2e^{2k} \text{mes}(I)$  and

$$B \leq \sum_{p=M}^{\infty} \text{Card}\{(m, n) : n \in [e^{k-1}, e^k], \frac{m}{n} \in I, p|m, p|n\}$$

$$\begin{aligned}
&\leq \sum_{p=M}^{\infty} \frac{2(e^k - e^{k-1})}{p} \cdot \frac{2e^k \text{mes}(I)}{p} < 4e^{2k} \text{mes}(I) \sum_{p=M}^{\infty} \frac{1}{p^2} \\
&\leq \frac{1}{4} d(\mathcal{N}) e^{2k} \text{mes}(I), \text{ provided we choose } M \text{ s.t. } \sum_{p=M}^{\infty} p^{-2} < \frac{1}{16} d(\mathcal{N}).
\end{aligned}$$

Together we get  $\frac{1}{4} d(\mathcal{N}) e^{2k} \text{mes}(I) \leq \text{Card}(\Omega_k(I)) \leq 2e^{2k} \text{mes}(I)$ . The claim now follows from (3.5).

CLAIM 3. There exists  $D = D(\mathcal{N}, M)$ ,  $r = r(M)$ , and  $\hat{K} = \hat{K}(\varepsilon, \mathcal{N}, I)$  s.t. for all  $k_1, k_2 > \hat{K}$  s.t.  $|k_1 - k_2| > r(M)$ ,

$$\text{mes}(\mathcal{A}_{k_1}(I) \cap \mathcal{A}_{k_2}(I) | I) \leq D \text{mes}(\mathcal{A}_{k_1}(I) | I) \text{mes}(\mathcal{A}_{k_2}(I) | I) \quad (3.6)$$

PROOF: By Claim 2, if  $k_1, k_2$  are large enough, then

$$\text{mes}(\mathcal{A}_{k_1}(I) | I) \text{mes}(\mathcal{A}_{k_2}(I) | I) \geq \left( \frac{d(\mathcal{N})}{5M} \right)^2 \frac{1}{\psi(e^{k_1}) \psi(e^{k_2})}, \quad (3.7)$$

where we put 5 instead of 4 in the denominator to deal with edge effects arising from  $\text{mes}(\mathcal{A}_k(I) \setminus I) = O\left(\frac{1}{e^k \psi(e^k)}\right)$ .

To prove the claim, it remains to bound  $\text{mes}(\mathcal{A}_{k_1}(I) \cap \mathcal{A}_{k_2}(I) | I)$  from above by  $\frac{\text{const}}{R_1 R_2}$ , where  $R_i := \psi(e^{k_i})$ .

A *cylinder* is a set of the form

$$[a_1, \dots, a_n] = \{\alpha \in (0, 1) \setminus \mathbb{Q} : a_i(\alpha) = a_i \ (1 \leq i \leq n)\}.$$

Equivalently,  $\alpha \in [a_1, \dots, a_n]$  iff  $\alpha$  has an infinite continued fraction expansion of the form  $\alpha = [0; a_1, \dots, a_n, *, *, \dots]$ .

Our plan is to cover  $\mathcal{A}_{k_i}(I)$  by unions of cylinders of total measure  $O(1/R_i)$ , and then use the following well-known fact: There is a constant  $G > 1$  s.t. for any  $(a_1, \dots, a_n, b_1, \dots, b_m) \in \mathbb{N}^{n+m}$ ,

$$G^{-1} \leq \frac{\text{mes}[a_1, \dots, a_n; b_1, \dots, b_m]}{\text{mes}[a_1, \dots, a_n] \text{mes}[b_1, \dots, b_m]} \leq G. \quad (3.8)$$

This is because the invariant measure  $\frac{1}{\ln 2} \frac{dx}{1+x}$  of  $T : (0, 1) \rightarrow (0, 1)$ ,  $T(x) = \{\frac{1}{x}\}$  (the Gauss map) is a Gibbs-Markov measure, because of the bounded distortion of  $T$ , see §2 in [ADU93].

To cover  $\mathcal{A}_{k_i}(I)$  by cylinders, it is enough to cover  $A_{m,n,k_i}$  by cylinders for every  $(m, n) \in \Omega_{k_i}(I)$ . Suppose  $\alpha \in A_{m,n,k_i}$ . Then  $r := \text{gcd}(m, n) \leq M$  and  $(m^*, n^*) := \frac{1}{r}(m, n)$  satisfies

$$\text{gcd}(m^*, n^*) = 1, \ n^* \in \bigcup_{|k_i^* - k_i| \leq \ln M} [e^{k_i^*-1}, e^{k_i^*}], \ |n^* \alpha - m^*| < \frac{1}{n^* R_i}.$$

Assume  $k_i$  is so large that  $R_i = \psi(e^{k_i}) \geq 4$ . Then Lemma 3.3 gives  $a_{l_i+1} > \frac{R_i}{2}$ . Thus  $\mathcal{A}_{k_i}(I) \subset \mathcal{C}_{k_i}(I, R_i)$  where

$$\mathcal{C}_k(I, R) := \bigcup_{k^* \in [k - \ln M, k]} \left\{ \alpha \in (0, 1) \setminus \mathbb{Q} : \exists \ell \text{ s.t. } \begin{array}{l} q_\ell(\alpha) \in [e^{k^*-1}, e^{k^*}], \\ a_{\ell+1}(\alpha) \geq R/2 \\ p_\ell(\alpha)/q_\ell(\alpha) \in I \end{array} \right\}.$$

This is a union of cylinders, because  $q_\ell(\alpha), p_\ell(\alpha), a_{\ell+1}(\alpha)$  are constant on cylinders of length  $\ell + 1$ .

We claim that for some  $c^*(M)$  which only depends on  $M$ , for all  $k_i$  large enough,

$$\text{mes}(\mathcal{C}_{k_i}(I, R_i)) \leq \frac{c^*(M)\text{mes}(I)}{R_i}. \quad (3.9)$$

Every rational  $\frac{m}{n} \in (0, 1)$  has two finite continued fraction expansions:  $[0; a_1, \dots, a_\ell]$  and  $[0; a_1, \dots, a_\ell - 1, 1]$  with  $a_\ell > 1$ . We write  $\ell = \ell(\frac{m}{n})$  and  $a_i = a_i(\frac{m}{n})$ . With this notation

$$\begin{aligned} \mathcal{C}_{k_i}(I, R_i) = & \bigcup_{\substack{k_i^* \in [k_i - \ln M, k_i] \\ n \in [e^{k_i^*-1}, e^{k_i^*}]}} \bigcup_{\substack{\gcd(m, n) = 1 \\ m/n \in I}} \bigcup_{b > R_i/2} [\![a_1(\frac{m}{n}), \dots, a_{\ell(\frac{m}{n})}(\frac{m}{n}), b]\!] \\ & \cup [\![a_1(\frac{m}{n}), \dots, a_{\ell(\frac{m}{n})}(\frac{m}{n}) - 1, 1, b]\!]. \end{aligned}$$

We have  $[\![a_1, \dots, a_\ell]\!] = (\frac{p_\ell + p_{\ell-1}}{q_\ell + q_{\ell-1}}, \frac{p_\ell}{q_\ell})$  or  $(\frac{p_\ell}{q_\ell}, \frac{p_\ell + p_{\ell-1}}{q_\ell + q_{\ell-1}})$ , depending on the parity of  $\ell$  [Khi63]. Since  $|p_\ell q_{\ell-1} - p_{\ell-1} q_\ell| = 1$  and  $q_{\ell+1} = a_{\ell+1} q_\ell + q_{\ell-1}$ , we have  $\text{mes}([\![a_1, \dots, a_\ell, b]\!]) = \frac{1}{q_{\ell+1}(q_{\ell+1} + q_\ell)} = \frac{1}{(bq_\ell + q_{\ell-1})((b+1)q_\ell + q_{\ell-1})} \leq \frac{1}{b(b+1)q_\ell^2}$ , leading to

$$\begin{aligned} \text{mes}(\mathcal{C}_{k_i}(I, R_i)) & \leq \sum_{k_i^* \in [k_i - \ln M, k_i]} \sum_{n \in [e^{k_i^*-1}, e^{k_i^*}]} \sum_{\substack{\gcd(m, n) = 1 \\ m/n \in I}} \sum_{b > R_i/2} \frac{2}{n^2 b(b+1)} \\ & \leq \frac{8 \ln M}{e^{2(k_i - 1 - \ln M)} R_i} \sum_{n=1}^{e^{k_i} M} \# \{m \in \mathbb{N} : \frac{m}{n} \in I, \gcd(m, n) = 1\} \leq \frac{c^*(M)}{R_i} \text{mes}(I) \end{aligned}$$

where  $c^*(M)$  only depends on  $M$ . The last step uses Prop. 3.7.

Next we cover  $\mathcal{A}_{k_1}(I) \cap \mathcal{A}_{k_2}(I)$  by cylinders. Suppose without loss of generality that  $k_2 > k_1$ . Arguing as before one sees that if

$$k_2 > k_1 + \ln M + 1, \quad (3.10)$$

then  $\mathcal{A}_{k_1}(I) \cap \mathcal{A}_{k_2}(I)$  can be covered by sets  $[\![a_1, \dots, a_\ell, b, \bar{a}_1, \dots, \bar{a}_{\bar{l}}, \bar{b}]\!]$  as follows: The convergents  $p_i/q_i$  of (every)  $\alpha$  in  $[\![a_1, \dots, a_\ell, b, \bar{a}_1, \dots, \bar{a}_{\bar{l}}, \bar{b}]\!]$ ,  $(1 \leq i \leq \ell + \bar{l} + 2)$ , satisfy

(a)  $q_i \in [e^{k_1^*-1}, e^{k_1^*}], k_1^* \in [k_1 - \ln M, k_1], p_i/q_i \in I, b \geq R_1/2$ ;

(b)  $q_{l+\bar{l}+1} \in [e^{k_2^*-1}, e^{k_2^*}]$ ,  $k_2^* \in [k_2 - \ln M, k_2]$ ,  $p_{\bar{l}}/q_{\bar{l}} \in I$ ,  $\bar{b} \geq R_2/2$   
(c)  $k_2^* > k_1^*$  (this is where (3.10) is used).

We claim that

$$[\![a_1, \dots, a_\ell, b]\!] \subset \mathcal{C}_{k_1}(I), \quad (3.11)$$

$$b \leq e^{k_2^*-k_1^*+1}, \quad (3.12)$$

$$[\![\bar{a}_1, \dots, \bar{a}_{\bar{l}}, \bar{b}]\!] \subset \bigcup_{|r| \leq 3} \mathcal{C}_{k_2-k_1+r-\ln b}([0, 1], R_2). \quad (3.13)$$

(3.11) follows from (a). Next,  $e^{k_2^*} \geq q_{l+1} \geq b q_l \geq b e^{k_1^*-1}$  proving (3.12). To prove (3.13), let  $\bar{p}_i/\bar{q}_i$ ,  $1 \leq i \leq \bar{l}+2$ , be the principal convergents of (every)  $\bar{\alpha} \in [\![\bar{b}, \bar{a}_1, \dots, \bar{a}_{\bar{l}}, \bar{b}]\!]$ . By Prop. 3.8,  $q_{l+1+\bar{l}} = q_{l-1}\bar{p}_{\bar{l}+1} + q_{\bar{l}}\bar{q}_{\bar{l}+1}$ , whence  $q_{\bar{l}}\bar{q}_{\bar{l}+1} \leq q_{l+1+\bar{l}} \leq 2q_{\bar{l}}\bar{q}_{\bar{l}+1}$ . Since  $q_l \in [e^{k_1^*-1}, e^{k_1^*}]$  and  $q_{l+\bar{l}+1} \in [e^{k_2^*-1}, e^{k_2^*}]$ ,

$$e^{k_2^*-k_1^*-2} \leq \frac{q_{l+1+\bar{l}}}{2q_l} \leq \bar{q}_{\bar{l}+1} \leq \frac{q_{l+1+\bar{l}}}{q_l} \leq e^{k_2^*-k_1^*+1}. \quad (3.14)$$

Next, let  $\tilde{p}_i/\tilde{q}_i$  ( $1 \leq i \leq \bar{l}$ ) denote the principal convergents of (every)  $\tilde{\alpha} \in [\![\bar{a}_1, \dots, \bar{a}_{\bar{l}}, \bar{b}]\!]$ . Then  $\frac{\tilde{p}_{\bar{l}+1}}{\tilde{q}_{\bar{l}+1}} = 1/(b + \frac{\tilde{p}_{\bar{l}}}{\tilde{q}_{\bar{l}}})$ , so  $\bar{q}_{\bar{l}+1} = b\tilde{q}_{\bar{l}} + \tilde{p}_{\bar{l}}$ , whence  $b\tilde{q}_{\bar{l}} \leq \bar{q}_{\bar{l}+1} \leq (b+1)\tilde{q}_{\bar{l}}$ . Thus  $\tilde{q}_{\bar{l}} \in [(b+1)^{-1}\bar{q}_{\bar{l}+1}, b^{-1}\bar{q}_{\bar{l}+1}]$ . It follows that the  $\bar{l}$ -th principal convergent of every  $\tilde{\alpha} \in [\![\bar{a}_1, \dots, \bar{a}_{\bar{l}}, \bar{b}]\!]$  satisfies

$$\tilde{q}_{\bar{l}} \in [e^{k_2^*-k_1^*-3-\ln b}, e^{k_2^*-k_1^*+1-\ln b}]. \quad (3.15)$$

It is now easy to see (3.13).

$$\text{By (3.13), } \mathcal{A}_{k_1}(I) \cap \mathcal{A}_{k_2}(I) \cap I \subset \bigcup_{|r| \leq 3} \bigcup_{[a,b] \subset \mathcal{C}_{k_1}(I)} \bigcup_{[a',b'] \subset \mathcal{C}_{k_2-k_1+r-\ln b}([0,1])} [\![a, b, a', b]\!].$$

Now arguing as in the proof of (3.9) and using (3.8) we obtain

$$\begin{aligned} \text{mes}(\mathcal{A}_{k_1}(I) \cap \mathcal{A}_{k_2}(I) \cap I) &\leq \\ &\leq \sum_{\substack{k_i^* \in [k_i - \ln M, k_i] \\ i=1,2; |r| \leq 3}} \sum_{n \in [e^{k_1^*-1}, e^{k_1^*}]} \sum_{\substack{\gcd(m,n)=1 \\ m/n \in I}} \sum_{b=[R_1/2]}^{[\exp(k_2^*-k_1^*+1)]} \frac{2G \text{mes}(\mathcal{C}_{k_2-k_1+r-\ln b}([0,1], R_2))}{n^2 b(b+1)} \\ &\leq \frac{\text{const mes}(I)}{R_1 R_2}. \end{aligned} \quad (3.16)$$

(3.16) uses the estimate  $\text{mes}(\mathcal{C}_{k_2-k_1+r-\ln b}([0, 1], R_2)) = O(1/R_2)$  which is also valid when  $k_2 - k_1 + r - \ln b$  is small, provided we choose  $M$  large enough so that the asymptotic in Prop. 3.7 holds for all  $N > M$  with  $I = [0, 1]$ . See the proof of (3.9).

Combining (3.16) with (3.7), we find that under (3.10)  $\mathcal{A}_{k_i}(I)$  are  $D$ -quasi-independent for sufficiently large  $D$ , proving Claim 3.

Claims 2 and 3 allow us to apply Sullivan's Borel–Cantelli Lemma (Prop. 3.5). We obtain  $\delta = \delta(M)$  s.t. for every interval  $I \subset [\varepsilon, 1 - \varepsilon]$ ,  $\text{mes}(\mathcal{A} \cap I) \geq \delta \text{mes}(I)$ . This means that  $[\varepsilon, 1 - \varepsilon] \setminus \mathcal{A}$  has no Lebesgue density points, and therefore must have measure zero. So  $\mathcal{A}$  has full measure in  $[\varepsilon, 1 - \varepsilon]$ . Since  $\varepsilon$  is arbitrary,  $\mathcal{A}$  has full measure.  $\square$

#### 4. PROOF OF THEOREM 1.2

As explained in Section 2, it is enough to prove Theorem 1.2 for  $f(x) := \sum_{m=1}^d b_m h(x + \beta_m) \not\equiv 0$  with  $h(x) = \{x\} - \frac{1}{2}$ . Without loss of generality,  $\beta_i$  are different and  $b_i \neq 0$ . Notice that

$$f(x) = - \sum_{m=1}^d b_m \sum_{j=1}^{\infty} \frac{\sin(2\pi j(x + \beta_m))}{\pi j}.$$

Therefore  $\|f\|_2^2 = \frac{1}{2\pi^2} \sum_n \frac{1}{n^2} D(\beta_1 n, \dots, \beta_d n)$ , where  $D : \mathbb{T}^d \rightarrow \mathbb{R}$  is

$$D(\gamma_1, \dots, \gamma_d) := \int_0^1 \left[ \sum_{m=1}^d b_m \sin(2\pi(y + \gamma_m)) \right]^2 dy. \quad (4.1)$$

Since  $f \not\equiv 0$ ,  $D(\beta_1 n, \dots, \beta_d n) > 0$  for some  $n$ . Let  $\mathfrak{T}$  denote the closure in  $\mathbb{T}^d$  of  $\mathbb{O} := \{(\beta_1 n, \dots, \beta_d n) \bmod \mathbb{Z} : n \in \mathbb{Z}\}$ . This is a minimal set for the translation by  $(\beta_1, \dots, \beta_d)$  on  $\mathbb{T}^d$ , so a standard compactness argument shows that for every  $\varepsilon_0 > 0$ , the set

$$\mathcal{N} := \{n \in \mathbb{N} : D(\beta_1 n, \dots, \beta_d n) > \varepsilon_0\} \quad (4.2)$$

is syndetic: its gaps are bounded. Thus  $\mathcal{N}$  has positive lower density.

By Theorem 3.1, if  $M$  is sufficiently large then the set  $\mathcal{A} := \mathcal{A}(\mathcal{N}, M)$  has full measure in  $\mathbb{T}$ . Let

$$S_n(\alpha, x) := \sum_{k=0}^{n-1} f(x + k\alpha).$$

The proof of Theorem 1.2 for  $f(x)$  above consists of two parts:

**Theorem 4.1.** *Suppose  $\alpha \in \mathcal{A}$ , then for a.e.  $x \in [0, 1)$ , there exist  $A_k(x) \in \mathbb{R}$  and  $B_k(x), N_k(x) \rightarrow \infty$  such that*

$$\frac{S_n(\alpha, x) - A_k(x)}{B_k(x)} \xrightarrow[k \rightarrow \infty]{\text{dist}} \mathbb{U}[0, 1], \text{ as } n \sim \mathbb{U}(0, \dots, N_k(x)).$$

**Theorem 4.2.** *Suppose  $\alpha \in \mathcal{A}$ , then for a.e.  $x \in [0, 1)$ , there are no  $A_N(x) \in \mathbb{R}$  and  $B_N(x) \rightarrow \infty$  such that*

$$\frac{S_n(\alpha, x) - A_N(x)}{B_N(x)} \xrightarrow[N \rightarrow \infty]{\text{dist}} \mathbb{U}[0, 1], \text{ as } n \sim \mathbb{U}(0, \dots, N).$$

### 4.1. Preliminaries.

**Lemma 4.3.**  $S_q(\alpha, \cdot) : \mathbb{T} \rightarrow \mathbb{R}$  has  $dq$  discontinuities.

*Proof.* The discontinuities of  $S_q$  are preimages of discontinuities of  $f$  by  $R_\alpha^{-k}$  with  $k = 0, 1, \dots, q-1$ .  $\square$

**Lemma 4.4.** Let  $C := \sup |f'| \leq |\sum b_m|$ . If  $x', x''$  belong to same continuity component of  $R_\alpha^r$  then

$$|S_r(\alpha, x') - S_r(\alpha, x'')| \leq Cr|x' - x''|.$$

*Proof.* Since  $|S'_r| = |\sum_{k=0}^{r-1} f'(x + k\alpha)| \leq Cr$ , the restriction of  $S_r$  to on each continuity component is Lipschitz with Lipschitz constant  $Cr$ .  $\square$

**Lemma 4.5.** There are constants  $C_1, C_2$  such that the following holds. Suppose that  $q_n$  is a principal denominator of  $\alpha$ , and  $q_{n+1} > cq_n$  with  $c > 1$ . Let  $\mu_n(x) := S_{q_n}(\alpha, x)$ , then

$$\text{mes} \left\{ x : S_{\ell q_n}(\alpha, x) = \ell \mu_n \pm C_1 \frac{\ell^2}{c} \text{ for } \ell = 0, \dots, k \right\} > 1 - C_2 \frac{k}{c}. \quad (4.3)$$

*Proof.* If  $x$  and  $x + \ell q_n \alpha$  belong to the same continuity interval of  $R_\alpha^{q_n}$  for all  $\ell = 0, \dots, k$  then we have by Lemma 4.4 that for  $\ell \leq k$

$$\begin{aligned} |S_{\ell q_n}(\alpha, x) - \ell \mu_n| &\leq \sum_{j=0}^{\ell-1} |S_{q_n}(\alpha, x + jq_n \alpha) - S_{q_n}(\alpha, x)| \leq C q_n \sum_{j=0}^{\ell-1} \|jq_n \alpha\| \\ &\leq \frac{C q_n}{q_{n+1}} \sum_{j=0}^{\ell-1} j \leq \frac{C_1 \ell^2}{c}, \text{ where } C_1 := C/2. \end{aligned}$$

Therefore if  $S_{\ell q_n}(\alpha, x) \neq \ell \mu_n \pm C_1 \frac{\ell^2}{c}$  for some  $\ell = 0, \dots, k$ , then there must exist  $0 \leq \ell \leq k$  s.t.  $x, R_\alpha^{\ell q_n}(x)$  are separated by a discontinuity of  $S_{q_n}(\alpha, \cdot)$ . Since  $\text{dist}(x, R_\alpha^{\ell q_n}(x)) \leq \ell/q_{n+1}$ ,  $x$  must belong to a ball with radius  $k/q_{n+1}$  centered at a discontinuity of  $S_{q_n}(\alpha, \cdot)$ . By Lemma 4.3, there are  $dq_n$  discontinuities, so the measure of such points is less than  $dq_n \left( \frac{2k}{q_{n+1}} \right) \leq \frac{2dk}{c}$ . The lemma follows with  $C_2 := 2d$ .  $\square$

**Lemma 4.6.** There is a constant  $C_3 = C_3(b_1, \dots, b_d)$  s.t. for every  $n \geq 1$  and  $\alpha = [0; a_1, a_2, \dots]$ ,  $\max\{|S_r(\alpha, x)| : 0 \leq r \leq q_n - 1\} \leq C_3(a_0 + \dots + a_{n-1})$ .

*Proof.* Let  $r = \sum_{j=0}^{n-1} b_j q_j$  denote the Ostrowski expansion of  $r$ . Recall that this means that  $0 \leq b_j \leq a_j$  and  $b_j = a_j \Rightarrow b_{j-1} = 0$ . So

$$S_r = \sum_{k=0}^{b_{n-1}-1} S_{q_{n-1}} \circ R_\alpha^{q_{n-1}k} + \sum_{k=0}^{b_{n-2}-1} S_{q_{n-2}} \circ R_\alpha^{q_{n-2}k} + \dots + \sum_{k=0}^{b_0-1} S_{q_0} \circ R_\alpha^{q_0k}.$$

By the Denjoy-Koksma inequality  $|S_r| \leq \sum \mathfrak{b}_j \mathsf{V}(f) \leq \mathsf{V}(f) \sum a_j$  where  $\mathsf{V}(f) \leq 2 \sum b_i$  is the total variation of  $f$  on  $\mathbb{T}$ .  $\square$

**Lemma 4.7.** *There exist positive constants  $\varepsilon_1, \varepsilon_2$  such that for every  $\alpha$  irrational, if  $q_n$  is a principal denominator of  $\alpha$  and  $q_n r_n \in \mathcal{N}$  with  $r_n \leq M$  then  $\text{mes}\{x : |S_{q_n}(\alpha, x)| \geq \varepsilon_1\} \geq \varepsilon_2$ .*

*Proof.* We follow an argument from [Bec94]. Suppose  $q_n$  is a principal denominator of  $\alpha$  and  $q_n r_n \in \mathcal{N}$  for some  $r_n \leq M$ . Let  $N = q_n r_n$ . Since  $f(x) = -\sum_{m=1}^d b_m \sum_{j=1}^{\infty} \frac{\sin(2\pi j(x+\beta_m))}{\pi j}$ , for each  $j \in \mathbb{N}$

$$\|S_N(\alpha, \cdot)\|_{L^2}^2 \geq \frac{1}{\pi^2 j^2} \int_0^1 \left( \sum_{m=1}^d b_m \sum_{k=0}^{N-1} \sin(2\pi j(x+k\alpha+\beta_m)) \right)^2 dx.$$

Using the identities  $\sum_{k=1}^N \sin(y+kx) = \frac{\cos(y+x/2)-\cos(y+(2N+1)x/2)}{2\sin(x/2)}$  and  $\cos A - \cos B = 2 \sin(\frac{A+B}{2}) \sin(\frac{B-A}{2})$  we find that

$$\begin{aligned} \|S_N(\alpha, \cdot)\|_{L^2}^2 &\geq \\ &\geq \left( \frac{\sin(\pi N j \alpha)}{\pi j \sin(\pi j \alpha)} \right)^2 \int_0^1 \left( \sum_{m=1}^d b_m \sin \left( 2\pi \left( jx + j \frac{(N-1)\alpha}{2} \right) + 2\pi j \beta_m \right) \right)^2 dx \\ &= \left( \frac{\sin(\pi N j \alpha)}{\pi j \sin(\pi j \alpha)} \right)^2 \int_0^1 \left( \sum_{m=1}^d b_m \sin(2\pi(y+j\beta_m)) \right)^2 dy \\ &= \left( \frac{\sin(\pi N j \alpha)}{\pi j \sin(\pi j \alpha)} \right)^2 D(j\beta_1, \dots, j\beta_m) \text{ with } D \text{ as in (4.1)}. \end{aligned}$$

We now take  $j = N = r_n q_n$ . The first term is bounded below because  $\|N\alpha\| \leq M \|q_n \alpha\| \leq \frac{M}{q_{n+1}} \leq \frac{M}{a_{n+1} q_n} \leq \frac{M^2}{a_{n+1} N} = o(\frac{1}{N})$ , so  $\frac{\sin(\pi N^2 \alpha)}{\pi N \sin(\pi N \alpha)} \xrightarrow{n \rightarrow \infty} \pi^{-1}$ . The second term is bounded below by  $\varepsilon_0$ , because  $N = q_n r_n \in \mathcal{N}$ . It follows that for all  $n$  large enough,  $\|S_{r_n q_n}(\alpha, \cdot)\|_2 > \sqrt{\varepsilon_0}/2\pi$ .

For any  $L^2$ -function  $\varphi$  and any  $\hat{\varepsilon} > 0$ ,

$$\|\varphi\|_{L^2}^2 \leq \|\varphi\|_{L^\infty}^2 \text{mes}\{x : |\varphi(x)| \geq \hat{\varepsilon}\} + \hat{\varepsilon}^2.$$

Hence  $\text{mes}\{x : |\varphi(x)| \geq \hat{\varepsilon}\} \geq \frac{\|\varphi\|_{L^2}^2 - \hat{\varepsilon}^2}{\|\varphi\|_{L^\infty}^2}$ . We just saw that for all  $n$  large enough,  $\|S_{r_n q_n}(\alpha, \cdot)\|_2 > \sqrt{\varepsilon_0}/2\pi$ , and by the Denjoy-Koksma inequality  $\|S_{r_n q_n}(\alpha, \cdot)\|_{L^\infty} \leq M \mathsf{V}(f)$ . So for some  $\hat{\varepsilon} > 0$  and for all  $n$  large enough,  $\text{mes}\{x : |S_{r_n q_n}(\alpha, x)| > \hat{\varepsilon}\} \geq \hat{\varepsilon}$ .

Looking at the inequality  $|S_{r_n q_n}(\alpha, x)| \leq \sum_{k=0}^{r_n-1} |S_{q_n}(\alpha, x + kq_n \alpha)|$ , we see that if  $|S_{r_n q_n}(\alpha, x)| \geq \hat{\varepsilon}$ , then  $|S_{q_n}(\alpha, x + kq_n \alpha)| \geq \hat{\varepsilon}/M$  for some  $0 \leq k \leq M-1$ . So for all  $n$  large enough,  $\text{mes}\{x : |S_{q_n}(\alpha, x)| > \hat{\varepsilon}/M\} \geq \hat{\varepsilon}/M$ .  $\square$

**4.2. Proof of Theorem 4.1.** Let  $\Omega^*(\alpha)$  be the set of  $x$  where the conclusion of Theorem 4.1 holds.  $\Omega^*(\alpha)$  is  $R_\alpha$ -invariant and it is measurable by Lemma A.1 in the appendix. Therefore to show that  $\Omega^*(\alpha)$  has full measure, it suffices to show that it has positive measure.

Suppose  $\alpha \in \mathcal{A}$  and let  $n_k \uparrow \infty$  be a sequence satisfying (3.1) with  $\mathcal{N}$  given by (4.2). There is no loss of generality in assuming that

$$\frac{a_{n_k+1}}{a_0 + \cdots + a_{n_k}} > k^3.$$

So  $q_{n_k+1} > k^3 L_k q_{n_k}$ , where  $L_k := a_0 + \cdots + a_{n_k}$ .

Recall that  $\mu_{n_k}(x) = S_{q_{n_k}}(\alpha, x)$ . For all  $k$  sufficiently large, there is a set  $A_k$  of measure at least  $\varepsilon_2/2$  such that for all  $x \in A_k$ ,

$$S_{\ell q_{n_k}}(\alpha, x) = \ell \left( \mu_{n_k}(x) \pm \frac{C_1 \ell}{k^3 L_k} \right) \text{ for all } \ell = 0, 1, \dots, k L_k \quad (4.4)$$

$$|\mu_{n_k}(x)| \geq \varepsilon_1. \quad (4.5)$$

This is because Lemma 4.5 says that the total measure of  $x$  for which (4.4) fails is  $O(1/k^2)$  while (4.5) holds on the set of measure  $\varepsilon_2$  by Lemma 4.7.

It follows that  $\text{mes}(\bigcap_{n>1} \bigcup_{k>n} A_k) \geq \varepsilon_2/2$ . Therefore there exists  $x$  which belongs to infinitely many  $A_k$ . After re-indexing  $n_k$ , we may assume that (4.4), (4.5) are satisfied for all  $k \in \mathbb{N}$ . Henceforth, we fix such an  $x$  and work with this  $x$ . Let

$$N_k(x) := k L_k q_{n_k}, \quad B_k(x) := k L_k |\mu_{n_k}(x)|, \quad A_k(x) := \frac{1}{2}(\text{sgn}(\mu_{n_k}(x))-1)B_k.$$

Any  $n \leq N_k$  can be written uniquely in the form

$$n = l(n)q_{n_k} + r(n) \quad \text{with} \quad 0 \leq l(n) \leq k L_k \text{ and } 0 \leq r(n) < q_{n_k}.$$

It is easy to see that  $\frac{l(n)}{k L_k} \xrightarrow[k \rightarrow \infty]{\text{dist}} \text{U}[0, 1]$  as  $n \sim \text{U}(1, \dots, N_k)$ .

Writing  $S_n(\alpha, x) = S_{l(n)q_{n_k}}(\alpha, x) + S_{r(n)}(\alpha, x + \alpha l(n)q_{n_k})$  we obtain from (4.4) and Lemma 4.6 that

$$S_n(\alpha, x) = l(n)\mu_{n_k}(x) + O(L_k).$$

So  $\frac{S_n(x)}{B_k}$  is asymptotically uniform on  $[0, 1]$  when  $\mu_{n_k} > 0$ , and  $[-1, 0]$  when  $\mu_{n_k} < 0$ . So  $\frac{S_n(x) - A_k}{B_k} \xrightarrow[k \rightarrow \infty]{\text{dist}} \text{U}[0, 1]$ , as  $n \sim \text{U}(1, \dots, N_k)$ .  $\square$

**4.3. Proof of Theorem 4.2.** Let  $\Omega(\alpha)$  denote the set of  $x \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$  for which there are  $B_N(x) \rightarrow \infty$  and  $A_N(x) \in \mathbb{R}$  s.t.

$$\frac{S_n(\alpha, x) - A_N(x)}{B_N(x)} \xrightarrow[N \rightarrow \infty]{\text{dist}} \text{U}[0, 1], \text{ as } n \sim \text{U}(1, \dots, N). \quad (4.6)$$

$\Omega(\alpha)$  is measurable, and  $A_n(\cdot), B_n(\cdot)$  can be chosen to be measurable on  $\Omega(\alpha)$ , see the appendix. Assume by way of contradiction that  $\text{mes}[\Omega(\alpha)] \neq 0$  for some  $\alpha \in \mathcal{A}$ .

$\Omega(\alpha)$  is invariant under  $R_\alpha(x) = x + \alpha \bmod 1$  on  $\mathbb{T} := \mathbb{R}/\mathbb{Z}$ . Since  $R_\alpha$  is ergodic, and  $\Omega(\alpha)$  is measurable,  $\text{mes}[\Omega(\alpha)] = 1$ .

Since  $\alpha \in \mathcal{A}$ , there is an increasing sequence  $n_k$  satisfying (3.1) where  $\mathcal{N}$  is given by (4.2). We can choose  $n_k$  so that  $q_{n_k} r_{n_k} \in \mathcal{N}$  for  $r_{n_k} \leq M$ , and  $a_{n_k+1} > k^3 L_k$  where  $L_k := a_0 + \dots + a_{n_k}$ . In particular,  $q_{n_k+1} > k^3 L_k q_{n_k}$ .

Recall that  $\mu_{n_k}(x) := S_{q_{n_k}}(\alpha, x)$ . By Lemma 4.7 we can choose  $x$  such that for infinitely many  $k$ ,  $|\mu_{n_k}(x)| \geq \varepsilon_1$ . We will suppose that  $\mu_{n_k}(x) > 0$  for infinitely many  $k$ ; the case where  $\mu_{n_k}(x) < 0$  for infinitely many  $k$  is similar.

CLAIM 1. It is possible to assume without loss of generality that  $\|B_{q_{n_k}}\|_\infty := \sup_{x \in \Omega(\alpha)} |B_{q_{n_k}}(x)| \leq 3C_3 L_k$  for all  $k$  where  $C_3$  is the constant from Lemma 4.6.

*Proof.* We claim that for every  $x$  with (4.6),  $B_{q_{n_k}}(x) \leq 3C_3 L_k$  for all  $k$  large enough. Otherwise, by Lemma 4.6, there are infinitely many  $k$  s.t.  $B_{q_{n_k}}(x) > 3 \max\{|S_r(\alpha, x)| : r = 0, \dots, q_{n_k-1}\}$ , whence  $|S_n(\alpha, x)/B_{q_{n_k}}| \leq \frac{1}{3}$  for all  $0 \leq n \leq q_{n_k} - 1$ . In such circumstances, (4.6) does not hold (the spread is not big enough).

Since  $B_{q_{n_k}}(x) \leq 3C_3 L_k$  for all  $k$  large enough, there is no harm in replacing  $B_{q_{n_k}}(x)$  in (4.6) by  $\min\{B_{q_{n_k}}(x), 3C_3 L_k\}$ .

CLAIM 2. Fix  $D > C = |\sum b_m|$ , and let  $E_k$  denote the set of  $x \in \Omega(\alpha)$  s.t.  $S_r(\alpha, x) = S_r(\alpha, R_\alpha^{\ell q_{n_k}}(x)) \pm \frac{D\ell}{q_{n_k+1}}$  for all  $0 \leq \ell \leq B_{q_{n_k}}(x)$ ,  $0 \leq r < q_{n_k} - 1$ . Then  $\text{mes}(E_k^c) \leq C_4 k^{-3}$ .

*Proof.* If  $x \notin E_k$ , then there are  $0 \leq \ell \leq B_{q_{n_k}}(x)$ ,  $0 \leq r < q_{n_k} - 1$  s.t.

$$|S_r(\alpha, x) - S_r(\alpha, x + \ell q_{n_k} \alpha)| \geq \frac{D\ell}{q_{n_k+1}}.$$

By Lemma 4.4,  $\{x\}$ ,  $\{x + \ell q_{n_k} \alpha\}$  are separated by a singularity of  $S_r(\alpha, \cdot)$ . So  $x$  belongs to a ball of radius  $2\|\ell q_{n_k} \alpha\|$  centered at one of the  $dq_{n_k}$  discontinuities of  $S_{q_{n_k}}(\alpha, \dots)$ . Thus  $\text{mes}(E_k^c) \leq dq_{n_k} \cdot 2\|\ell q_{n_k} \alpha\|$ . Now  $\|\ell q_{n_k} \alpha\| \leq \ell \|q_{n_k} \alpha\| \leq \frac{\|B_{q_{n_k}}\|_\infty}{q_{n_k+1}} \leq \frac{3C_3 L_k}{q_{n_k+1}} \leq \frac{3C_3}{k^3 q_{n_k}}$  by our choice of  $n_k$ . So  $\text{mes}(E_k^c) \leq C_4/k^3$  with  $C_4 := 6dC_3$ .

CLAIM 3. Let  $F_k$  denote the set of  $x \in \Omega(\alpha)$  s.t.

$$S_{\ell q_{n_k}}(\alpha, x) = \ell \left( \mu_{n_k}(x) \pm \frac{C_1 \ell}{k^3 L_k} \right) \text{ for all } 0 \leq \ell \leq B_{q_{n_k}}(x).$$

Then  $\text{mes}(F_k^c) \leq C_5 k^{-2}$ .

*Proof.* This follows from Lemma 4.5.

By Claims 2 and 3, and a Borel–Cantelli argument, for a.e.  $x$  there is  $k_0(x)$  s.t.  $x \in E_k \cap F_k$  for all  $k \geq k_0(x)$ .

Suppose  $k \geq k_0(x)$ , and let  $N_k := q_{n_k} B_{q_{n_k}}(x)$ . Every  $0 \leq n \leq N_k - 1$  can be uniquely represented as  $n = \ell q_{n_k} + r$  with  $0 \leq \ell \leq B_{q_{n_k}}(x) - 1$  and  $0 \leq r \leq q_{n_k} - 1$ . Using the bound  $\|B_{q_{n_k}}\|_\infty = O(L_k)$ , we find:

$$\begin{aligned} \frac{S_n(\alpha, x) - A_{q_{n_k}}(x)}{B_{q_{n_k}}(x)} &= \frac{S_{\ell q_{n_k}}(\alpha, x)}{B_{q_{n_k}}(x)} + \frac{S_r(\alpha, R_\alpha^{\ell q_{n_k}} x) - A_{q_{n_k}}(x)}{B_{q_{n_k}}(x)} \\ &= \frac{S_{\ell q_{n_k}}(\alpha, x)}{B_{q_{n_k}}(x)} + \frac{S_r(\alpha, x) - A_{q_{n_k}}(x) + o(1)}{B_{q_{n_k}}(x)}, \text{ because } x \in E_k \\ &= \frac{\ell(\mu_{n_k}(x) + o(1))}{B_{q_{n_k}}(x)} + \frac{S_r(\alpha, x) - A_{q_{n_k}}(x) + o(1)}{B_{q_{n_k}}(x)}, \text{ because } x \in F_k. \end{aligned}$$

If  $n \sim \text{U}(0, \dots, N_k - 1)$ , then  $\ell, r$  are independent random variables,  $\ell \sim \text{U}(0, \dots, B_{q_{n_k}}(x) - 1)$  and  $r \sim \text{U}(0, \dots, q_{n_k} - 1)$ . Thus the distribution of  $\frac{\ell(\mu_{n_k}(x) + o(1))}{B_{q_{n_k}}(x)}$  is close to  $\text{U}[0, \mu_{n_k}(x)]$ , and the distribution of  $\frac{S_r(\alpha, x) - A_{q_{n_k}}(x) + o(1)}{B_{q_{n_k}}(x)}$  converges to  $\text{U}[0, 1]$  (because  $x \in \Omega$ ).

Taking a subsequence such that  $\mu_{n_k}(x) \rightarrow \bar{\varepsilon} > \varepsilon_1$  we see that the random variables  $\frac{S_n(\alpha, x) - A_{q_{n_k}}(x)}{B_{q_{n_k}}(x)}$ , where  $n \sim \text{U}(0, \dots, n_k - 1)$ , converge in distribution to the sum of two independent uniformly distributed random variables. This contradicts to (4.6), because the sum of two independent uniform random variables is not uniform.  $\square$

## APPENDIX A. MEASURABILITY CONCERNS

Let  $\Omega(\alpha)$  denote the set of  $x \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$  such that for some  $B_N(x) \rightarrow \infty$  and  $A_N(x) \in \mathbb{R}$ ,  $\frac{S_n(\alpha, x) - A_N(x)}{B_N(x)} \xrightarrow[N \rightarrow \infty]{\text{dist}} \text{U}[0, 1]$ , as  $n \sim \text{U}(1, \dots, N)$  and let  $\Omega^*(\alpha)$  denote the set of  $x \in \mathbb{T}$  such that along a subsequence  $N_k(x)$  there exist some  $B_{N_k}(x) \rightarrow \infty$  and  $A_{N_k}(x) \in \mathbb{R}$ ,  $\frac{S_n(\alpha, x) - A_{N_k}(x)}{B_{N_k}(x)} \xrightarrow[k \rightarrow \infty]{\text{dist}} \text{U}[0, 1]$ , as  $n \sim \text{U}(1, \dots, N_k)$ . We make no assumptions on the measurability of  $A_N, B_N, N_k$  as functions of  $x$ . The purpose of this section is to prove:

**Lemma A.1.**  $\Omega(\alpha)$  and  $\Omega^*(\alpha)$  are measurable.

The crux of the argument is to show that  $A_N(x), B_N(x)$  can be replaced by measurable functions, defined in terms of the percentiles of the random quantities  $S_n(x, \alpha)$ ,  $n \sim U(1, \dots, N)$ .

Recall that given  $0 < t < 1$ , the *upper and lower t-percentiles* of a random variable  $X$  are defined by

$$\begin{aligned}\chi^+(X, t) &:= \inf\{\xi : \Pr(X \leq \xi) > t\} \\ \chi^-(X, t) &:= \sup\{\xi : \Pr(X \leq \xi) < t\}\end{aligned}\quad (0 < t < 1).$$

Notice that  $\Pr(X \leq \chi^+(X, t)) \geq t$ ,  $\Pr(X < \chi^-(X, t)) \leq t$ , and  $\Pr(\chi^-(X, t) < X < \chi^+(X, t)) = 0$ . In case  $X$  is *non-atomic* (i.e.  $P(X = a) = 0$  for all  $a$ ), we can say more:

**Lemma A.2.** *Suppose  $X$  is a non-atomic real valued random variable, fix  $0 < t < 1$  and let  $\chi_t^\pm := \chi^\pm(X, t)$ , then*

- (a)  $\Pr(X < \chi_t^+) = t$  and  $\Pr(X < \chi_t^-) = t$ ;
- (b)  $\forall \varepsilon > 0$ ,  $\Pr(\chi_t^- - \varepsilon < X < \chi_t^-)$ ,  $\Pr(\chi_t^+ < X < \chi_t^+ + \varepsilon)$  are positive;
- (c)  $\exists t_1 < t_2$  s.t.  $\chi_{t_1}^- < \chi_{t_2}^+$  and  $\chi_{t_1}^-, \chi_{t_2}^+$  have the same sign.

*Proof.* Since  $X$  is non-atomic,  $\Pr(X < \chi_t^+) = \Pr(X \leq \chi_t^+) \geq t$  and  $\Pr(X < \chi_t^-) \leq t$ . If  $\chi_t^+ = \chi_t^-$ , part (a) holds. If  $\chi_t^+ > \chi_t^-$  then for all  $h > 0$  small enough  $\chi_t^- + h < \chi_t^+ - h$  whence

$$\begin{aligned}0 \leq \Pr(\chi_t^- < X < \chi_t^+) &= \lim_{h \rightarrow 0^+} \Pr(\chi_t^- + h < X < \chi_t^+ - h) \\ &= \lim_{h \rightarrow 0^+} \Pr(X < \chi_t^+ - h) - \lim_{h \rightarrow 0^+} \Pr(X \leq \chi_t^- + h) \leq t - t = 0.\end{aligned}$$

Necessarily  $\lim_{h \rightarrow 0^+} \Pr(X < \chi_t^+ - h) = t$  and  $\lim_{h \rightarrow 0^+} \Pr(X \leq \chi_t^- + h) = t$ , which gives us  $\Pr(X < \chi_t^+) = t$  and  $\Pr(X < \chi_t^-) = \Pr(X \leq \chi_t^+) = t$ .

For (b) assume by contradiction that  $\Pr(\chi_t^- - \varepsilon < X < \chi_t^-) = 0$ , then for all  $\chi_t^- - \varepsilon < \xi < \chi_t^-$ ,  $\Pr(X \leq \xi) = \Pr(X < \chi_t^-) = t$ , whence  $\chi_t^- \leq \chi_t^- - \varepsilon$ , a contradiction. Similarly,  $\Pr(\chi_t^+ < X < \chi_t^+ + \varepsilon) = 0$  is impossible.

To prove (c) note that since  $X$  is non-atomic, either  $\Pr(X > 0)$  or  $\Pr(X < 0)$  is positive. Assume w.l.o.g. that  $\Pr(X > 0) \neq 0$ . By non-atomicity, there are positive  $a < b$  s.t.  $\Pr(X \in (0, a)) \neq 0$  and  $\Pr(X \in (a, b)) \neq 0$ . Take  $t_1 := \Pr(X < a)$  and  $t_2 := \Pr(X < b)$ .  $\square$

From now on fix a non-atomic random variable  $Y$ , and choose  $0 < t_1 < t_2 < 1$  as in Lemma A.2(c) s.t.  $\chi^-(Y, t_1) < \chi^+(Y, t_2)$  and  $\text{sgn}(\chi^-(Y, t_1)) = \text{sgn}(\chi^+(Y, t_2))$ .

**Lemma A.3.** *Let  $S_N$  be (possibly atomic) random variables s.t. for some  $A_N \in \mathbb{R}$  and  $B_N \rightarrow \infty$ ,  $\frac{S_N - A_N}{B_N} \xrightarrow[N \rightarrow \infty]{\text{dist}} Y$ . Then  $\frac{S_N - A_N^*}{B_N^*} \xrightarrow[N \rightarrow \infty]{\text{dist}} Y$ ,*

where  $A_N^*, B_N^*$  are the unique solution to

$$\begin{cases} A_N^* + B_N^* \chi^-(Y, t_1) = \chi^-(S_N, t_1) \\ A_N^* + B_N^* \chi^+(Y, t_2) = \chi^+(S_N, t_2). \end{cases} \quad (\text{A.1})$$

*Proof.* Without loss of generality,  $\chi^-(Y, t_1), \chi^+(Y, t_2)$  are both positive.

We need the following fact (which is not automatic since  $S_N$  are allowed to be atomic):

$$\lim_{N \rightarrow \infty} \Pr(S_N < \chi^-(S_N, t)) = t \text{ for all } 0 < t < 1. \quad (\text{A.2})$$

Indeed, given  $\varepsilon > 0$ , let  $\xi_N := B_N \chi^-(Y, t - \varepsilon) + A_N$ , then

$$\Pr(S_N < \xi_N) = \Pr\left(\frac{S_N - A_N}{B_N} < \chi^-(Y, t - \varepsilon)\right) \xrightarrow[N \rightarrow \infty]{} \Pr(Y < \chi^-(Y, t - \varepsilon)) = t - \varepsilon,$$

by Lemma A.2(a). So for all  $N$  large enough,  $\xi_N \leq \chi^-(S_N, t)$ , whence  $\liminf \Pr(S_N < \chi^-(S_N, t)) \geq \lim \Pr(S_N < \xi_N) = t - \varepsilon$ . Since  $\varepsilon$  is arbitrary,  $\liminf \Pr(S_N < \chi^-(S_N, t)) \geq t$ . The other inequality  $\limsup \Pr(S_N < \chi^-(S_N, t)) \leq t$  is clear since  $\Pr(S_N < \chi^-(S_N, t)) \leq t$  for all  $N$ .

With (A.2) proved, we proceed to prove that

$$\frac{A_N^* - A_N}{B_N} \xrightarrow[N \rightarrow \infty]{} 0 \quad \text{and} \quad \frac{B_N^*}{B_N} \xrightarrow[N \rightarrow \infty]{} 1. \quad (\text{A.3})$$

It will then be obvious that  $\frac{S_N - A_N}{B_N} \xrightarrow[N \rightarrow \infty]{\text{dist}} Y$  implies  $\frac{S_N - A_N^*}{B_N^*} \xrightarrow[N \rightarrow \infty]{\text{dist}} Y$ .

Define two affine transformations,  $\varphi_N(t) = \frac{t - A_N}{B_N}$  and  $\varphi_N^*(t) = \frac{t - A_N^*}{B_N^*}$ . Notice that  $(\varphi_N^*)^{-1}(t) = A_N^* + B_N^* t$ , so  $(\varphi_N^*)^{-1}(\chi^-(Y, t_1)) = \chi^-(S_N, t_1)$ , by (A.1). Since  $B_N^* = \frac{\chi^+(S_N, t_2) - \chi^-(S_N, t_1)}{\chi^+(Y, t_2) - \chi^-(Y, t_1)} > 0$ ,  $\varphi_N^*$  is increasing. By (A.2),  $\Pr(\varphi_N^*(S_N) < \chi^-(Y, t_1)) = \Pr(S_N < \chi^-(S_N, t_1)) \xrightarrow[N \rightarrow \infty]{} t_1$ . So

$$\begin{aligned} t_1 &= \lim_{N \rightarrow \infty} \Pr(\varphi_N^*(S_N) < \chi^-(Y, t_1)) \\ &= \lim_{N \rightarrow \infty} \Pr(\varphi_N(S_N) < \varphi_N[(\varphi_N^*)^{-1}(\chi^-(Y, t_1))]) \\ &= \lim_{N \rightarrow \infty} \Pr\left(\varphi_N(S_N) < \frac{B_N^*}{B_N} \left(\chi^-(Y, t_1) + \frac{A_N^* - A_N}{B_N}\right)\right). \end{aligned}$$

We claim that this implies that

$$\liminf_{N \rightarrow \infty} \frac{B_N^*}{B_N} \left(\chi^-(Y, t_1) + \frac{A_N^* - A_N}{B_N}\right) \geq \chi^-(Y, t_1). \quad (\text{A.4})$$

Otherwise,  $\exists \varepsilon$  s.t.  $\liminf_{N \rightarrow \infty} \frac{B_N^*}{B_N} \left( \chi^-(Y, t_1) + \frac{A_N^* - A_N}{B_N} \right) < \chi^-(Y, t_1) - \varepsilon$ , so

$$\begin{aligned} t_1 &= \liminf_{N \rightarrow \infty} \Pr \left( \varphi_N(S_N) < \frac{B_N^*}{B_N} \left( \chi^-(Y, t_1) + \frac{A_N^* - A_N}{B_N} \right) \right) \\ &\leq \liminf_{N \rightarrow \infty} \Pr \left( \varphi_N(S_N) < \chi^-(Y, t_1) - \varepsilon \right) = \Pr(Y < \chi^-(Y, t_1) - \varepsilon) \\ &= \Pr(Y < \chi^-(Y, t_1)) - \Pr(\chi^-(Y, t_1) - \varepsilon \leq Y < t_1) \\ &< t_1, \text{ by Lemma A.2, parts (a),(b).} \end{aligned}$$

Similarly, one shows that

$$\limsup_{N \rightarrow \infty} \frac{B_N^*}{B_N} \left( \chi^+(Y, t_2) + \frac{A_N^* - A_N}{B_N} \right) \leq \chi^+(Y, t_2). \quad (\text{A.5})$$

It remains to see that (A.4) and (A.5) imply (A.3). First we divide (A.4) by (A.5) to obtain

$$\limsup_{N \rightarrow \infty} \frac{\chi^-(Y, t_1) + \frac{A_N^* - A_N}{B_N}}{\chi^+(Y, t_2) + \frac{A_N^* - A_N}{B_N}} \geq \frac{\chi^-(Y, t_1)}{\chi^+(Y, t_2)}.$$

Since  $x \mapsto \frac{a+x}{b+x}$  is strictly decreasing on  $[0, \infty)$  when  $a > b > 0$ , this implies that

$$\limsup_{N \rightarrow \infty} \frac{A_N^* - A_N}{B_N} \leq 0. \quad (\text{A.6})$$

Looking at (A.4), and recalling that  $\chi^-(Y, t_1) > 0$ , we deduce that

$$\liminf_{N \rightarrow \infty} \frac{B_N^*}{B_N} \geq 1. \quad (\text{A.7})$$

Next we look at the difference of (A.4) and (A.5) and obtain

$$\limsup_{N \rightarrow \infty} \frac{B_N^*}{B_N} (\chi^+(Y, t_2) - \chi^-(Y, t_1)) \leq \chi^+(Y, t_2) - \chi^-(Y, t_1),$$

whence  $\limsup(B_N^*/B_N) \leq 1$ . Together with (A.7), this proves that  $B_N^*/B_N \xrightarrow[N \rightarrow \infty]{} 1$ . Substituting this in (A.4), gives  $\liminf \frac{A_N^* - A_N}{B_N} \geq 0$ , which, in view of (A.6), implies that  $\frac{A_N^* - A_N}{B_N} \xrightarrow[N \rightarrow \infty]{} 0$ . This completes the proof of (A.3), and with it, the lemma.  $\square$

*Proof of Lemma A.1.* We begin with the measurability of  $\Omega(\alpha)$ .

Let  $S_N(x)$  denote the random variable equal to  $S_n(\alpha, x)$  with probability  $\frac{1}{N}$  for each  $1 \leq n \leq N$ .

We will apply Lemma A.3 with  $Y := U[0, 1]$ ,  $S_N = S_n(x)$  and (say)  $t_1 := \frac{1}{3}$ ,  $t_2 := \frac{2}{3}$ . It says that

$$\Omega(\alpha) = \{x \in \mathbb{T} : \frac{S_N(x) - A_N^*(x)}{B_N^*(x)} \xrightarrow[N \rightarrow \infty]{\text{dist}} U[0, 1]\},$$

where  $A_N^*(x)$  and  $B_N^*(x)$  are the unique solutions to (A.1). Since the percentiles of  $S_N(x)$  are measurable as functions of  $x$ ,  $A_N^*(x), B_N^*(x)$  are measurable as functions of  $x$ .

We claim that  $\Omega(\alpha) = \Omega_1(\alpha) \cap \Omega_2(\alpha)$  where

$$\begin{aligned} \Omega_1(\alpha) &:= \bigcap_{\ell=1}^{\infty} \bigcup_{M=1}^{\infty} \bigcap_{N=M+1}^{\infty} \left\{ x \in \mathbb{T} : \frac{1}{N} \sum_{n=1}^N 1_{(2,\infty)} \left( \left| \frac{S_n(\alpha, x) - A_N^*(x)}{B_N^*(x)} \right| \right) < \frac{1}{\ell} \right\} \\ \Omega_2(\alpha) &= \bigcap_{t \in \mathbb{Q} \setminus \{0\}} \left\{ x \in \mathbb{T} : \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N e^{it \left( \frac{S_n(\alpha, x) - A_N^*(x)}{B_N^*(x)} \right)} = \mathbb{E}(e^{itY}) \right\}. \end{aligned}$$

This will prove the lemma, since the measurability of  $A_N^*(\cdot), B_N^*(\cdot)$  implies the measurability of  $\Omega_i(\alpha)$ .

If  $x \in \Omega(\alpha)$  then  $x \in \Omega_1(\alpha)$  because  $\mathbb{P} \left[ \left| \frac{S_N(x) - A_N^*}{B_N^*} \right| > 2 \right] \xrightarrow[N \rightarrow \infty]{} 0$ , and  $x \in \Omega_2(\alpha)$  because  $\mathbb{E} \left( e^{it \left( \frac{S_N(x) - A_N^*}{B_N^*} \right)} \right) \xrightarrow[N \rightarrow \infty]{} \mathbb{E}(e^{itY})$  pointwise.

Conversely, if  $x \in \Omega_1(\alpha) \cap \Omega_2(\alpha)$  then it is not difficult to see that  $\mathbb{E} \left( e^{it \left( \frac{S_N(x) - A_N^*}{B_N^*} \right)} \right) \xrightarrow[N \rightarrow \infty]{} \mathbb{E}(e^{itY})$  for all  $t \in \mathbb{R}$ . So  $x \in \Omega(\alpha)$  by Lévy's continuity theorem. Thus  $\Omega(\alpha) = \Omega_1(\alpha) \cap \Omega_2(\alpha)$ , whence  $\Omega(\alpha)$  is measurable.

The proof that  $\Omega^*(\alpha)$  is measurable is similar. Enumerate  $\mathbb{Q} \setminus \{0\} = \{t_n : n \in \mathbb{N}\}$ , then  $\alpha \in \Omega^*(\alpha)$  iff for every  $\ell \in \mathbb{N}$  there exist  $M \in \mathbb{N}$  s.t. for some  $N > M$

- (1)  $\frac{1}{N} \sum_{n=1}^N 1_{(2,\infty)} \left( \left| \frac{S_n(\alpha, x) - A_N^*(x)}{B_N^*(x)} \right| \right) < \frac{1}{\ell}$
- (2)  $|\mathbb{E} \left( e^{it_n \left( \frac{S_N(x) - A_N^*(x)}{B_N^*(x)} \right)} \right) - \mathbb{E}(e^{it_n Y})| < \frac{1}{\ell}$  for all  $n = 1, \dots, \ell$

These are measurable conditions, because  $A_N^*(\cdot), B_N^*(\cdot)$  are measurable. So  $\Omega^*(\alpha)$  is measurable.  $\square$

## REFERENCES

- [ADDS15] Artur Avila, Dmitry Dolgopyat, Eduard Duryev, and Omri Sarig. The visits to zero of a random walk driven by an irrational rotation. *Israel J. Math.*, 207(2):653–717, 2015.
- [ADU93] Jon Aaronson, Manfred Denker, and Mariusz Urbański. Ergodic theory for Markov fibred systems and parabolic rational maps. *Trans. Amer. Math. Soc.*, 337(2):495–548, 1993.

- [AK82] Jon Aaronson and Michael Keane. The visits to zero of some deterministic random walks. *Proc. London Math. Soc. (3)*, 44(3):535–553, 1982.
- [Bec94] József Beck. Probabilistic Diophantine approximation. I. Kronecker sequences. *Ann. of Math. (2)*, 140(1):109–160, 1994.
- [Bec10] József Beck. Randomness of the square root of 2 and the giant leap, Part 1. *Period. Math. Hungar.*, 60(2):137–242, 2010.
- [Bec11] József Beck. Randomness of the square root of 2 and the giant leap, Part 2. *Period. Math. Hungar.*, 62(2):127–246, 2011.
- [BU] Michael Bromberg and Corinna Ulcigrai. A temporal central limit theorem for real-valued cocycles over rotations. preprint ArXiv:1705.06484.
- [CK76] Jean-Pierre Conze and Michael Keane. Ergodicité d'un flot cylindrique. page 7, 1976.
- [DSa] Dmitry Dolgopyat and Omri Sarig. Asymptotic windings of horocycles. *to appear in Israel Math. J.*
- [DSb] Dmitry Dolgopyat and Omri Sarig. Quenched and annealed temporal limit theorems for circle rotations. Preprint (2017).
- [DS17] Dmitry Dolgopyat and Omri Sarig. Temporal distributional limit theorems for dynamical systems. *J. Statistical Physics*, 166(3-4):680–713, 2017.
- [DV86] Harold G. Diamond and Jeffrey D. Vaaler. Estimates for partial sums of continued fraction partial quotients. *Pacific J. Math.*, 122(1):73–82, 1986.
- [HW08] Godfrey Harold Hardy and Edward Maitland Wright. *An introduction to the theory of numbers*. Oxford University Press, Oxford, sixth edition, 2008. Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles.
- [Jar29] Vojtech Jarník. Zur metrischen theorie der diophantischen approximationen. *Prace Matematyczno-Fizyczne*, 36(1):91–106, 1928-1929.
- [Khi24] Alexander Ya. Khintchine. Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. *Math. Ann.*, 92(1-2):115–125, 1924.
- [Khi63] Alexander Ya. Khintchine. *Continued fractions*. Translated by Peter Wynn. P. Noordhoff, Ltd., Groningen, 1963.
- [PS] Elliot Paquette and Younghwan Son. Birkhoff sum fluctuations in substitution dynamical systems. *arXiv:1505.01428, preprint (2015)*.
- [Sch78] Klaus Schmidt. A cylinder flow arising from irregularity of distribution. *Compositio Math.*, 36(3):225–232, 1978.
- [Sul82] Dennis Sullivan. Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics. *Acta Math.*, 149(3-4):215–237, 1982.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND AT COLLEGE PARK, COLLEGE PARK, MD 20740, USA

*E-mail address:* dmitry@math.umd.edu

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, THE WEIZMANN INSTITUTE OF SCIENCE, POB 26, REHOVOT, ISRAEL

*E-mail address:* omsarig@gmail.com